linux/drivers/edac/synopsys_edac.c
Sherry Sun 2fb3f6e125 EDAC/synopsys: Do not dump uninitialized pinf->col
On the ZynqMP platform, zynqmp_get_error_info() is used to read out
error information. In this function, the pinf->col parameter is not
used (it is only used by the Zynq platform's zynq_get_error_info()). So
there's no need to print pinf->col on ZynqMP.

In order to differentiate on which platform handle_error() is executed,
use DDR_ECC_INTR_SUPPORT as the check condition to distinguish between
Zynq and ZynqMP platforms.

 [ bp: Massage. ]

Fixes: b500b4a029d57 ("EDAC, synopsys: Add ECC support for ZynqMP DDR controller")
Signed-off-by: Sherry Sun <sherry.sun@nxp.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Manish Narani <manish.narani@xilinx.com>
Link: https://lkml.kernel.org/r/1584365679-27443-1-git-send-email-sherry.sun@nxp.com
2020-03-17 14:32:31 +01:00

1413 lines
38 KiB
C

/*
* Synopsys DDR ECC Driver
* This driver is based on ppc4xx_edac.c drivers
*
* Copyright (C) 2012 - 2014 Xilinx, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details
*/
#include <linux/edac.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include "edac_module.h"
/* Number of cs_rows needed per memory controller */
#define SYNPS_EDAC_NR_CSROWS 1
/* Number of channels per memory controller */
#define SYNPS_EDAC_NR_CHANS 1
/* Granularity of reported error in bytes */
#define SYNPS_EDAC_ERR_GRAIN 1
#define SYNPS_EDAC_MSG_SIZE 256
#define SYNPS_EDAC_MOD_STRING "synps_edac"
#define SYNPS_EDAC_MOD_VER "1"
/* Synopsys DDR memory controller registers that are relevant to ECC */
#define CTRL_OFST 0x0
#define T_ZQ_OFST 0xA4
/* ECC control register */
#define ECC_CTRL_OFST 0xC4
/* ECC log register */
#define CE_LOG_OFST 0xC8
/* ECC address register */
#define CE_ADDR_OFST 0xCC
/* ECC data[31:0] register */
#define CE_DATA_31_0_OFST 0xD0
/* Uncorrectable error info registers */
#define UE_LOG_OFST 0xDC
#define UE_ADDR_OFST 0xE0
#define UE_DATA_31_0_OFST 0xE4
#define STAT_OFST 0xF0
#define SCRUB_OFST 0xF4
/* Control register bit field definitions */
#define CTRL_BW_MASK 0xC
#define CTRL_BW_SHIFT 2
#define DDRCTL_WDTH_16 1
#define DDRCTL_WDTH_32 0
/* ZQ register bit field definitions */
#define T_ZQ_DDRMODE_MASK 0x2
/* ECC control register bit field definitions */
#define ECC_CTRL_CLR_CE_ERR 0x2
#define ECC_CTRL_CLR_UE_ERR 0x1
/* ECC correctable/uncorrectable error log register definitions */
#define LOG_VALID 0x1
#define CE_LOG_BITPOS_MASK 0xFE
#define CE_LOG_BITPOS_SHIFT 1
/* ECC correctable/uncorrectable error address register definitions */
#define ADDR_COL_MASK 0xFFF
#define ADDR_ROW_MASK 0xFFFF000
#define ADDR_ROW_SHIFT 12
#define ADDR_BANK_MASK 0x70000000
#define ADDR_BANK_SHIFT 28
/* ECC statistic register definitions */
#define STAT_UECNT_MASK 0xFF
#define STAT_CECNT_MASK 0xFF00
#define STAT_CECNT_SHIFT 8
/* ECC scrub register definitions */
#define SCRUB_MODE_MASK 0x7
#define SCRUB_MODE_SECDED 0x4
/* DDR ECC Quirks */
#define DDR_ECC_INTR_SUPPORT BIT(0)
#define DDR_ECC_DATA_POISON_SUPPORT BIT(1)
/* ZynqMP Enhanced DDR memory controller registers that are relevant to ECC */
/* ECC Configuration Registers */
#define ECC_CFG0_OFST 0x70
#define ECC_CFG1_OFST 0x74
/* ECC Status Register */
#define ECC_STAT_OFST 0x78
/* ECC Clear Register */
#define ECC_CLR_OFST 0x7C
/* ECC Error count Register */
#define ECC_ERRCNT_OFST 0x80
/* ECC Corrected Error Address Register */
#define ECC_CEADDR0_OFST 0x84
#define ECC_CEADDR1_OFST 0x88
/* ECC Syndrome Registers */
#define ECC_CSYND0_OFST 0x8C
#define ECC_CSYND1_OFST 0x90
#define ECC_CSYND2_OFST 0x94
/* ECC Bit Mask0 Address Register */
#define ECC_BITMASK0_OFST 0x98
#define ECC_BITMASK1_OFST 0x9C
#define ECC_BITMASK2_OFST 0xA0
/* ECC UnCorrected Error Address Register */
#define ECC_UEADDR0_OFST 0xA4
#define ECC_UEADDR1_OFST 0xA8
/* ECC Syndrome Registers */
#define ECC_UESYND0_OFST 0xAC
#define ECC_UESYND1_OFST 0xB0
#define ECC_UESYND2_OFST 0xB4
/* ECC Poison Address Reg */
