0e847d44b3
Free BD consistent memory while freeing the channel i.e in free_chan_resources. Signed-off-by: Radhey Shyam Pandey <radheys@xilinx.com> Signed-off-by: Kedareswara rao Appana <appanad@xilinx.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2753 lines
74 KiB
C
2753 lines
74 KiB
C
/*
|
|
* DMA driver for Xilinx Video DMA Engine
|
|
*
|
|
* Copyright (C) 2010-2014 Xilinx, Inc. All rights reserved.
|
|
*
|
|
* Based on the Freescale DMA driver.
|
|
*
|
|
* Description:
|
|
* The AXI Video Direct Memory Access (AXI VDMA) core is a soft Xilinx IP
|
|
* core that provides high-bandwidth direct memory access between memory
|
|
* and AXI4-Stream type video target peripherals. The core provides efficient
|
|
* two dimensional DMA operations with independent asynchronous read (S2MM)
|
|
* and write (MM2S) channel operation. It can be configured to have either
|
|
* one channel or two channels. If configured as two channels, one is to
|
|
* transmit to the video device (MM2S) and another is to receive from the
|
|
* video device (S2MM). Initialization, status, interrupt and management
|
|
* registers are accessed through an AXI4-Lite slave interface.
|
|
*
|
|
* The AXI Direct Memory Access (AXI DMA) core is a soft Xilinx IP core that
|
|
* provides high-bandwidth one dimensional direct memory access between memory
|
|
* and AXI4-Stream target peripherals. It supports one receive and one
|
|
* transmit channel, both of them optional at synthesis time.
|
|
*
|
|
* The AXI CDMA, is a soft IP, which provides high-bandwidth Direct Memory
|
|
* Access (DMA) between a memory-mapped source address and a memory-mapped
|
|
* destination address.
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/dma/xilinx_dma.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_dma.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/io-64-nonatomic-lo-hi.h>
|
|
|
|
#include "../dmaengine.h"
|
|
|
|
/* Register/Descriptor Offsets */
|
|
#define XILINX_DMA_MM2S_CTRL_OFFSET 0x0000
|
|
#define XILINX_DMA_S2MM_CTRL_OFFSET 0x0030
|
|
#define XILINX_VDMA_MM2S_DESC_OFFSET 0x0050
|
|
#define XILINX_VDMA_S2MM_DESC_OFFSET 0x00a0
|
|
|
|
/* Control Registers */
|
|
#define XILINX_DMA_REG_DMACR 0x0000
|
|
#define XILINX_DMA_DMACR_DELAY_MAX 0xff
|
|
#define XILINX_DMA_DMACR_DELAY_SHIFT 24
|
|
#define XILINX_DMA_DMACR_FRAME_COUNT_MAX 0xff
|
|
#define XILINX_DMA_DMACR_FRAME_COUNT_SHIFT 16
|
|
#define XILINX_DMA_DMACR_ERR_IRQ BIT(14)
|
|
#define XILINX_DMA_DMACR_DLY_CNT_IRQ BIT(13)
|
|
#define XILINX_DMA_DMACR_FRM_CNT_IRQ BIT(12)
|
|
#define XILINX_DMA_DMACR_MASTER_SHIFT 8
|
|
#define XILINX_DMA_DMACR_FSYNCSRC_SHIFT 5
|
|
#define XILINX_DMA_DMACR_FRAMECNT_EN BIT(4)
|
|
#define XILINX_DMA_DMACR_GENLOCK_EN BIT(3)
|
|
#define XILINX_DMA_DMACR_RESET BIT(2)
|
|
#define XILINX_DMA_DMACR_CIRC_EN BIT(1)
|
|
#define XILINX_DMA_DMACR_RUNSTOP BIT(0)
|
|
#define XILINX_DMA_DMACR_FSYNCSRC_MASK GENMASK(6, 5)
|
|
|
|
#define XILINX_DMA_REG_DMASR 0x0004
|
|
#define XILINX_DMA_DMASR_EOL_LATE_ERR BIT(15)
|
|
#define XILINX_DMA_DMASR_ERR_IRQ BIT(14)
|
|
#define XILINX_DMA_DMASR_DLY_CNT_IRQ BIT(13)
|
|
#define XILINX_DMA_DMASR_FRM_CNT_IRQ BIT(12)
|
|
#define XILINX_DMA_DMASR_SOF_LATE_ERR BIT(11)
|
|
#define XILINX_DMA_DMASR_SG_DEC_ERR BIT(10)
|
|
#define XILINX_DMA_DMASR_SG_SLV_ERR BIT(9)
|
|
#define XILINX_DMA_DMASR_EOF_EARLY_ERR BIT(8)
|
|
#define XILINX_DMA_DMASR_SOF_EARLY_ERR BIT(7)
|
|
#define XILINX_DMA_DMASR_DMA_DEC_ERR BIT(6)
|
|
#define XILINX_DMA_DMASR_DMA_SLAVE_ERR BIT(5)
|
|
#define XILINX_DMA_DMASR_DMA_INT_ERR BIT(4)
|
|
#define XILINX_DMA_DMASR_IDLE BIT(1)
|
|
#define XILINX_DMA_DMASR_HALTED BIT(0)
|
|
#define XILINX_DMA_DMASR_DELAY_MASK GENMASK(31, 24)
|
|
#define XILINX_DMA_DMASR_FRAME_COUNT_MASK GENMASK(23, 16)
|
|
|
|
#define XILINX_DMA_REG_CURDESC 0x0008
|
|
#define XILINX_DMA_REG_TAILDESC 0x0010
|
|
#define XILINX_DMA_REG_REG_INDEX 0x0014
|
|
#define XILINX_DMA_REG_FRMSTORE 0x0018
|
|
#define XILINX_DMA_REG_THRESHOLD 0x001c
|
|
#define XILINX_DMA_REG_FRMPTR_STS 0x0024
|
|
#define XILINX_DMA_REG_PARK_PTR 0x0028
|
|
#define XILINX_DMA_PARK_PTR_WR_REF_SHIFT 8
|
|
#define XILINX_DMA_PARK_PTR_WR_REF_MASK GENMASK(12, 8)
|
|
#define XILINX_DMA_PARK_PTR_RD_REF_SHIFT 0
|
|
#define XILINX_DMA_PARK_PTR_RD_REF_MASK GENMASK(4, 0)
|
|
#define XILINX_DMA_REG_VDMA_VERSION 0x002c
|
|
|
|
/* Register Direct Mode Registers */
|
|
#define XILINX_DMA_REG_VSIZE 0x0000
|
|
#define XILINX_DMA_REG_HSIZE 0x0004
|
|
|
|
#define XILINX_DMA_REG_FRMDLY_STRIDE 0x0008
|
|
#define XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT 24
|
|
#define XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT 0
|
|
|
|
#define XILINX_VDMA_REG_START_ADDRESS(n) (0x000c + 4 * (n))
|
|
#define XILINX_VDMA_REG_START_ADDRESS_64(n) (0x000c + 8 * (n))
|
|
|
|
/* HW specific definitions */
|
|
#define XILINX_DMA_MAX_CHANS_PER_DEVICE 0x20
|
|
|
|
#define XILINX_DMA_DMAXR_ALL_IRQ_MASK \
|
|
(XILINX_DMA_DMASR_FRM_CNT_IRQ | \
|
|
XILINX_DMA_DMASR_DLY_CNT_IRQ | \
|
|
XILINX_DMA_DMASR_ERR_IRQ)
|
|
|
|
#define XILINX_DMA_DMASR_ALL_ERR_MASK \
|
|
(XILINX_DMA_DMASR_EOL_LATE_ERR | \
|
|
XILINX_DMA_DMASR_SOF_LATE_ERR | \
|
|
XILINX_DMA_DMASR_SG_DEC_ERR | \
|
|
XILINX_DMA_DMASR_SG_SLV_ERR | \
|
|
XILINX_DMA_DMASR_EOF_EARLY_ERR | \
|
|
XILINX_DMA_DMASR_SOF_EARLY_ERR | \
|
|
XILINX_DMA_DMASR_DMA_DEC_ERR | \
|
|
XILINX_DMA_DMASR_DMA_SLAVE_ERR | \
|
|
XILINX_DMA_DMASR_DMA_INT_ERR)
|
|
|
|
/*
|
|
* Recoverable errors are DMA Internal error, SOF Early, EOF Early
|
|
* and SOF Late. They are only recoverable when C_FLUSH_ON_FSYNC
|
|
* is enabled in the h/w system.
