d71dac3b89
that can be used by SPI controllers to manage SPI NANDs as well as possibly by parallel NAND controllers. In particular, it brings support for Macronix ECC engine that can be used with Macronix SPI controller. The changes touch the NAND core, the NAND ECC core, the spi-mem layer, a SPI controller driver and add a new NAND ECC driver, as well as a number of binding updates. Binding changes: * Vendor prefixes: Clarify Macronix prefix * SPI NAND: Convert spi-nand description file to yaml * Raw NAND chip: Create a NAND chip description * Raw NAND controller: - Harmonize the property types - Fix a comment in the examples - Fix the reg property description * Describe Macronix NAND ECC engine * Macronix SPI controller: - Document the nand-ecc-engine property - Convert to yaml - The interrupt property is not mandatory NAND core changes: * ECC: - Add infrastructure to support hardware engines - Add a new helper to retrieve the ECC context - Provide a helper to retrieve a pilelined engine device NAND-ECC changes: * Macronix ECC engine: - Add Macronix external ECC engine support - Support SPI pipelined mode SPI-NAND core changes: * Delay a little bit the dirmap creation * Create direct mapping descriptors for ECC operations SPI-NAND driver changes: * macronix: Use random program load SPI changes: * Macronix SPI controller: - Fix the transmit path - Create a helper to configure the controller before an operation - Create a helper to ease the start of an operation - Add support for direct mapping - Add support for pipelined ECC operations * spi-mem: - Introduce a capability structure - Check the controller extra capabilities - cadence-quadspi/mxic: Provide capability structures - Kill the spi_mem_dtr_supports_op() helper - Add an ecc parameter to the spi_mem_op structure -----BEGIN PGP SIGNATURE----- iQEzBAABCgAdFiEE9HuaYnbmDhq/XIDIJWrqGEe9VoQFAmIPpwcACgkQJWrqGEe9 VoRbnwgAgW9tSKGp1B6eA3Xf7Or0SZfmC6H0scV8kfQ2i9OnMOuYMAGs+7whNrcx Dvb9IfFOMra7umid98EI58YhLsu4IMDtc79Lp04HGY/emjZh47FpAEXZ/vr/45e9 lclUEmjHwUVJ5+XvFwnPLpIWiM0xeL3CN2rAi76uI5sII+Hxt6KkV7L9+N9IjhcA GsG/8/A16ihbNjVrHoN+ofwmmZkySXvhK7IIg93Tv+VoJCBnn0eEDgtRXvsGoDuq 2xD87MEAhnXw+q9LtSSUwmA/uUCR2RscidGQ+LML0PwKDVUZhzBV8sNrNoPQy374 51XXDCkSF8NRK+FVXIUFTEctdVrE1A== =UuhB -----END PGP SIGNATURE----- Merge tag 'mtd/spi-mem-ecc-for-5.18' into mtd/next Topic branch bringing-in changes related to the support of ECC engines that can be used by SPI controllers to manage SPI NANDs as well as possibly by parallel NAND controllers. In particular, it brings support for Macronix ECC engine that can be used with Macronix SPI controller. The changes touch the NAND core, the NAND ECC core, the spi-mem layer, a SPI controller driver and add a new NAND ECC driver, as well as a number of binding updates. Binding changes: * Vendor prefixes: Clarify Macronix prefix * SPI NAND: Convert spi-nand description file to yaml * Raw NAND chip: Create a NAND chip description * Raw NAND controller: - Harmonize the property types - Fix a comment in the examples - Fix the reg property description * Describe Macronix NAND ECC engine * Macronix SPI controller: - Document the nand-ecc-engine property - Convert to yaml - The interrupt property is not mandatory NAND core changes: * ECC: - Add infrastructure to support hardware engines - Add a new helper to retrieve the ECC context - Provide a helper to retrieve a pilelined engine device NAND-ECC changes: * Macronix ECC engine: - Add Macronix external ECC engine support - Support SPI pipelined mode SPI-NAND core changes: * Delay a little bit the dirmap creation * Create direct mapping descriptors for ECC operations SPI-NAND driver changes: * macronix: Use random program load SPI changes: * Macronix SPI controller: - Fix the transmit path - Create a helper to configure the controller before an operation - Create a helper to ease the start of an operation - Add support for direct mapping - Add support for pipelined ECC operations * spi-mem: - Introduce a capability structure - Check the controller extra capabilities - cadence-quadspi/mxic: Provide capability structures - Kill the spi_mem_dtr_supports_op() helper - Add an ecc parameter to the spi_mem_op structure
407 lines
10 KiB
C
407 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2017 Free Electrons
|
|
*
|
|
* Authors:
|
|
* Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
* Peter Pan <peterpandong@micron.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "nand: " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/mtd/nand.h>
|
|
|
|
/**
|
|
* nanddev_isbad() - Check if a block is bad
|
|
* @nand: NAND device
|
|
* @pos: position pointing to the block we want to check
|
|
*
|
|
* Return: true if the block is bad, false otherwise.