#define ECC_POISON0_OFST 0xB8
#define ECC_POISON1_OFST 0xBC
#define ECC_ADDRMAP0_OFFSET 0x200
/* Control register bitfield definitions */
#define ECC_CTRL_BUSWIDTH_MASK 0x3000
#define ECC_CTRL_BUSWIDTH_SHIFT 12
#define ECC_CTRL_CLR_CE_ERRCNT BIT(2)
#define ECC_CTRL_CLR_UE_ERRCNT BIT(3)
/* DDR Control Register width definitions */
#define DDRCTL_EWDTH_16 2
#define DDRCTL_EWDTH_32 1
#define DDRCTL_EWDTH_64 0
/* ECC status register definitions */
#define ECC_STAT_UECNT_MASK 0xF0000
#define ECC_STAT_UECNT_SHIFT 16
#define ECC_STAT_CECNT_MASK 0xF00
#define ECC_STAT_CECNT_SHIFT 8
#define ECC_STAT_BITNUM_MASK 0x7F
/* DDR QOS Interrupt register definitions */
#define DDR_QOS_IRQ_STAT_OFST 0x20200
#define DDR_QOSUE_MASK 0x4
#define DDR_QOSCE_MASK 0x2
#define ECC_CE_UE_INTR_MASK 0x6
#define DDR_QOS_IRQ_EN_OFST 0x20208
#define DDR_QOS_IRQ_DB_OFST 0x2020C
/* ECC Corrected Error Register Mask and Shifts*/
#define ECC_CEADDR0_RW_MASK 0x3FFFF
#define ECC_CEADDR0_RNK_MASK BIT(24)
#define ECC_CEADDR1_BNKGRP_MASK 0x3000000
#define ECC_CEADDR1_BNKNR_MASK 0x70000
#define ECC_CEADDR1_BLKNR_MASK 0xFFF
#define ECC_CEADDR1_BNKGRP_SHIFT 24
#define ECC_CEADDR1_BNKNR_SHIFT 16
/* ECC Poison register shifts */
#define ECC_POISON0_RANK_SHIFT 24
#define ECC_POISON0_RANK_MASK BIT(24)
#define ECC_POISON0_COLUMN_SHIFT 0
#define ECC_POISON0_COLUMN_MASK 0xFFF
#define ECC_POISON1_BG_SHIFT 28
#define ECC_POISON1_BG_MASK 0x30000000
#define ECC_POISON1_BANKNR_SHIFT 24
#define ECC_POISON1_BANKNR_MASK 0x7000000
#define ECC_POISON1_ROW_SHIFT 0
#define ECC_POISON1_ROW_MASK 0x3FFFF
/* DDR Memory type defines */
#define MEM_TYPE_DDR3 0x1
#define MEM_TYPE_LPDDR3 0x8
#define MEM_TYPE_DDR2 0x4
#define MEM_TYPE_DDR4 0x10
#define MEM_TYPE_LPDDR4 0x20
/* DDRC Software control register */
#define DDRC_SWCTL 0x320
/* DDRC ECC CE & UE poison mask */
#define ECC_CEPOISON_MASK 0x3
#define ECC_UEPOISON_MASK 0x1
/* DDRC Device config masks */
#define DDRC_MSTR_CFG_MASK 0xC0000000
#define DDRC_MSTR_CFG_SHIFT 30
#define DDRC_MSTR_CFG_X4_MASK 0x0
#define DDRC_MSTR_CFG_X8_MASK 0x1
#define DDRC_MSTR_CFG_X16_MASK 0x2
#define DDRC_MSTR_CFG_X32_MASK 0x3
#define DDR_MAX_ROW_SHIFT 18
#define DDR_MAX_COL_SHIFT 14
#define DDR_MAX_BANK_SHIFT 3
#define DDR_MAX_BANKGRP_SHIFT 2
#define ROW_MAX_VAL_MASK 0xF
#define COL_MAX_VAL_MASK 0xF
#define BANK_MAX_VAL_MASK 0x1F
#define BANKGRP_MAX_VAL_MASK 0x1F
#define RANK_MAX_VAL_MASK 0x1F
#define ROW_B0_BASE 6
#define ROW_B1_BASE 7
#define ROW_B2_BASE 8
#define ROW_B3_BASE 9
#define ROW_B4_BASE 10
#define ROW_B5_BASE 11
#define ROW_B6_BASE 12
#define ROW_B7_BASE 13
#define ROW_B8_BASE 14
#define ROW_B9_BASE 15
#define ROW_B10_BASE 16
#define ROW_B11_BASE 17
#define ROW_B12_BASE 18
#define ROW_B13_BASE 19
#define ROW_B14_BASE 20
#define ROW_B15_BASE 21
#define ROW_B16_BASE 22
#define ROW_B17_BASE 23
#define COL_B2_BASE 2
#define COL_B3_BASE 3
#define COL_B4_BASE 4
#define COL_B5_BASE 5
#define COL_B6_BASE 6
#define COL_B7_BASE 7
#define COL_B8_BASE 8
#define COL_B9_BASE 9
#define COL_B10_BASE 10
#define COL_B11_BASE 11
#define COL_B12_BASE 12
#define COL_B13_BASE 13
#define BANK_B0_BASE 2
#define BANK_B1_BASE 3
#define BANK_B2_BASE 4
#define BANKGRP_B0_BASE 2
#define BANKGRP_B1_BASE 3
#define RANK_B0_BASE 6
/**
* struct ecc_error_info - ECC error log information.
* @row: Row number.
* @col: Column number.
* @bank: Bank number.
* @bitpos: Bit position.
* @data: Data causing the error.
* @bankgrpnr: Bank group number.
* @blknr: Block number.
*/
struct ecc_error_info {
u32 row;
u32 col;
u32 bank;
u32 bitpos;
u32 data;
u32 bankgrpnr;
u32 blknr;
};
/**
* struct synps_ecc_status - ECC status information to report.
* @ce_cnt: Correctable error count.
* @ue_cnt: Uncorrectable error count.
* @ceinfo: Correctable error log information.
* @ueinfo: Uncorrectable error log information.
*/
struct synps_ecc_status {
u32 ce_cnt;
u32 ue_cnt;
struct ecc_error_info ceinfo;
struct ecc_error_info ueinfo;
};
/**
* struct synps_edac_priv - DDR memory controller private instance data.