|
|
*/
|
|
#define XILINX_DMA_DMASR_ERR_RECOVER_MASK \
|
|
(XILINX_DMA_DMASR_SOF_LATE_ERR | \
|
|
XILINX_DMA_DMASR_EOF_EARLY_ERR | \
|
|
XILINX_DMA_DMASR_SOF_EARLY_ERR | \
|
|
XILINX_DMA_DMASR_DMA_INT_ERR)
|
|
|
|
/* Axi VDMA Flush on Fsync bits */
|
|
#define XILINX_DMA_FLUSH_S2MM 3
|
|
#define XILINX_DMA_FLUSH_MM2S 2
|
|
#define XILINX_DMA_FLUSH_BOTH 1
|
|
|
|
/* Delay loop counter to prevent hardware failure */
|
|
#define XILINX_DMA_LOOP_COUNT 1000000
|
|
|
|
/* AXI DMA Specific Registers/Offsets */
|
|
#define XILINX_DMA_REG_SRCDSTADDR 0x18
|
|
#define XILINX_DMA_REG_BTT 0x28
|
|
|
|
/* AXI DMA Specific Masks/Bit fields */
|
|
#define XILINX_DMA_MAX_TRANS_LEN GENMASK(22, 0)
|
|
#define XILINX_DMA_CR_COALESCE_MAX GENMASK(23, 16)
|
|
#define XILINX_DMA_CR_CYCLIC_BD_EN_MASK BIT(4)
|
|
#define XILINX_DMA_CR_COALESCE_SHIFT 16
|
|
#define XILINX_DMA_BD_SOP BIT(27)
|
|
#define XILINX_DMA_BD_EOP BIT(26)
|
|
#define XILINX_DMA_COALESCE_MAX 255
|
|
#define XILINX_DMA_NUM_DESCS 255
|
|
#define XILINX_DMA_NUM_APP_WORDS 5
|
|
|
|
/* Multi-Channel DMA Descriptor offsets*/
|
|
#define XILINX_DMA_MCRX_CDESC(x) (0x40 + (x-1) * 0x20)
|
|
#define XILINX_DMA_MCRX_TDESC(x) (0x48 + (x-1) * 0x20)
|
|
|
|
/* Multi-Channel DMA Masks/Shifts */
|
|
#define XILINX_DMA_BD_HSIZE_MASK GENMASK(15, 0)
|
|
#define XILINX_DMA_BD_STRIDE_MASK GENMASK(15, 0)
|
|
#define XILINX_DMA_BD_VSIZE_MASK GENMASK(31, 19)
|
|
#define XILINX_DMA_BD_TDEST_MASK GENMASK(4, 0)
|
|
#define XILINX_DMA_BD_STRIDE_SHIFT 0
|
|
#define XILINX_DMA_BD_VSIZE_SHIFT 19
|
|
|
|
/* AXI CDMA Specific Registers/Offsets */
|
|
#define XILINX_CDMA_REG_SRCADDR 0x18
|
|
#define XILINX_CDMA_REG_DSTADDR 0x20
|
|
|
|
/* AXI CDMA Specific Masks */
|
|
#define XILINX_CDMA_CR_SGMODE BIT(3)
|
|
|
|
/**
|
|
* struct xilinx_vdma_desc_hw - Hardware Descriptor
|
|
* @next_desc: Next Descriptor Pointer @0x00
|
|
* @pad1: Reserved @0x04
|
|
* @buf_addr: Buffer address @0x08
|
|
* @buf_addr_msb: MSB of Buffer address @0x0C
|
|
* @vsize: Vertical Size @0x10
|
|
* @hsize: Horizontal Size @0x14
|
|
* @stride: Number of bytes between the first
|
|
* pixels of each horizontal line @0x18
|
|
*/
|
|
struct xilinx_vdma_desc_hw {
|
|
u32 next_desc;
|
|
u32 pad1;
|
|
u32 buf_addr;
|
|
u32 buf_addr_msb;
|
|
u32 vsize;
|
|
u32 hsize;
|
|
u32 stride;
|
|
} __aligned(64);
|
|
|
|
/**
|
|
* struct xilinx_axidma_desc_hw - Hardware Descriptor for AXI DMA
|
|
* @next_desc: Next Descriptor Pointer @0x00
|
|
* @next_desc_msb: MSB of Next Descriptor Pointer @0x04
|
|
* @buf_addr: Buffer address @0x08
|
|
* @buf_addr_msb: MSB of Buffer address @0x0C
|
|
* @mcdma_control: Control field for mcdma @0x10
|
|
* @vsize_stride: Vsize and Stride field for mcdma @0x14
|
|
* @control: Control field @0x18
|
|
* @status: Status field @0x1C
|
|
* @app: APP Fields @0x20 - 0x30
|
|
*/
|
|
struct xilinx_axidma_desc_hw {
|
|
u32 next_desc;
|
|
u32 next_desc_msb;
|
|
u32 buf_addr;
|
|
u32 buf_addr_msb;
|
|
u32 mcdma_control;
|
|
u32 vsize_stride;
|
|
u32 control;
|
|
u32 status;
|
|
u32 app[XILINX_DMA_NUM_APP_WORDS];
|
|
} __aligned(64);
|
|
|
|
/**
|
|
* struct xilinx_cdma_desc_hw - Hardware Descriptor
|
|
* @next_desc: Next Descriptor Pointer @0x00
|
|
* @next_desc_msb: Next Descriptor Pointer MSB @0x04
|
|
* @src_addr: Source address @0x08
|
|
* @src_addr_msb: Source address MSB @0x0C
|
|
* @dest_addr: Destination address @0x10
|
|
* @dest_addr_msb: Destination address MSB @0x14
|
|
* @control: Control field @0x18
|
|
* @status: Status field @0x1C
|
|
*/
|
|
struct xilinx_cdma_desc_hw {
|
|
u32 next_desc;
|
|
u32 next_desc_msb;
|
|
u32 src_addr;
|
|
u32 src_addr_msb;
|
|
u32 dest_addr;
|
|
u32 dest_addr_msb;
|
|
u32 control;
|
|
u32 status;
|
|
} __aligned(64);
|
|
|
|
/**
|
|
* struct xilinx_vdma_tx_segment - Descriptor segment
|
|
* @hw: Hardware descriptor
|
|
* @node: Node in the descriptor segments list
|
|