|
|
*/
|
|
bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos)
|
|
{
|
|
if (mtd_check_expert_analysis_mode())
|
|
return false;
|
|
|
|
if (nanddev_bbt_is_initialized(nand)) {
|
|
unsigned int entry;
|
|
int status;
|
|
|
|
entry = nanddev_bbt_pos_to_entry(nand, pos);
|
|
status = nanddev_bbt_get_block_status(nand, entry);
|
|
/* Lazy block status retrieval */
|
|
if (status == NAND_BBT_BLOCK_STATUS_UNKNOWN) {
|
|
if (nand->ops->isbad(nand, pos))
|
|
status = NAND_BBT_BLOCK_FACTORY_BAD;
|
|
else
|
|
status = NAND_BBT_BLOCK_GOOD;
|
|
|
|
nanddev_bbt_set_block_status(nand, entry, status);
|
|
}
|
|
|
|
if (status == NAND_BBT_BLOCK_WORN ||
|
|
status == NAND_BBT_BLOCK_FACTORY_BAD)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
return nand->ops->isbad(nand, pos);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nanddev_isbad);
|
|
|
|
/**
|
|
* nanddev_markbad() - Mark a block as bad
|
|
* @nand: NAND device
|
|
* @pos: position of the block to mark bad
|
|
*
|
|
* Mark a block bad. This function is updating the BBT if available and
|
|
* calls the low-level markbad hook (nand->ops->markbad()).
|
|
*
|
|
* Return: 0 in case of success, a negative error code otherwise.
|
|
*/
|
|
int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos)
|
|
{
|
|
struct mtd_info *mtd = nanddev_to_mtd(nand);
|
|
unsigned int entry;
|
|
int ret = 0;
|
|
|
|
if (nanddev_isbad(nand, pos))
|
|
return 0;
|
|
|
|
ret = nand->ops->markbad(nand, pos);
|
|
if (ret)
|
|
pr_warn("failed to write BBM to block @%llx (err = %d)\n",
|
|
nanddev_pos_to_offs(nand, pos), ret);
|
|
|
|
if (!nanddev_bbt_is_initialized(nand))
|
|
goto out;
|
|
|
|
entry = nanddev_bbt_pos_to_entry(nand, pos);
|
|
ret = nanddev_bbt_set_block_status(nand, entry, NAND_BBT_BLOCK_WORN);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = nanddev_bbt_update(nand);
|
|
|
|
out:
|
|
if (!ret)
|
|
mtd->ecc_stats.badblocks++;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nanddev_markbad);
|
|
|
|
/**
|
|
* nanddev_isreserved() - Check whether an eraseblock is reserved or not
|
|
* @nand: NAND device
|
|
* @pos: NAND position to test
|
|
*
|
|
* Checks whether the eraseblock pointed by @pos is reserved or not.
|
|
*
|
|
* Return: true if the eraseblock is reserved, false otherwise.
|
|
*/
|
|
bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos)
|
|
{
|
|
unsigned int entry;
|
|
int status;
|
|
|
|
if (!nanddev_bbt_is_initialized(nand))
|
|
return false;
|
|
|
|
/* Return info from the table */
|
|
entry = nanddev_bbt_pos_to_entry(nand, pos);
|
|
status = nanddev_bbt_get_block_status(nand, entry);
|
|
return status == NAND_BBT_BLOCK_RESERVED;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nanddev_isreserved);
|
|
|
|
/**
|
|
* nanddev_erase() - Erase a NAND portion
|
|
* @nand: NAND device
|
|
* @pos: position of the block to erase
|
|
*
|
|
* Erases the block if it's not bad.
|
|
*
|
|
* Return: 0 in case of success, a negative error code otherwise.
|
|
*/
|
|
int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos)
|
|
{
|
|
if (nanddev_isbad(nand, pos) || nanddev_isreserved(nand, pos)) {
|
|
pr_warn("attempt to erase a bad/reserved block @%llx\n",
|
|
nanddev_pos_to_offs(nand, pos));
|
|
return -EIO;
|
|
}
|
|
|
|
return nand->ops->erase(nand, pos);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nanddev_erase);
|
|
|
|
/**
|
|
* nanddev_mtd_erase() - Generic mtd->_erase() implementation for NAND devices
|
|
* @mtd: MTD device
|
|
* @einfo: erase request
|
|
*
|
|
* This is a simple mtd->_erase() implementation iterating over all blocks
|
|
* concerned by @einfo and calling nand->ops->erase() on each of them.