* @baseaddr: Base address of the DDR controller.
* @message: Buffer for framing the event specific info.
* @stat: ECC status information.
* @p_data: Platform data.
* @ce_cnt: Correctable Error count.
* @ue_cnt: Uncorrectable Error count.
* @poison_addr: Data poison address.
* @row_shift: Bit shifts for row bit.
* @col_shift: Bit shifts for column bit.
* @bank_shift: Bit shifts for bank bit.
* @bankgrp_shift: Bit shifts for bank group bit.
* @rank_shift: Bit shifts for rank bit.
*/
struct synps_edac_priv {
void __iomem *baseaddr;
char message[SYNPS_EDAC_MSG_SIZE];
struct synps_ecc_status stat;
const struct synps_platform_data *p_data;
u32 ce_cnt;
u32 ue_cnt;
#ifdef CONFIG_EDAC_DEBUG
ulong poison_addr;
u32 row_shift[18];
u32 col_shift[14];
u32 bank_shift[3];
u32 bankgrp_shift[2];
u32 rank_shift[1];
#endif
};
/**
* struct synps_platform_data - synps platform data structure.
* @get_error_info: Get EDAC error info.
* @get_mtype: Get mtype.
* @get_dtype: Get dtype.
* @get_ecc_state: Get ECC state.
* @quirks: To differentiate IPs.
*/
struct synps_platform_data {
int (*get_error_info)(struct synps_edac_priv *priv);
enum mem_type (*get_mtype)(const void __iomem *base);
enum dev_type (*get_dtype)(const void __iomem *base);
bool (*get_ecc_state)(void __iomem *base);
int quirks;
};
/**
* zynq_get_error_info - Get the current ECC error info.
* @priv: DDR memory controller private instance data.
*
* Return: one if there is no error, otherwise zero.
*/
static int zynq_get_error_info(struct synps_edac_priv *priv)
{
struct synps_ecc_status *p;
u32 regval, clearval = 0;
void __iomem *base;
base = priv->baseaddr;
p = &priv->stat;
regval = readl(base + STAT_OFST);
if (!regval)
return 1;
p->ce_cnt = (regval & STAT_CECNT_MASK) >> STAT_CECNT_SHIFT;
p->ue_cnt = regval & STAT_UECNT_MASK;
regval = readl(base + CE_LOG_OFST);
if (!(p->ce_cnt && (regval & LOG_VALID)))
goto ue_err;
p->ceinfo.bitpos = (regval & CE_LOG_BITPOS_MASK) >> CE_LOG_BITPOS_SHIFT;
regval = readl(base + CE_ADDR_OFST);
p->ceinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
p->ceinfo.col = regval & ADDR_COL_MASK;
p->ceinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
p->ceinfo.data = readl(base + CE_DATA_31_0_OFST);
edac_dbg(3, "CE bit position: %d data: %d\n", p->ceinfo.bitpos,
p->ceinfo.data);
clearval = ECC_CTRL_CLR_CE_ERR;
ue_err:
regval = readl(base + UE_LOG_OFST);
if (!(p->ue_cnt && (regval & LOG_VALID)))
goto out;
regval = readl(base + UE_ADDR_OFST);
p->ueinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
p->ueinfo.col = regval & ADDR_COL_MASK;
p->ueinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
p->ueinfo.data = readl(base + UE_DATA_31_0_OFST);
clearval |= ECC_CTRL_CLR_UE_ERR;
out:
writel(clearval, base + ECC_CTRL_OFST);
writel(0x0, base + ECC_CTRL_OFST);
return 0;
}
/**
* zynqmp_get_error_info - Get the current ECC error info.
* @priv: DDR memory controller private instance data.
*
* Return: one if there is no error otherwise returns zero.
*/
static int zynqmp_get_error_info(struct synps_edac_priv *priv)
{
struct synps_ecc_status *p;
u32 regval, clearval = 0;
void __iomem *base;
base = priv->baseaddr;
p = &priv->stat;
regval = readl(base + ECC_STAT_OFST);
if (!regval)
return 1;
p->ce_cnt = (regval & ECC_STAT_CECNT_MASK) >> ECC_STAT_CECNT_SHIFT;
p->ue_cnt = (regval & ECC_STAT_UECNT_MASK) >> ECC_STAT_UECNT_SHIFT;
if (!p->ce_cnt)
goto ue_err;
p->ceinfo.bitpos = (regval & ECC_STAT_BITNUM_MASK);
regval = readl(base + ECC_CEADDR0_OFST);
p->ceinfo.row = (regval & ECC_CEADDR0_RW_MASK);
regval = readl(base + ECC_CEADDR1_OFST);
p->ceinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
ECC_CEADDR1_BNKNR_SHIFT;
p->ceinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
ECC_CEADDR1_BNKGRP_SHIFT;
p->ceinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
p->ceinfo.data = readl(base + ECC_CSYND0_OFST);
edac_dbg(2, "ECCCSYN0: 0x%08X ECCCSYN1: 0x%08X ECCCSYN2: 0x%08X\n",
readl(base + ECC_CSYND0_OFST), readl(base + ECC_CSYND1_OFST),
readl(base + ECC_CSYND2_OFST));
ue_err:
if (!p->ue_cnt)
goto out;
regval = readl(base + ECC_UEADDR0_OFST);
p->ueinfo.row = (regval & ECC_CEADDR0_RW_MASK);
regval = readl(base + ECC_UEADDR1_OFST);
p->ueinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
ECC_CEADDR1_BNKGRP_SHIFT;
p->ueinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
ECC_CEADDR1_BNKNR_SHIFT;
p->ueinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
p->ueinfo.data = readl(base + ECC_UESYND0_OFST);
out:
clearval = ECC_CTRL_CLR_CE_ERR | ECC_CTRL_CLR_CE_ERRCNT;
clearval |= ECC_CTRL_CLR_UE_ERR | ECC_CTRL_CLR_UE_ERRCNT;
writel(clearval, base + ECC_CLR_OFST);
writel(0x0, base + ECC_CLR_OFST);
return 0;
}
/**
* handle_error - Handle Correctable and Uncorrectable errors.