* @phys: Physical address of segment
|
|
*/
|
|
struct xilinx_vdma_tx_segment {
|
|
struct xilinx_vdma_desc_hw hw;
|
|
struct list_head node;
|
|
dma_addr_t phys;
|
|
} __aligned(64);
|
|
|
|
/**
|
|
* struct xilinx_axidma_tx_segment - Descriptor segment
|
|
* @hw: Hardware descriptor
|
|
* @node: Node in the descriptor segments list
|
|
* @phys: Physical address of segment
|
|
*/
|
|
struct xilinx_axidma_tx_segment {
|
|
struct xilinx_axidma_desc_hw hw;
|
|
struct list_head node;
|
|
dma_addr_t phys;
|
|
} __aligned(64);
|
|
|
|
/**
|
|
* struct xilinx_cdma_tx_segment - Descriptor segment
|
|
* @hw: Hardware descriptor
|
|
* @node: Node in the descriptor segments list
|
|
* @phys: Physical address of segment
|
|
*/
|
|
struct xilinx_cdma_tx_segment {
|
|
struct xilinx_cdma_desc_hw hw;
|
|
struct list_head node;
|
|
dma_addr_t phys;
|
|
} __aligned(64);
|
|
|
|
/**
|
|
* struct xilinx_dma_tx_descriptor - Per Transaction structure
|
|
* @async_tx: Async transaction descriptor
|
|
* @segments: TX segments list
|
|
* @node: Node in the channel descriptors list
|
|
* @cyclic: Check for cyclic transfers.
|
|
*/
|
|
struct xilinx_dma_tx_descriptor {
|
|
struct dma_async_tx_descriptor async_tx;
|
|
struct list_head segments;
|
|
struct list_head node;
|
|
bool cyclic;
|
|
};
|
|
|
|
/**
|
|
* struct xilinx_dma_chan - Driver specific DMA channel structure
|
|
* @xdev: Driver specific device structure
|
|
* @ctrl_offset: Control registers offset
|
|
* @desc_offset: TX descriptor registers offset
|
|
* @lock: Descriptor operation lock
|
|
* @pending_list: Descriptors waiting
|
|
* @active_list: Descriptors ready to submit
|
|
* @done_list: Complete descriptors
|
|
* @free_seg_list: Free descriptors
|
|
* @common: DMA common channel
|
|
* @desc_pool: Descriptors pool
|
|
* @dev: The dma device
|
|
* @irq: Channel IRQ
|
|
* @id: Channel ID
|
|
* @direction: Transfer direction
|
|
* @num_frms: Number of frames
|
|
* @has_sg: Support scatter transfers
|
|
* @cyclic: Check for cyclic transfers.
|
|
* @genlock: Support genlock mode
|
|
* @err: Channel has errors
|
|
* @idle: Check for channel idle
|
|
* @tasklet: Cleanup work after irq
|
|
* @config: Device configuration info
|
|
* @flush_on_fsync: Flush on Frame sync
|
|
* @desc_pendingcount: Descriptor pending count
|
|
* @ext_addr: Indicates 64 bit addressing is supported by dma channel
|
|
* @desc_submitcount: Descriptor h/w submitted count
|
|
* @residue: Residue for AXI DMA
|
|
* @seg_v: Statically allocated segments base
|
|
* @seg_p: Physical allocated segments base
|
|
* @cyclic_seg_v: Statically allocated segment base for cyclic transfers
|
|
* @cyclic_seg_p: Physical allocated segments base for cyclic dma
|
|
* @start_transfer: Differentiate b/w DMA IP's transfer
|
|
* @stop_transfer: Differentiate b/w DMA IP's quiesce
|
|
* @tdest: TDEST value for mcdma
|
|
*/
|
|
struct xilinx_dma_chan {
|
|
struct xilinx_dma_device *xdev;
|
|
u32 ctrl_offset;
|
|
u32 desc_offset;
|
|
spinlock_t lock;
|
|
struct list_head pending_list;
|
|
struct list_head active_list;
|
|
struct list_head done_list;
|
|
struct list_head free_seg_list;
|
|
struct dma_chan common;
|
|
struct dma_pool *desc_pool;
|
|
struct device *dev;
|
|
int irq;
|
|
int id;
|
|
enum dma_transfer_direction direction;
|
|
int num_frms;
|
|
bool has_sg;
|
|
bool cyclic;
|
|
bool genlock;
|
|
bool err;
|
|
bool idle;
|
|
struct tasklet_struct tasklet;
|
|
struct xilinx_vdma_config config;
|
|
bool flush_on_fsync;
|
|
u32 desc_pendingcount;
|
|
bool ext_addr;
|
|
u32 desc_submitcount;
|
|
u32 residue;
|
|
struct xilinx_axidma_tx_segment *seg_v;
|
|
dma_addr_t seg_p;
|
|
struct xilinx_axidma_tx_segment *cyclic_seg_v;
|
|
dma_addr_t cyclic_seg_p;
|
|
void (*start_transfer)(struct xilinx_dma_chan *chan);
|
|
int (*stop_transfer)(struct xilinx_dma_chan *chan);
|
|
u16 tdest;
|
|
};
|
|
|
|
/**
|
|
* enum xdma_ip_type - DMA IP type.