|
|
*
|
|
* Note that mtd->_erase should not be directly assigned to this helper,
|
|
* because there's no locking here. NAND specialized layers should instead
|
|
* implement there own wrapper around nanddev_mtd_erase() taking the
|
|
* appropriate lock before calling nanddev_mtd_erase().
|
|
*
|
|
* Return: 0 in case of success, a negative error code otherwise.
|
|
*/
|
|
int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo)
|
|
{
|
|
struct nand_device *nand = mtd_to_nanddev(mtd);
|
|
struct nand_pos pos, last;
|
|
int ret;
|
|
|
|
nanddev_offs_to_pos(nand, einfo->addr, &pos);
|
|
nanddev_offs_to_pos(nand, einfo->addr + einfo->len - 1, &last);
|
|
while (nanddev_pos_cmp(&pos, &last) <= 0) {
|
|
ret = nanddev_erase(nand, &pos);
|
|
if (ret) {
|
|
einfo->fail_addr = nanddev_pos_to_offs(nand, &pos);
|
|
|
|
return ret;
|
|
}
|
|
|
|
nanddev_pos_next_eraseblock(nand, &pos);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nanddev_mtd_erase);
|
|
|
|
/**
|
|
* nanddev_mtd_max_bad_blocks() - Get the maximum number of bad eraseblock on
|
|
* a specific region of the NAND device
|
|
* @mtd: MTD device
|
|
* @offs: offset of the NAND region
|
|
* @len: length of the NAND region
|
|
*
|
|
* Default implementation for mtd->_max_bad_blocks(). Only works if
|
|
* nand->memorg.max_bad_eraseblocks_per_lun is > 0.
|
|
*
|
|
* Return: a positive number encoding the maximum number of eraseblocks on a
|
|
* portion of memory, a negative error code otherwise.
|
|
*/
|
|
int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len)
|
|
{
|
|
struct nand_device *nand = mtd_to_nanddev(mtd);
|
|
struct nand_pos pos, end;
|
|
unsigned int max_bb = 0;
|
|
|
|
if (!nand->memorg.max_bad_eraseblocks_per_lun)
|
|
return -ENOTSUPP;
|
|
|
|
nanddev_offs_to_pos(nand, offs, &pos);
|
|
nanddev_offs_to_pos(nand, offs + len, &end);
|
|
|
|
for (nanddev_offs_to_pos(nand, offs, &pos);
|
|
nanddev_pos_cmp(&pos, &end) < 0;
|
|
nanddev_pos_next_lun(nand, &pos))
|
|
max_bb += nand->memorg.max_bad_eraseblocks_per_lun;
|
|
|
|
return max_bb;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nanddev_mtd_max_bad_blocks);
|
|
|
|
/**
|
|
* nanddev_get_ecc_engine() - Find and get a suitable ECC engine
|
|
* @nand: NAND device
|
|
*/
|
|
static int nanddev_get_ecc_engine(struct nand_device *nand)
|
|
{
|
|
int engine_type;
|
|
|
|
/* Read the user desires in terms of ECC engine/configuration */
|
|
of_get_nand_ecc_user_config(nand);
|
|
|
|
engine_type = nand->ecc.user_conf.engine_type;
|
|
if (engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
|
|
engine_type = nand->ecc.defaults.engine_type;
|
|
|
|
switch (engine_type) {
|
|
case NAND_ECC_ENGINE_TYPE_NONE:
|
|
return 0;
|
|
case NAND_ECC_ENGINE_TYPE_SOFT:
|
|
nand->ecc.engine = nand_ecc_get_sw_engine(nand);
|
|
break;
|
|
case NAND_ECC_ENGINE_TYPE_ON_DIE:
|
|
nand->ecc.engine = nand_ecc_get_on_die_hw_engine(nand);
|
|
break;
|
|
case NAND_ECC_ENGINE_TYPE_ON_HOST:
|
|
nand->ecc.engine = nand_ecc_get_on_host_hw_engine(nand);
|
|
if (PTR_ERR(nand->ecc.engine) == -EPROBE_DEFER)
|
|
return -EPROBE_DEFER;
|
|
break;
|
|
default:
|
|
pr_err("Missing ECC engine type\n");
|
|
}
|
|
|
|
if (!nand->ecc.engine)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nanddev_put_ecc_engine() - Dettach and put the in-use ECC engine
|
|
* @nand: NAND device
|
|
*/
|
|
static int nanddev_put_ecc_engine(struct nand_device *nand)
|
|
{
|
|
switch (nand->ecc.ctx.conf.engine_type) {
|
|
case NAND_ECC_ENGINE_TYPE_ON_HOST:
|
|
nand_ecc_put_on_host_hw_engine(nand);
|
|
break;
|
|
case NAND_ECC_ENGINE_TYPE_NONE:
|
|
case NAND_ECC_ENGINE_TYPE_SOFT:
|
|
case NAND_ECC_ENGINE_TYPE_ON_DIE:
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nanddev_find_ecc_configuration() - Find a suitable ECC configuration