* @mci: EDAC memory controller instance.
* @p: Synopsys ECC status structure.
*
* Handles ECC correctable and uncorrectable errors.
*/
static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p)
{
struct synps_edac_priv *priv = mci->pvt_info;
struct ecc_error_info *pinf;
if (p->ce_cnt) {
pinf = &p->ceinfo;
if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"DDR ECC error type:%s Row %d Bank %d BankGroup Number %d Block Number %d Bit Position: %d Data: 0x%08x",
"CE", pinf->row, pinf->bank,
pinf->bankgrpnr, pinf->blknr,
pinf->bitpos, pinf->data);
} else {
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"DDR ECC error type:%s Row %d Bank %d Col %d Bit Position: %d Data: 0x%08x",
"CE", pinf->row, pinf->bank, pinf->col,
pinf->bitpos, pinf->data);
}
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
p->ce_cnt, 0, 0, 0, 0, 0, -1,
priv->message, "");
}
if (p->ue_cnt) {
pinf = &p->ueinfo;
if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"DDR ECC error type :%s Row %d Bank %d BankGroup Number %d Block Number %d",
"UE", pinf->row, pinf->bank,
pinf->bankgrpnr, pinf->blknr);
} else {
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"DDR ECC error type :%s Row %d Bank %d Col %d ",
"UE", pinf->row, pinf->bank, pinf->col);
}
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
p->ue_cnt, 0, 0, 0, 0, 0, -1,
priv->message, "");
}
memset(p, 0, sizeof(*p));
}
/**
* intr_handler - Interrupt Handler for ECC interrupts.
* @irq: IRQ number.
* @dev_id: Device ID.
*
* Return: IRQ_NONE, if interrupt not set or IRQ_HANDLED otherwise.
*/
static irqreturn_t intr_handler(int irq, void *dev_id)
{
const struct synps_platform_data *p_data;
struct mem_ctl_info *mci = dev_id;
struct synps_edac_priv *priv;
int status, regval;
priv = mci->pvt_info;
p_data = priv->p_data;
regval = readl(priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
regval &= (DDR_QOSCE_MASK | DDR_QOSUE_MASK);
if (!(regval & ECC_CE_UE_INTR_MASK))
return IRQ_NONE;
status = p_data->get_error_info(priv);
if (status)
return IRQ_NONE;
priv->ce_cnt += priv->stat.ce_cnt;
priv->ue_cnt += priv->stat.ue_cnt;
handle_error(mci, &priv->stat);
edac_dbg(3, "Total error count CE %d UE %d\n",
priv->ce_cnt, priv->ue_cnt);
writel(regval, priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
return IRQ_HANDLED;
}
/**
* check_errors - Check controller for ECC errors.
* @mci: EDAC memory controller instance.
*
* Check and post ECC errors. Called by the polling thread.
*/
static void check_errors(struct mem_ctl_info *mci)
{
const struct synps_platform_data *p_data;
struct synps_edac_priv *priv;
int status;
priv = mci->pvt_info;
p_data = priv->p_data;
status = p_data->get_error_info(priv);
if (status)
return;
priv->ce_cnt += priv->stat.ce_cnt;
priv->ue_cnt += priv->stat.ue_cnt;
handle_error(mci, &priv->stat);
edac_dbg(3, "Total error count CE %d UE %d\n",
priv->ce_cnt, priv->ue_cnt);
}
/**
* zynq_get_dtype - Return the controller memory width.
* @base: DDR memory controller base address.
*
* Get the EDAC device type width appropriate for the current controller
* configuration.
*
* Return: a device type width enumeration.
*/
static enum dev_type zynq_get_dtype(const void __iomem *base)
{
enum dev_type dt;
u32 width;
width = readl(base + CTRL_OFST);
width = (width & CTRL_BW_MASK) >> CTRL_BW_SHIFT;
switch (width) {
case DDRCTL_WDTH_16:
dt = DEV_X2;
break;
case DDRCTL_WDTH_32:
dt = DEV_X4;
break;
default:
dt = DEV_UNKNOWN;
}
return dt;
}
/**
* zynqmp_get_dtype - Return the controller memory width.
* @base: DDR memory controller base address.
*
* Get the EDAC device type width appropriate for the current controller
* configuration.
*
* Return: a device type width enumeration.
*/
static enum dev_type zynqmp_get_dtype(const void __iomem *base)
{
enum dev_type dt;
u32 width;
width = readl(base + CTRL_OFST);
width = (width & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
switch (width) {
case DDRCTL_EWDTH_16:
dt = DEV_X2;
break;
case DDRCTL_EWDTH_32:
dt = DEV_X4;
break;
case DDRCTL_EWDTH_64:
dt = DEV_X8;
break;
default:
dt = DEV_UNKNOWN;
}
return dt;
}
/**
* zynq_get_ecc_state - Return the controller ECC enable/disable status.
* @base: DDR memory controller base address.
*
* Get the ECC enable/disable status of the controller.
*
* Return: true if enabled, otherwise false.
*/
static bool zynq_get_ecc_state(void __iomem *base)
{
enum dev_type dt;
u32 ecctype;
dt = zynq_get_dtype(base);
if (dt == DEV_UNKNOWN)
return false;
ecctype = readl(base + SCRUB_OFST) & SCRUB_MODE_MASK;
if ((ecctype == SCRUB_MODE_SECDED) && (dt == DEV_X2))
return true;
return false;
}
/**
* zynqmp_get_ecc_state - Return the controller ECC enable/disable status.
* @base: DDR memory controller base address.