|
|
*
|
|
* @XDMA_TYPE_AXIDMA: Axi dma ip.
|
|
* @XDMA_TYPE_CDMA: Axi cdma ip.
|
|
* @XDMA_TYPE_VDMA: Axi vdma ip.
|
|
*
|
|
*/
|
|
enum xdma_ip_type {
|
|
XDMA_TYPE_AXIDMA = 0,
|
|
XDMA_TYPE_CDMA,
|
|
XDMA_TYPE_VDMA,
|
|
};
|
|
|
|
struct xilinx_dma_config {
|
|
enum xdma_ip_type dmatype;
|
|
int (*clk_init)(struct platform_device *pdev, struct clk **axi_clk,
|
|
struct clk **tx_clk, struct clk **txs_clk,
|
|
struct clk **rx_clk, struct clk **rxs_clk);
|
|
};
|
|
|
|
/**
|
|
* struct xilinx_dma_device - DMA device structure
|
|
* @regs: I/O mapped base address
|
|
* @dev: Device Structure
|
|
* @common: DMA device structure
|
|
* @chan: Driver specific DMA channel
|
|
* @has_sg: Specifies whether Scatter-Gather is present or not
|
|
* @mcdma: Specifies whether Multi-Channel is present or not
|
|
* @flush_on_fsync: Flush on frame sync
|
|
* @ext_addr: Indicates 64 bit addressing is supported by dma device
|
|
* @pdev: Platform device structure pointer
|
|
* @dma_config: DMA config structure
|
|
* @axi_clk: DMA Axi4-lite interace clock
|
|
* @tx_clk: DMA mm2s clock
|
|
* @txs_clk: DMA mm2s stream clock
|
|
* @rx_clk: DMA s2mm clock
|
|
* @rxs_clk: DMA s2mm stream clock
|
|
* @nr_channels: Number of channels DMA device supports
|
|
* @chan_id: DMA channel identifier
|
|
*/
|
|
struct xilinx_dma_device {
|
|
void __iomem *regs;
|
|
struct device *dev;
|
|
struct dma_device common;
|
|
struct xilinx_dma_chan *chan[XILINX_DMA_MAX_CHANS_PER_DEVICE];
|
|
bool has_sg;
|
|
bool mcdma;
|
|
u32 flush_on_fsync;
|
|
bool ext_addr;
|
|
struct platform_device *pdev;
|
|
const struct xilinx_dma_config *dma_config;
|
|
struct clk *axi_clk;
|
|
struct clk *tx_clk;
|
|
struct clk *txs_clk;
|
|
struct clk *rx_clk;
|
|
struct clk *rxs_clk;
|
|
u32 nr_channels;
|
|
u32 chan_id;
|
|
};
|
|
|
|
/* Macros */
|
|
#define to_xilinx_chan(chan) \
|
|
container_of(chan, struct xilinx_dma_chan, common)
|
|
#define to_dma_tx_descriptor(tx) \
|
|
container_of(tx, struct xilinx_dma_tx_descriptor, async_tx)
|
|
#define xilinx_dma_poll_timeout(chan, reg, val, cond, delay_us, timeout_us) \
|
|
readl_poll_timeout(chan->xdev->regs + chan->ctrl_offset + reg, val, \
|
|
cond, delay_us, timeout_us)
|
|
|
|
/* IO accessors */
|
|
static inline u32 dma_read(struct xilinx_dma_chan *chan, u32 reg)
|
|
{
|
|
return ioread32(chan->xdev->regs + reg);
|
|
}
|
|
|
|
static inline void dma_write(struct xilinx_dma_chan *chan, u32 reg, u32 value)
|
|
{
|
|
iowrite32(value, chan->xdev->regs + reg);
|
|
}
|
|
|
|
static inline void vdma_desc_write(struct xilinx_dma_chan *chan, u32 reg,
|
|
u32 value)
|
|
{
|
|
dma_write(chan, chan->desc_offset + reg, value);
|
|
}
|
|
|
|
static inline u32 dma_ctrl_read(struct xilinx_dma_chan *chan, u32 reg)
|
|
{
|
|
return dma_read(chan, chan->ctrl_offset + reg);
|
|
}
|
|
|
|
static inline void dma_ctrl_write(struct xilinx_dma_chan *chan, u32 reg,
|
|
u32 value)
|
|
{
|
|
dma_write(chan, chan->ctrl_offset + reg, value);
|
|
}
|
|
|
|
static inline void dma_ctrl_clr(struct xilinx_dma_chan *chan, u32 reg,
|
|
u32 clr)
|
|
{
|
|
dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) & ~clr);
|
|
}
|
|
|
|
static inline void dma_ctrl_set(struct xilinx_dma_chan *chan, u32 reg,
|
|
u32 set)
|
|
{
|
|
dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) | set);
|
|
}
|
|
|
|
/**
|
|
* vdma_desc_write_64 - 64-bit descriptor write
|
|
* @chan: Driver specific VDMA channel
|
|
* @reg: Register to write
|
|
* @value_lsb: lower address of the descriptor.
|
|
* @value_msb: upper address of the descriptor.
|
|
*
|
|
* Since vdma driver is trying to write to a register offset which is not a
|
|
* multiple of 64 bits(ex : 0x5c), we are writing as two separate 32 bits
|
|
* instead of a single 64 bit register write.
|
|
*/
|
|
static inline void vdma_desc_write_64(struct xilinx_dma_chan *chan, u32 reg,
|
|
u32 value_lsb, u32 value_msb)
|
|
{
|
|
/* Write the lsb 32 bits*/
|
|
writel(value_lsb, chan->xdev->regs + chan->desc_offset + reg);
|
|
|
|
/* Write the msb 32 bits */
|
|
writel(value_msb, chan->xdev->regs + chan->desc_offset + reg + 4);
|
|
}
|
|
|
|
static inline void dma_writeq(struct xilinx_dma_chan *chan, u32 reg, u64 value)
|
|
{
|
|
lo_hi_writeq(value, chan->xdev->regs + chan->ctrl_offset + reg);
|
|
}
|
|
|
|
static inline void xilinx_write(struct xilinx_dma_chan *chan, u32 reg,
|
|
dma_addr_t addr)
|
|
{
|
|
if (chan->ext_addr)
|
|
dma_writeq(chan, reg, addr);
|
|
else
|
|
dma_ctrl_write(chan, reg, addr);
|
|
}
|
|
|
|
static inline void xilinx_axidma_buf(struct xilinx_dma_chan *chan,
|
|
struct xilinx_axidma_desc_hw *hw,
|
|
dma_addr_t buf_addr, size_t sg_used,
|
|
size_t period_len)
|
|
{
|
|
if (chan->ext_addr) {
|
|
hw->buf_addr = lower_32_bits(buf_addr + sg_used + period_len);
|
|
hw->buf_addr_msb = upper_32_bits(buf_addr + sg_used +
|
|
period_len);
|
|
} else {
|
|
hw->buf_addr = buf_addr + sg_used + period_len;
|
|
}
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Descriptors and segments alloc and free
|
|
*/
|
|
|
|
/**
|
|
* xilinx_vdma_alloc_tx_segment - Allocate transaction segment
|
|
* @chan: Driver specific DMA channel
|
|
*
|
|
* Return: The allocated segment on success and NULL on failure.