|
|
* @nand: NAND device
|
|
*/
|
|
static int nanddev_find_ecc_configuration(struct nand_device *nand)
|
|
{
|
|
int ret;
|
|
|
|
if (!nand->ecc.engine)
|
|
return -ENOTSUPP;
|
|
|
|
ret = nand_ecc_init_ctx(nand);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!nand_ecc_is_strong_enough(nand))
|
|
pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
|
|
nand->mtd.name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nanddev_ecc_engine_init() - Initialize an ECC engine for the chip
|
|
* @nand: NAND device
|
|
*/
|
|
int nanddev_ecc_engine_init(struct nand_device *nand)
|
|
{
|
|
int ret;
|
|
|
|
/* Look for the ECC engine to use */
|
|
ret = nanddev_get_ecc_engine(nand);
|
|
if (ret) {
|
|
if (ret != -EPROBE_DEFER)
|
|
pr_err("No ECC engine found\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* No ECC engine requested */
|
|
if (!nand->ecc.engine)
|
|
return 0;
|
|
|
|
/* Configure the engine: balance user input and chip requirements */
|
|
ret = nanddev_find_ecc_configuration(nand);
|
|
if (ret) {
|
|
pr_err("No suitable ECC configuration\n");
|
|
nanddev_put_ecc_engine(nand);
|
|
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nanddev_ecc_engine_init);
|
|
|
|
/**
|
|
* nanddev_ecc_engine_cleanup() - Cleanup ECC engine initializations
|
|
* @nand: NAND device
|
|
*/
|
|
void nanddev_ecc_engine_cleanup(struct nand_device *nand)
|
|
{
|
|
if (nand->ecc.engine)
|
|
nand_ecc_cleanup_ctx(nand);
|
|
|
|
nanddev_put_ecc_engine(nand);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nanddev_ecc_engine_cleanup);
|
|
|
|
/**
|
|
* nanddev_init() - Initialize a NAND device
|
|
* @nand: NAND device
|
|
* @ops: NAND device operations
|
|
* @owner: NAND device owner
|
|
*
|
|
* Initializes a NAND device object. Consistency checks are done on @ops and
|
|
* @nand->memorg. Also takes care of initializing the BBT.
|
|
*
|
|
* Return: 0 in case of success, a negative error code otherwise.
|
|
*/
|
|
int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
|
|
struct module *owner)
|
|
{
|
|
struct mtd_info *mtd = nanddev_to_mtd(nand);
|
|
struct nand_memory_organization *memorg = nanddev_get_memorg(nand);
|
|
|
|
if (!nand || !ops)
|
|
return -EINVAL;
|
|
|
|
if (!ops->erase || !ops->markbad || !ops->isbad)
|
|
return -EINVAL;
|
|
|
|
if (!memorg->bits_per_cell || !memorg->pagesize ||
|
|
!memorg->pages_per_eraseblock || !memorg->eraseblocks_per_lun ||
|
|
!memorg->planes_per_lun || !memorg->luns_per_target ||
|
|
!memorg->ntargets)
|
|
return -EINVAL;
|
|
|
|
nand->rowconv.eraseblock_addr_shift =
|
|
fls(memorg->pages_per_eraseblock - 1);
|
|
nand->rowconv.lun_addr_shift = fls(memorg->eraseblocks_per_lun - 1) +
|
|
nand->rowconv.eraseblock_addr_shift;
|
|
|
|
nand->ops = ops;
|
|
|
|
mtd->type = memorg->bits_per_cell == 1 ?
|
|
MTD_NANDFLASH : MTD_MLCNANDFLASH;
|
|
mtd->flags = MTD_CAP_NANDFLASH;
|
|
mtd->erasesize = memorg->pagesize * memorg->pages_per_eraseblock;
|
|
mtd->writesize = memorg->pagesize;
|
|
mtd->writebufsize = memorg->pagesize;
|
|
mtd->oobsize = memorg->oobsize;
|
|
mtd->size = nanddev_size(nand);
|
|
mtd->owner = owner;
|
|
|
|
return nanddev_bbt_init(nand);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nanddev_init);
|
|
|
|
/**
|
|
* nanddev_cleanup() - Release resources allocated in nanddev_init()
|
|
* @nand: NAND device
|
|
*
|
|
* Basically undoes what has been done in nanddev_init().
|
|
*/
|
|
void nanddev_cleanup(struct nand_device *nand)
|
|
{
|
|
if (nanddev_bbt_is_initialized(nand))
|
|
nanddev_bbt_cleanup(nand);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nanddev_cleanup);
|
|
|
|
MODULE_DESCRIPTION("Generic NAND framework");
|
|
MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
|
|
MODULE_LICENSE("GPL v2");
|