*
* Get the ECC enable/disable status for the controller.
*
* Return: a ECC status boolean i.e true/false - enabled/disabled.
*/
static bool zynqmp_get_ecc_state(void __iomem *base)
{
enum dev_type dt;
u32 ecctype;
dt = zynqmp_get_dtype(base);
if (dt == DEV_UNKNOWN)
return false;
ecctype = readl(base + ECC_CFG0_OFST) & SCRUB_MODE_MASK;
if ((ecctype == SCRUB_MODE_SECDED) &&
((dt == DEV_X2) || (dt == DEV_X4) || (dt == DEV_X8)))
return true;
return false;
}
/**
* get_memsize - Read the size of the attached memory device.
*
* Return: the memory size in bytes.
*/
static u32 get_memsize(void)
{
struct sysinfo inf;
si_meminfo(&inf);
return inf.totalram * inf.mem_unit;
}
/**
* zynq_get_mtype - Return the controller memory type.
* @base: Synopsys ECC status structure.
*
* Get the EDAC memory type appropriate for the current controller
* configuration.
*
* Return: a memory type enumeration.
*/
static enum mem_type zynq_get_mtype(const void __iomem *base)
{
enum mem_type mt;
u32 memtype;
memtype = readl(base + T_ZQ_OFST);
if (memtype & T_ZQ_DDRMODE_MASK)
mt = MEM_DDR3;
else
mt = MEM_DDR2;
return mt;
}
/**
* zynqmp_get_mtype - Returns controller memory type.
* @base: Synopsys ECC status structure.
*
* Get the EDAC memory type appropriate for the current controller
* configuration.
*
* Return: a memory type enumeration.
*/
static enum mem_type zynqmp_get_mtype(const void __iomem *base)
{
enum mem_type mt;
u32 memtype;
memtype = readl(base + CTRL_OFST);
if ((memtype & MEM_TYPE_DDR3) || (memtype & MEM_TYPE_LPDDR3))
mt = MEM_DDR3;
else if (memtype & MEM_TYPE_DDR2)
mt = MEM_RDDR2;
else if ((memtype & MEM_TYPE_LPDDR4) || (memtype & MEM_TYPE_DDR4))
mt = MEM_DDR4;
else
mt = MEM_EMPTY;
return mt;
}
/**
* init_csrows - Initialize the csrow data.
* @mci: EDAC memory controller instance.
*
* Initialize the chip select rows associated with the EDAC memory
* controller instance.
*/
static void init_csrows(struct mem_ctl_info *mci)
{
struct synps_edac_priv *priv = mci->pvt_info;
const struct synps_platform_data *p_data;
struct csrow_info *csi;
struct dimm_info *dimm;
u32 size, row;
int j;
p_data = priv->p_data;
for (row = 0; row < mci->nr_csrows; row++) {
csi = mci->csrows[row];
size = get_memsize();
for (j = 0; j < csi->nr_channels; j++) {
dimm = csi->channels[j]->dimm;
dimm->edac_mode = EDAC_FLAG_SECDED;
dimm->mtype = p_data->get_mtype(priv->baseaddr);
dimm->nr_pages = (size >> PAGE_SHIFT) / csi->nr_channels;
dimm->grain = SYNPS_EDAC_ERR_GRAIN;
dimm->dtype = p_data->get_dtype(priv->baseaddr);
}
}
}
/**
* mc_init - Initialize one driver instance.
* @mci: EDAC memory controller instance.
* @pdev: platform device.
*
* Perform initialization of the EDAC memory controller instance and
* related driver-private data associated with the memory controller the
* instance is bound to.
*/
static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev)
{
struct synps_edac_priv *priv;
mci->pdev = &pdev->dev;
priv = mci->pvt_info;
platform_set_drvdata(pdev, mci);
/* Initialize controller capabilities and configuration */
mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR2;
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
mci->scrub_cap = SCRUB_HW_SRC;
mci->scrub_mode = SCRUB_NONE;
mci->edac_cap = EDAC_FLAG_SECDED;
mci->ctl_name = "synps_ddr_controller";
mci->dev_name = SYNPS_EDAC_MOD_STRING;
mci->mod_name = SYNPS_EDAC_MOD_VER;
if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
edac_op_state = EDAC_OPSTATE_INT;
} else {
edac_op_state = EDAC_OPSTATE_POLL;
mci->edac_check = check_errors;
}
mci->ctl_page_to_phys = NULL;
init_csrows(mci);
}
static void enable_intr(struct synps_edac_priv *priv)
{
/* Enable UE/CE Interrupts */
writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
priv->baseaddr + DDR_QOS_IRQ_EN_OFST);
}
static void disable_intr(struct synps_edac_priv *priv)
{
/* Disable UE/CE Interrupts */
writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
priv->baseaddr + DDR_QOS_IRQ_DB_OFST);
}
static int setup_irq(struct mem_ctl_info *mci,
struct platform_device *pdev)
{
struct synps_edac_priv *priv = mci->pvt_info;
int ret, irq;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
edac_printk(KERN_ERR, EDAC_MC,
"No IRQ %d in DT\n", irq);
return irq;
}
ret = devm_request_irq(&pdev->dev, irq, intr_handler,
0, dev_name(&pdev->dev), mci);
if (ret < 0) {
edac_printk(KERN_ERR, EDAC_MC, "Failed to request IRQ\n");
return ret;
}
enable_intr(priv);
return 0;
}
static const struct synps_platform_data zynq_edac_def = {
.get_error_info = zynq_get_error_info,
.get_mtype = zynq_get_mtype,
.get_dtype = zynq_get_dtype,
.get_ecc_state = zynq_get_ecc_state,
.quirks = 0,
};
static const struct synps_platform_data zynqmp_edac_def = {
.get_error_info = zynqmp_get_error_info,
.get_mtype = zynqmp_get_mtype,
.get_dtype = zynqmp_get_dtype,
.get_ecc_state = zynqmp_get_ecc_state,
.quirks = (DDR_ECC_INTR_SUPPORT
#ifdef CONFIG_EDAC_DEBUG
| DDR_ECC_DATA_POISON_SUPPORT
#endif
),
};
static const struct of_device_id synps_edac_match[] = {
{
.compatible = "xlnx,zynq-ddrc-a05",
.data = (void *)&zynq_edac_def
},
{
.compatible = "xlnx,zynqmp-ddrc-2.40a",
.data = (void *)&zynqmp_edac_def
},
{
/* end of table */
}
};
MODULE_DEVICE_TABLE(of, synps_edac_match);
#ifdef CONFIG_EDAC_DEBUG
#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
/**
* ddr_poison_setup - Update poison registers.