|
|
*/
|
|
static struct xilinx_vdma_tx_segment *
|
|
xilinx_vdma_alloc_tx_segment(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_vdma_tx_segment *segment;
|
|
dma_addr_t phys;
|
|
|
|
segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys);
|
|
if (!segment)
|
|
return NULL;
|
|
|
|
segment->phys = phys;
|
|
|
|
return segment;
|
|
}
|
|
|
|
/**
|
|
* xilinx_cdma_alloc_tx_segment - Allocate transaction segment
|
|
* @chan: Driver specific DMA channel
|
|
*
|
|
* Return: The allocated segment on success and NULL on failure.
|
|
*/
|
|
static struct xilinx_cdma_tx_segment *
|
|
xilinx_cdma_alloc_tx_segment(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_cdma_tx_segment *segment;
|
|
dma_addr_t phys;
|
|
|
|
segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys);
|
|
if (!segment)
|
|
return NULL;
|
|
|
|
segment->phys = phys;
|
|
|
|
return segment;
|
|
}
|
|
|
|
/**
|
|
* xilinx_axidma_alloc_tx_segment - Allocate transaction segment
|
|
* @chan: Driver specific DMA channel
|
|
*
|
|
* Return: The allocated segment on success and NULL on failure.
|
|
*/
|
|
static struct xilinx_axidma_tx_segment *
|
|
xilinx_axidma_alloc_tx_segment(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_axidma_tx_segment *segment = NULL;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
if (!list_empty(&chan->free_seg_list)) {
|
|
segment = list_first_entry(&chan->free_seg_list,
|
|
struct xilinx_axidma_tx_segment,
|
|
node);
|
|
list_del(&segment->node);
|
|
}
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
|
|
return segment;
|
|
}
|
|
|
|
static void xilinx_dma_clean_hw_desc(struct xilinx_axidma_desc_hw *hw)
|
|
{
|
|
u32 next_desc = hw->next_desc;
|
|
u32 next_desc_msb = hw->next_desc_msb;
|
|
|
|
memset(hw, 0, sizeof(struct xilinx_axidma_desc_hw));
|
|
|
|
hw->next_desc = next_desc;
|
|
hw->next_desc_msb = next_desc_msb;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_free_tx_segment - Free transaction segment
|
|
* @chan: Driver specific DMA channel
|
|
* @segment: DMA transaction segment
|
|
*/
|
|
static void xilinx_dma_free_tx_segment(struct xilinx_dma_chan *chan,
|
|
struct xilinx_axidma_tx_segment *segment)
|
|
{
|
|
xilinx_dma_clean_hw_desc(&segment->hw);
|
|
|
|
list_add_tail(&segment->node, &chan->free_seg_list);
|
|
}
|
|
|
|
/**
|
|
* xilinx_cdma_free_tx_segment - Free transaction segment
|
|
* @chan: Driver specific DMA channel
|
|
* @segment: DMA transaction segment
|
|
*/
|
|
static void xilinx_cdma_free_tx_segment(struct xilinx_dma_chan *chan,
|
|
struct xilinx_cdma_tx_segment *segment)
|
|
{
|
|
dma_pool_free(chan->desc_pool, segment, segment->phys);
|
|
}
|
|
|
|
/**
|
|
* xilinx_vdma_free_tx_segment - Free transaction segment
|
|
* @chan: Driver specific DMA channel
|
|
* @segment: DMA transaction segment
|
|
*/
|
|
static void xilinx_vdma_free_tx_segment(struct xilinx_dma_chan *chan,
|
|
struct xilinx_vdma_tx_segment *segment)
|
|
{
|
|
dma_pool_free(chan->desc_pool, segment, segment->phys);
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_tx_descriptor - Allocate transaction descriptor
|
|
* @chan: Driver specific DMA channel
|
|
*
|
|
* Return: The allocated descriptor on success and NULL on failure.
|
|
*/
|
|
static struct xilinx_dma_tx_descriptor *
|
|
xilinx_dma_alloc_tx_descriptor(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_dma_tx_descriptor *desc;
|
|
|
|
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&desc->segments);
|
|
|
|
return desc;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_free_tx_descriptor - Free transaction descriptor
|
|
* @chan: Driver specific DMA channel
|
|
* @desc: DMA transaction descriptor
|
|
*/
|
|
static void
|
|
xilinx_dma_free_tx_descriptor(struct xilinx_dma_chan *chan,
|
|
struct xilinx_dma_tx_descriptor *desc)
|
|
{
|
|
struct xilinx_vdma_tx_segment *segment, *next;
|
|
struct xilinx_cdma_tx_segment *cdma_segment, *cdma_next;
|
|
struct xilinx_axidma_tx_segment *axidma_segment, *axidma_next;
|
|
|
|
if (!desc)
|
|
return;
|
|
|
|
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
|
|
list_for_each_entry_safe(segment, next, &desc->segments, node) {
|
|
list_del(&segment->node);
|
|
xilinx_vdma_free_tx_segment(chan, segment);
|
|
}
|
|
} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
|
|
list_for_each_entry_safe(cdma_segment, cdma_next,
|
|
&desc->segments, node) {
|
|
list_del(&cdma_segment->node);
|
|
xilinx_cdma_free_tx_segment(chan, cdma_segment);
|
|
}
|
|
} else {
|
|
list_for_each_entry_safe(axidma_segment, axidma_next,
|
|
&desc->segments, node) {
|
|
list_del(&axidma_segment->node);
|
|
xilinx_dma_free_tx_segment(chan, axidma_segment);
|
|
}
|
|
}
|
|
|
|
kfree(desc);
|
|
}
|
|
|
|
/* Required functions */
|
|
|
|
/**
|
|
* xilinx_dma_free_desc_list - Free descriptors list
|
|
* @chan: Driver specific DMA channel
|
|
* @list: List to parse and delete the descriptor
|
|
*/
|
|
static void xilinx_dma_free_desc_list(struct xilinx_dma_chan *chan,
|
|
struct list_head *list)
|
|
{
|
|
struct xilinx_dma_tx_descriptor *desc, *next;
|
|
|
|
list_for_each_entry_safe(desc, next, list, node) {
|
|
list_del(&desc->node);
|
|
xilinx_dma_free_tx_descriptor(chan, desc);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_free_descriptors - Free channel descriptors
|
|
* @chan: Driver specific DMA channel
|
|
*/
|
|
static void xilinx_dma_free_descriptors(struct xilinx_dma_chan *chan)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
|
|
xilinx_dma_free_desc_list(chan, &chan->pending_list);
|
|