* @priv: DDR memory controller private instance data.
*
* Update poison registers as per DDR mapping.
* Return: none.
*/
static void ddr_poison_setup(struct synps_edac_priv *priv)
{
int col = 0, row = 0, bank = 0, bankgrp = 0, rank = 0, regval;
int index;
ulong hif_addr = 0;
hif_addr = priv->poison_addr >> 3;
for (index = 0; index < DDR_MAX_ROW_SHIFT; index++) {
if (priv->row_shift[index])
row |= (((hif_addr >> priv->row_shift[index]) &
BIT(0)) << index);
else
break;
}
for (index = 0; index < DDR_MAX_COL_SHIFT; index++) {
if (priv->col_shift[index] || index < 3)
col |= (((hif_addr >> priv->col_shift[index]) &
BIT(0)) << index);
else
break;
}
for (index = 0; index < DDR_MAX_BANK_SHIFT; index++) {
if (priv->bank_shift[index])
bank |= (((hif_addr >> priv->bank_shift[index]) &
BIT(0)) << index);
else
break;
}
for (index = 0; index < DDR_MAX_BANKGRP_SHIFT; index++) {
if (priv->bankgrp_shift[index])
bankgrp |= (((hif_addr >> priv->bankgrp_shift[index])
& BIT(0)) << index);
else
break;
}
if (priv->rank_shift[0])
rank = (hif_addr >> priv->rank_shift[0]) & BIT(0);
regval = (rank << ECC_POISON0_RANK_SHIFT) & ECC_POISON0_RANK_MASK;
regval |= (col << ECC_POISON0_COLUMN_SHIFT) & ECC_POISON0_COLUMN_MASK;
writel(regval, priv->baseaddr + ECC_POISON0_OFST);
regval = (bankgrp << ECC_POISON1_BG_SHIFT) & ECC_POISON1_BG_MASK;
regval |= (bank << ECC_POISON1_BANKNR_SHIFT) & ECC_POISON1_BANKNR_MASK;
regval |= (row << ECC_POISON1_ROW_SHIFT) & ECC_POISON1_ROW_MASK;
writel(regval, priv->baseaddr + ECC_POISON1_OFST);
}
static ssize_t inject_data_error_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
struct synps_edac_priv *priv = mci->pvt_info;
return sprintf(data, "Poison0 Addr: 0x%08x\n\rPoison1 Addr: 0x%08x\n\r"
"Error injection Address: 0x%lx\n\r",
readl(priv->baseaddr + ECC_POISON0_OFST),
readl(priv->baseaddr + ECC_POISON1_OFST),
priv->poison_addr);
}
static ssize_t inject_data_error_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct mem_ctl_info *mci = to_mci(dev);
struct synps_edac_priv *priv = mci->pvt_info;
if (kstrtoul(data, 0, &priv->poison_addr))
return -EINVAL;
ddr_poison_setup(priv);
return count;
}
static ssize_t inject_data_poison_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
struct synps_edac_priv *priv = mci->pvt_info;
return sprintf(data, "Data Poisoning: %s\n\r",
(((readl(priv->baseaddr + ECC_CFG1_OFST)) & 0x3) == 0x3)
? ("Correctable Error") : ("UnCorrectable Error"));
}
static ssize_t inject_data_poison_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct mem_ctl_info *mci = to_mci(dev);
struct synps_edac_priv *priv = mci->pvt_info;
writel(0, priv->baseaddr + DDRC_SWCTL);
if (strncmp(data, "CE", 2) == 0)
writel(ECC_CEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
else
writel(ECC_UEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
writel(1, priv->baseaddr + DDRC_SWCTL);
return count;
}
static DEVICE_ATTR_RW(inject_data_error);
static DEVICE_ATTR_RW(inject_data_poison);
static int edac_create_sysfs_attributes(struct mem_ctl_info *mci)
{
int rc;
rc = device_create_file(&mci->dev, &dev_attr_inject_data_error);
if (rc < 0)
return rc;
rc = device_create_file(&mci->dev, &dev_attr_inject_data_poison);
if (rc < 0)
return rc;
return 0;
}
static void edac_remove_sysfs_attributes(struct mem_ctl_info *mci)
{
device_remove_file(&mci->dev, &dev_attr_inject_data_error);
device_remove_file(&mci->dev, &dev_attr_inject_data_poison);
}
static void setup_row_address_map(struct synps_edac_priv *priv, u32 *addrmap)
{
u32 addrmap_row_b2_10;
int index;
priv->row_shift[0] = (addrmap[5] & ROW_MAX_VAL_MASK) + ROW_B0_BASE;
priv->row_shift[1] = ((addrmap[5] >> 8) &
ROW_MAX_VAL_MASK) + ROW_B1_BASE;
addrmap_row_b2_10 = (addrmap[5] >> 16) & ROW_MAX_VAL_MASK;
if (addrmap_row_b2_10 != ROW_MAX_VAL_MASK) {
for (index = 2; index < 11; index++)
priv->row_shift[index] = addrmap_row_b2_10 +
index + ROW_B0_BASE;
} else {
priv->row_shift[2] = (addrmap[9] &
ROW_MAX_VAL_MASK) + ROW_B2_BASE;
priv->row_shift[3] = ((addrmap[9] >> 8) &
ROW_MAX_VAL_MASK) + ROW_B3_BASE;
priv->row_shift[4] = ((addrmap[9] >> 16) &
ROW_MAX_VAL_MASK) + ROW_B4_BASE;
priv->row_shift[5] = ((addrmap[9] >> 24) &
ROW_MAX_VAL_MASK) + ROW_B5_BASE;
priv->row_shift[6] = (addrmap[10] &
ROW_MAX_VAL_MASK) + ROW_B6_BASE;
priv->row_shift[7] = ((addrmap[10] >> 8) &
ROW_MAX_VAL_MASK) + ROW_B7_BASE;
priv->row_shift[8] = ((addrmap[10] >> 16) &
ROW_MAX_VAL_MASK) + ROW_B8_BASE;
priv->row_shift[9] = ((addrmap[10] >> 24) &
ROW_MAX_VAL_MASK) + ROW_B9_BASE;
priv->row_shift[10] = (addrmap[11] &
ROW_MAX_VAL_MASK) + ROW_B10_BASE;
}
priv->row_shift[11] = (((addrmap[5] >> 24) & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : (((addrmap[5] >> 24) &
ROW_MAX_VAL_MASK) + ROW_B11_BASE);
priv->row_shift[12] = ((addrmap[6] & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : ((addrmap[6] &
ROW_MAX_VAL_MASK) + ROW_B12_BASE);