xilinx_dma_free_desc_list(chan, &chan->done_list);
|
|
xilinx_dma_free_desc_list(chan, &chan->active_list);
|
|
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_free_chan_resources - Free channel resources
|
|
* @dchan: DMA channel
|
|
*/
|
|
static void xilinx_dma_free_chan_resources(struct dma_chan *dchan)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
unsigned long flags;
|
|
|
|
dev_dbg(chan->dev, "Free all channel resources.\n");
|
|
|
|
xilinx_dma_free_descriptors(chan);
|
|
|
|
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
INIT_LIST_HEAD(&chan->free_seg_list);
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
|
|
/* Free memory that is allocated for BD */
|
|
dma_free_coherent(chan->dev, sizeof(*chan->seg_v) *
|
|
XILINX_DMA_NUM_DESCS, chan->seg_v,
|
|
chan->seg_p);
|
|
|
|
/* Free Memory that is allocated for cyclic DMA Mode */
|
|
dma_free_coherent(chan->dev, sizeof(*chan->cyclic_seg_v),
|
|
chan->cyclic_seg_v, chan->cyclic_seg_p);
|
|
}
|
|
|
|
if (chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIDMA) {
|
|
dma_pool_destroy(chan->desc_pool);
|
|
chan->desc_pool = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_chan_handle_cyclic - Cyclic dma callback
|
|
* @chan: Driver specific dma channel
|
|
* @desc: dma transaction descriptor
|
|
* @flags: flags for spin lock
|
|
*/
|
|
static void xilinx_dma_chan_handle_cyclic(struct xilinx_dma_chan *chan,
|
|
struct xilinx_dma_tx_descriptor *desc,
|
|
unsigned long *flags)
|
|
{
|
|
dma_async_tx_callback callback;
|
|
void *callback_param;
|
|
|
|
callback = desc->async_tx.callback;
|
|
callback_param = desc->async_tx.callback_param;
|
|
if (callback) {
|
|
spin_unlock_irqrestore(&chan->lock, *flags);
|
|
callback(callback_param);
|
|
spin_lock_irqsave(&chan->lock, *flags);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_chan_desc_cleanup - Clean channel descriptors
|
|
* @chan: Driver specific DMA channel
|
|
*/
|
|
static void xilinx_dma_chan_desc_cleanup(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_dma_tx_descriptor *desc, *next;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
|
|
list_for_each_entry_safe(desc, next, &chan->done_list, node) {
|
|
struct dmaengine_desc_callback cb;
|
|
|
|
if (desc->cyclic) {
|
|
xilinx_dma_chan_handle_cyclic(chan, desc, &flags);
|
|
break;
|
|
}
|
|
|
|
/* Remove from the list of running transactions */
|
|
list_del(&desc->node);
|
|
|
|
/* Run the link descriptor callback function */
|
|
dmaengine_desc_get_callback(&desc->async_tx, &cb);
|
|
if (dmaengine_desc_callback_valid(&cb)) {
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
dmaengine_desc_callback_invoke(&cb, NULL);
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
}
|
|
|
|
/* Run any dependencies, then free the descriptor */
|
|
dma_run_dependencies(&desc->async_tx);
|
|
xilinx_dma_free_tx_descriptor(chan, desc);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_do_tasklet - Schedule completion tasklet
|
|
* @data: Pointer to the Xilinx DMA channel structure
|
|
*/
|
|
static void xilinx_dma_do_tasklet(unsigned long data)
|
|
{
|
|
struct xilinx_dma_chan *chan = (struct xilinx_dma_chan *)data;
|
|
|
|
xilinx_dma_chan_desc_cleanup(chan);
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_alloc_chan_resources - Allocate channel resources
|
|
* @dchan: DMA channel
|
|
*
|
|
* Return: '0' on success and failure value on error
|
|
*/
|
|
static int xilinx_dma_alloc_chan_resources(struct dma_chan *dchan)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
int i;
|
|
|
|
/* Has this channel already been allocated? */
|
|
if (chan->desc_pool)
|
|
return 0;
|
|
|
|
/*
|
|
* We need the descriptor to be aligned to 64bytes
|
|
* for meeting Xilinx VDMA specification requirement.
|
|
*/
|
|
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
|
|
/* Allocate the buffer descriptors. */
|
|
chan->seg_v = dma_zalloc_coherent(chan->dev,
|
|
sizeof(*chan->seg_v) *
|
|
XILINX_DMA_NUM_DESCS,
|
|
&chan->seg_p, GFP_KERNEL);
|
|
if (!chan->seg_v) {
|
|
dev_err(chan->dev,
|
|
"unable to allocate channel %d descriptors\n",
|
|
chan->id);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < XILINX_DMA_NUM_DESCS; i++) {
|
|
chan->seg_v[i].hw.next_desc =
|
|
lower_32_bits(chan->seg_p + sizeof(*chan->seg_v) *
|
|
((i + 1) % XILINX_DMA_NUM_DESCS));
|
|
chan->seg_v[i].hw.next_desc_msb =
|
|
upper_32_bits(chan->seg_p + sizeof(*chan->seg_v) *
|
|
((i + 1) % XILINX_DMA_NUM_DESCS));
|
|
chan->seg_v[i].phys = chan->seg_p +
|
|
sizeof(*chan->seg_v) * i;
|
|
list_add_tail(&chan->seg_v[i].node,
|
|
&chan->free_seg_list);
|
|
}
|
|
} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
|
|
chan->desc_pool = dma_pool_create("xilinx_cdma_desc_pool",
|
|
chan->dev,
|
|
sizeof(struct xilinx_cdma_tx_segment),
|
|
__alignof__(struct xilinx_cdma_tx_segment),
|
|
0);
|
|
} else {
|
|
chan->desc_pool = dma_pool_create("xilinx_vdma_desc_pool",
|
|
chan->dev,
|
|
sizeof(struct xilinx_vdma_tx_segment),
|
|
__alignof__(struct xilinx_vdma_tx_segment),
|
|
0);
|
|
}
|
|
|
|
if (!chan->desc_pool &&
|
|
(chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIDMA)) {
|
|
dev_err(chan->dev,
|
|
"unable to allocate channel %d descriptor pool\n",
|
|
chan->id);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
|
|
/*
|
|
* For cyclic DMA mode we need to program the tail Descriptor
|
|
* register with a value which is not a part of the BD chain
|
|
* so allocating a desc segment during channel allocation for
|
|
* programming tail descriptor.