priv->row_shift[13] = (((addrmap[6] >> 8) & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 8) &
ROW_MAX_VAL_MASK) + ROW_B13_BASE);
priv->row_shift[14] = (((addrmap[6] >> 16) & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 16) &
ROW_MAX_VAL_MASK) + ROW_B14_BASE);
priv->row_shift[15] = (((addrmap[6] >> 24) & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 24) &
ROW_MAX_VAL_MASK) + ROW_B15_BASE);
priv->row_shift[16] = ((addrmap[7] & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : ((addrmap[7] &
ROW_MAX_VAL_MASK) + ROW_B16_BASE);
priv->row_shift[17] = (((addrmap[7] >> 8) & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : (((addrmap[7] >> 8) &
ROW_MAX_VAL_MASK) + ROW_B17_BASE);
}
static void setup_column_address_map(struct synps_edac_priv *priv, u32 *addrmap)
{
u32 width, memtype;
int index;
memtype = readl(priv->baseaddr + CTRL_OFST);
width = (memtype & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
priv->col_shift[0] = 0;
priv->col_shift[1] = 1;
priv->col_shift[2] = (addrmap[2] & COL_MAX_VAL_MASK) + COL_B2_BASE;
priv->col_shift[3] = ((addrmap[2] >> 8) &
COL_MAX_VAL_MASK) + COL_B3_BASE;
priv->col_shift[4] = (((addrmap[2] >> 16) & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 16) &
COL_MAX_VAL_MASK) + COL_B4_BASE);
priv->col_shift[5] = (((addrmap[2] >> 24) & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 24) &
COL_MAX_VAL_MASK) + COL_B5_BASE);
priv->col_shift[6] = ((addrmap[3] & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : ((addrmap[3] &
COL_MAX_VAL_MASK) + COL_B6_BASE);
priv->col_shift[7] = (((addrmap[3] >> 8) & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 8) &
COL_MAX_VAL_MASK) + COL_B7_BASE);
priv->col_shift[8] = (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 16) &
COL_MAX_VAL_MASK) + COL_B8_BASE);
priv->col_shift[9] = (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 24) &
COL_MAX_VAL_MASK) + COL_B9_BASE);
if (width == DDRCTL_EWDTH_64) {
if (memtype & MEM_TYPE_LPDDR3) {
priv->col_shift[10] = ((addrmap[4] &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
((addrmap[4] & COL_MAX_VAL_MASK) +
COL_B10_BASE);
priv->col_shift[11] = (((addrmap[4] >> 8) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
COL_B11_BASE);
} else {
priv->col_shift[11] = ((addrmap[4] &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
((addrmap[4] & COL_MAX_VAL_MASK) +
COL_B10_BASE);
priv->col_shift[13] = (((addrmap[4] >> 8) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
COL_B11_BASE);
}
} else if (width == DDRCTL_EWDTH_32) {
if (memtype & MEM_TYPE_LPDDR3) {
priv->col_shift[10] = (((addrmap[3] >> 24) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
COL_B9_BASE);
priv->col_shift[11] = ((addrmap[4] &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
((addrmap[4] & COL_MAX_VAL_MASK) +
COL_B10_BASE);
} else {
priv->col_shift[11] = (((addrmap[3] >> 24) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
COL_B9_BASE);
priv->col_shift[13] = ((addrmap[4] &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
((addrmap[4] & COL_MAX_VAL_MASK) +
COL_B10_BASE);
}
} else {
if (memtype & MEM_TYPE_LPDDR3) {
priv->col_shift[10] = (((addrmap[3] >> 16) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
COL_B8_BASE);
priv->col_shift[11] = (((addrmap[3] >> 24) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
COL_B9_BASE);
priv->col_shift[13] = ((addrmap[4] &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
((addrmap[4] & COL_MAX_VAL_MASK) +
COL_B10_BASE);
} else {
priv->col_shift[11] = (((addrmap[3] >> 16) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
COL_B8_BASE);
priv->col_shift[13] = (((addrmap[3] >> 24) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
COL_B9_BASE);
}
}
if (width) {
for (index = 9; index > width; index--) {
priv->col_shift[index] = priv->col_shift[index - width];
priv->col_shift[index - width] = 0;
}
}
}
static void setup_bank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
{
priv->bank_shift[0] = (addrmap[1] & BANK_MAX_VAL_MASK) + BANK_B0_BASE;
priv->bank_shift[1] = ((addrmap[1] >> 8) &
BANK_MAX_VAL_MASK) + BANK_B1_BASE;
priv->bank_shift[2] = (((addrmap[1] >> 16) &
BANK_MAX_VAL_MASK) == BANK_MAX_VAL_MASK) ? 0 :
(((addrmap[1] >> 16) & BANK_MAX_VAL_MASK) +
BANK_B2_BASE);
}
static void setup_bg_address_map(struct synps_edac_priv *priv, u32 *addrmap)
{
priv->bankgrp_shift[0] = (addrmap[8] &
BANKGRP_MAX_VAL_MASK) + BANKGRP_B0_BASE;
priv->bankgrp_shift[1] = (((addrmap[8] >> 8) & BANKGRP_MAX_VAL_MASK) ==
BANKGRP_MAX_VAL_MASK) ? 0 : (((addrmap[8] >> 8)
& BANKGRP_MAX_VAL_MASK) + BANKGRP_B1_BASE);
}
static void setup_rank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
{
priv->rank_shift[0] = ((addrmap[0] & RANK_MAX_VAL_MASK) ==
RANK_MAX_VAL_MASK) ? 0 : ((addrmap[0] &
RANK_MAX_VAL_MASK) + RANK_B0_BASE);
}
/**
* setup_address_map - Set Address Map by querying ADDRMAP registers.