|
|
*/
|
|
chan->cyclic_seg_v = dma_zalloc_coherent(chan->dev,
|
|
sizeof(*chan->cyclic_seg_v),
|
|
&chan->cyclic_seg_p, GFP_KERNEL);
|
|
if (!chan->cyclic_seg_v) {
|
|
dev_err(chan->dev,
|
|
"unable to allocate desc segment for cyclic DMA\n");
|
|
return -ENOMEM;
|
|
}
|
|
chan->cyclic_seg_v->phys = chan->cyclic_seg_p;
|
|
}
|
|
|
|
dma_cookie_init(dchan);
|
|
|
|
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
|
|
/* For AXI DMA resetting once channel will reset the
|
|
* other channel as well so enable the interrupts here.
|
|
*/
|
|
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
|
|
XILINX_DMA_DMAXR_ALL_IRQ_MASK);
|
|
}
|
|
|
|
if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg)
|
|
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
|
|
XILINX_CDMA_CR_SGMODE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_tx_status - Get DMA transaction status
|
|
* @dchan: DMA channel
|
|
* @cookie: Transaction identifier
|
|
* @txstate: Transaction state
|
|
*
|
|
* Return: DMA transaction status
|
|
*/
|
|
static enum dma_status xilinx_dma_tx_status(struct dma_chan *dchan,
|
|
dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
struct xilinx_dma_tx_descriptor *desc;
|
|
struct xilinx_axidma_tx_segment *segment;
|
|
struct xilinx_axidma_desc_hw *hw;
|
|
enum dma_status ret;
|
|
unsigned long flags;
|
|
u32 residue = 0;
|
|
|
|
ret = dma_cookie_status(dchan, cookie, txstate);
|
|
if (ret == DMA_COMPLETE || !txstate)
|
|
return ret;
|
|
|
|
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
|
|
desc = list_last_entry(&chan->active_list,
|
|
struct xilinx_dma_tx_descriptor, node);
|
|
if (chan->has_sg) {
|
|
list_for_each_entry(segment, &desc->segments, node) {
|
|
hw = &segment->hw;
|
|
residue += (hw->control - hw->status) &
|
|
XILINX_DMA_MAX_TRANS_LEN;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
|
|
chan->residue = residue;
|
|
dma_set_residue(txstate, chan->residue);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_stop_transfer - Halt DMA channel
|
|
* @chan: Driver specific DMA channel
|
|
*
|
|
* Return: '0' on success and failure value on error
|
|
*/
|
|
static int xilinx_dma_stop_transfer(struct xilinx_dma_chan *chan)
|
|
{
|
|
u32 val;
|
|
|
|
dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP);
|
|
|
|
/* Wait for the hardware to halt */
|
|
return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val,
|
|
val & XILINX_DMA_DMASR_HALTED, 0,
|
|
XILINX_DMA_LOOP_COUNT);
|
|
}
|
|
|
|
/**
|
|
* xilinx_cdma_stop_transfer - Wait for the current transfer to complete
|
|
* @chan: Driver specific DMA channel
|
|
*
|
|
* Return: '0' on success and failure value on error
|
|
*/
|
|
static int xilinx_cdma_stop_transfer(struct xilinx_dma_chan *chan)
|
|
{
|
|
u32 val;
|
|
|
|
return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val,
|
|
val & XILINX_DMA_DMASR_IDLE, 0,
|
|
XILINX_DMA_LOOP_COUNT);
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_start - Start DMA channel
|
|
* @chan: Driver specific DMA channel
|
|
*/
|
|
static void xilinx_dma_start(struct xilinx_dma_chan *chan)
|
|
{
|
|
int err;
|
|
u32 val;
|
|
|
|
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP);
|
|
|
|
/* Wait for the hardware to start */
|
|
err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val,
|
|
!(val & XILINX_DMA_DMASR_HALTED), 0,
|
|
XILINX_DMA_LOOP_COUNT);
|
|
|
|
if (err) {
|
|
dev_err(chan->dev, "Cannot start channel %p: %x\n",
|
|
chan, dma_ctrl_read(chan, XILINX_DMA_REG_DMASR));
|
|
|
|
chan->err = true;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xilinx_vdma_start_transfer - Starts VDMA transfer
|
|
* @chan: Driver specific channel struct pointer
|
|
*/
|
|
static void xilinx_vdma_start_transfer(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_vdma_config *config = &chan->config;
|
|
struct xilinx_dma_tx_descriptor *desc, *tail_desc;
|
|
u32 reg, j;
|
|
struct xilinx_vdma_tx_segment *tail_segment;
|
|
|
|
/* This function was invoked with lock held */
|
|
if (chan->err)
|
|
return;
|
|
|
|
if (!chan->idle)
|
|
return;
|
|
|
|
if (list_empty(&chan->pending_list))
|
|
return;
|
|
|
|
desc = list_first_entry(&chan->pending_list,
|
|
struct xilinx_dma_tx_descriptor, node);
|
|
tail_desc = list_last_entry(&chan->pending_list,
|
|
struct xilinx_dma_tx_descriptor, node);
|
|
|
|
tail_segment = list_last_entry(&tail_desc->segments,
|
|
struct xilinx_vdma_tx_segment, node);
|
|
|
|
/*
|
|
* If hardware is idle, then all descriptors on the running lists are
|
|
* done, start new transfers
|
|
*/
|
|
if (chan->has_sg)
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_CURDESC,
|
|
desc->async_tx.phys);
|
|
|
|
/* Configure the hardware using info in the config structure */
|
|
reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
|
|
|
|
if (config->frm_cnt_en)
|
|
reg |= XILINX_DMA_DMACR_FRAMECNT_EN;
|
|
else
|
|
reg &= ~XILINX_DMA_DMACR_FRAMECNT_EN;
|
|
|
|
/*
|
|
* With SG, start with circular mode, so that BDs can be fetched.