* @priv: DDR memory controller private instance data.
*
* Set Address Map by querying ADDRMAP registers.
*
* Return: none.
*/
static void setup_address_map(struct synps_edac_priv *priv)
{
u32 addrmap[12];
int index;
for (index = 0; index < 12; index++) {
u32 addrmap_offset;
addrmap_offset = ECC_ADDRMAP0_OFFSET + (index * 4);
addrmap[index] = readl(priv->baseaddr + addrmap_offset);
}
setup_row_address_map(priv, addrmap);
setup_column_address_map(priv, addrmap);
setup_bank_address_map(priv, addrmap);
setup_bg_address_map(priv, addrmap);
setup_rank_address_map(priv, addrmap);
}
#endif /* CONFIG_EDAC_DEBUG */
/**
* mc_probe - Check controller and bind driver.
* @pdev: platform device.
*
* Probe a specific controller instance for binding with the driver.
*
* Return: 0 if the controller instance was successfully bound to the
* driver; otherwise, < 0 on error.
*/
static int mc_probe(struct platform_device *pdev)
{
const struct synps_platform_data *p_data;
struct edac_mc_layer layers[2];
struct synps_edac_priv *priv;
struct mem_ctl_info *mci;
void __iomem *baseaddr;
struct resource *res;
int rc;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
baseaddr = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(baseaddr))
return PTR_ERR(baseaddr);
p_data = of_device_get_match_data(&pdev->dev);
if (!p_data)
return -ENODEV;
if (!p_data->get_ecc_state(baseaddr)) {
edac_printk(KERN_INFO, EDAC_MC, "ECC not enabled\n");
return -ENXIO;
}
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
layers[0].size = SYNPS_EDAC_NR_CSROWS;
layers[0].is_virt_csrow = true;
layers[1].type = EDAC_MC_LAYER_CHANNEL;
layers[1].size = SYNPS_EDAC_NR_CHANS;
layers[1].is_virt_csrow = false;
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
sizeof(struct synps_edac_priv));
if (!mci) {
edac_printk(KERN_ERR, EDAC_MC,
"Failed memory allocation for mc instance\n");
return -ENOMEM;
}
priv = mci->pvt_info;
priv->baseaddr = baseaddr;
priv->p_data = p_data;
mc_init(mci, pdev);
if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
rc = setup_irq(mci, pdev);
if (rc)
goto free_edac_mc;
}
rc = edac_mc_add_mc(mci);
if (rc) {
edac_printk(KERN_ERR, EDAC_MC,
"Failed to register with EDAC core\n");
goto free_edac_mc;
}
#ifdef CONFIG_EDAC_DEBUG
if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT) {
if (edac_create_sysfs_attributes(mci)) {
edac_printk(KERN_ERR, EDAC_MC,
"Failed to create sysfs entries\n");
goto free_edac_mc;
}
}
if (of_device_is_compatible(pdev->dev.of_node,
"xlnx,zynqmp-ddrc-2.40a"))
setup_address_map(priv);
#endif
/*
* Start capturing the correctable and uncorrectable errors. A write of
* 0 starts the counters.
*/
if (!(priv->p_data->quirks & DDR_ECC_INTR_SUPPORT))
writel(0x0, baseaddr + ECC_CTRL_OFST);
return rc;
free_edac_mc:
edac_mc_free(mci);
return rc;
}
/**
* mc_remove - Unbind driver from controller.
* @pdev: Platform device.
*
* Return: Unconditionally 0
*/
static int mc_remove(struct platform_device *pdev)
{
struct mem_ctl_info *mci = platform_get_drvdata(pdev);
struct synps_edac_priv *priv = mci->pvt_info;
if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
disable_intr(priv);
#ifdef CONFIG_EDAC_DEBUG
if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT)
edac_remove_sysfs_attributes(mci);
#endif
edac_mc_del_mc(&pdev->dev);
edac_mc_free(mci);
return 0;
}
static struct platform_driver synps_edac_mc_driver = {
.driver = {
.name = "synopsys-edac",
.of_match_table = synps_edac_match,
},
.probe = mc_probe,
.remove = mc_remove,
};
module_platform_driver(synps_edac_mc_driver);
MODULE_AUTHOR("Xilinx Inc");
MODULE_DESCRIPTION("Synopsys DDR ECC driver");
MODULE_LICENSE("GPL v2");