|
|
* In direct register mode, if not parking, enable circular mode
|
|
*/
|
|
if (chan->has_sg || !config->park)
|
|
reg |= XILINX_DMA_DMACR_CIRC_EN;
|
|
|
|
if (config->park)
|
|
reg &= ~XILINX_DMA_DMACR_CIRC_EN;
|
|
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
|
|
|
|
j = chan->desc_submitcount;
|
|
reg = dma_read(chan, XILINX_DMA_REG_PARK_PTR);
|
|
if (chan->direction == DMA_MEM_TO_DEV) {
|
|
reg &= ~XILINX_DMA_PARK_PTR_RD_REF_MASK;
|
|
reg |= j << XILINX_DMA_PARK_PTR_RD_REF_SHIFT;
|
|
} else {
|
|
reg &= ~XILINX_DMA_PARK_PTR_WR_REF_MASK;
|
|
reg |= j << XILINX_DMA_PARK_PTR_WR_REF_SHIFT;
|
|
}
|
|
dma_write(chan, XILINX_DMA_REG_PARK_PTR, reg);
|
|
|
|
/* Start the hardware */
|
|
xilinx_dma_start(chan);
|
|
|
|
if (chan->err)
|
|
return;
|
|
|
|
/* Start the transfer */
|
|
if (chan->has_sg) {
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_TAILDESC,
|
|
tail_segment->phys);
|
|
list_splice_tail_init(&chan->pending_list, &chan->active_list);
|
|
chan->desc_pendingcount = 0;
|
|
} else {
|
|
struct xilinx_vdma_tx_segment *segment, *last = NULL;
|
|
int i = 0;
|
|
|
|
if (chan->desc_submitcount < chan->num_frms)
|
|
i = chan->desc_submitcount;
|
|
|
|
list_for_each_entry(segment, &desc->segments, node) {
|
|
if (chan->ext_addr)
|
|
vdma_desc_write_64(chan,
|
|
XILINX_VDMA_REG_START_ADDRESS_64(i++),
|
|
segment->hw.buf_addr,
|
|
segment->hw.buf_addr_msb);
|
|
else
|
|
vdma_desc_write(chan,
|
|
XILINX_VDMA_REG_START_ADDRESS(i++),
|
|
segment->hw.buf_addr);
|
|
|
|
last = segment;
|
|
}
|
|
|
|
if (!last)
|
|
return;
|
|
|
|
/* HW expects these parameters to be same for one transaction */
|
|
vdma_desc_write(chan, XILINX_DMA_REG_HSIZE, last->hw.hsize);
|
|
vdma_desc_write(chan, XILINX_DMA_REG_FRMDLY_STRIDE,
|
|
last->hw.stride);
|
|
vdma_desc_write(chan, XILINX_DMA_REG_VSIZE, last->hw.vsize);
|
|
|
|
chan->desc_submitcount++;
|
|
chan->desc_pendingcount--;
|
|
list_del(&desc->node);
|
|
list_add_tail(&desc->node, &chan->active_list);
|
|
if (chan->desc_submitcount == chan->num_frms)
|
|
chan->desc_submitcount = 0;
|
|
}
|
|
|
|
chan->idle = false;
|
|
}
|
|
|
|
/**
|
|
* xilinx_cdma_start_transfer - Starts cdma transfer
|
|
* @chan: Driver specific channel struct pointer
|
|
*/
|
|
static void xilinx_cdma_start_transfer(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_dma_tx_descriptor *head_desc, *tail_desc;
|
|
struct xilinx_cdma_tx_segment *tail_segment;
|
|
u32 ctrl_reg = dma_read(chan, XILINX_DMA_REG_DMACR);
|
|
|
|
if (chan->err)
|
|
return;
|
|
|
|
if (!chan->idle)
|
|
return;
|
|
|
|
if (list_empty(&chan->pending_list))
|
|
return;
|
|
|
|
head_desc = list_first_entry(&chan->pending_list,
|
|
struct xilinx_dma_tx_descriptor, node);
|
|
tail_desc = list_last_entry(&chan->pending_list,
|
|
struct xilinx_dma_tx_descriptor, node);
|
|
tail_segment = list_last_entry(&tail_desc->segments,
|
|
struct xilinx_cdma_tx_segment, node);
|
|
|
|
if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) {
|
|
ctrl_reg &= ~XILINX_DMA_CR_COALESCE_MAX;
|
|
ctrl_reg |= chan->desc_pendingcount <<
|
|
XILINX_DMA_CR_COALESCE_SHIFT;
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, ctrl_reg);
|
|
}
|
|
|
|
if (chan->has_sg) {
|
|
dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR,
|
|
XILINX_CDMA_CR_SGMODE);
|
|
|
|
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
|
|
XILINX_CDMA_CR_SGMODE);
|
|
|
|
xilinx_write(chan, XILINX_DMA_REG_CURDESC,
|
|
head_desc->async_tx.phys);
|
|
|
|
/* Update tail ptr register which will start the transfer */
|
|
xilinx_write(chan, XILINX_DMA_REG_TAILDESC,
|
|
tail_segment->phys);
|
|
} else {
|
|
/* In simple mode */
|
|
struct xilinx_cdma_tx_segment *segment;
|
|
struct xilinx_cdma_desc_hw *hw;
|
|
|
|
segment = list_first_entry(&head_desc->segments,
|
|
struct xilinx_cdma_tx_segment,
|
|
node);
|
|
|
|
hw = &segment->hw;
|
|
|
|
xilinx_write(chan, XILINX_CDMA_REG_SRCADDR, hw->src_addr);
|
|
xilinx_write(chan, XILINX_CDMA_REG_DSTADDR, hw->dest_addr);
|
|
|
|
/* Start the transfer */
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_BTT,
|
|
hw->control & XILINX_DMA_MAX_TRANS_LEN);
|
|
}
|
|
|
|
list_splice_tail_init(&chan->pending_list, &chan->active_list);
|
|
chan->desc_pendingcount = 0;
|
|
chan->idle = false;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_start_transfer - Starts DMA transfer
|
|
* @chan: Driver specific channel struct pointer
|
|
*/
|
|
static void xilinx_dma_start_transfer(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_dma_tx_descriptor *head_desc, *tail_desc;
|
|
struct xilinx_axidma_tx_segment *tail_segment;
|
|
u32 reg;
|
|
|
|
if (chan->err)
|
|
return;
|
|
|
|
if (list_empty(&chan->pending_list))
|
|
return;
|
|
|
|
if (!chan->idle)
|
|
return;
|
|
|
|
head_desc = list_first_entry(&chan->pending_list,
|
|
struct xilinx_dma_tx_descriptor, node);
|
|
tail_desc = list_last_entry(&chan->pending_list,
|
|
struct xilinx_dma_tx_descriptor, node);
|
|
tail_segment = list_last_entry(&tail_desc->segments,
|
|
struct xilinx_axidma_tx_segment, node);
|
|
|
|
reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
|
|
|
|
if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) {
|
|
reg &= ~XILINX_DMA_CR_COALESCE_MAX;
|
|
reg |= chan->desc_pendingcount <<
|
|
XILINX_DMA_CR_COALESCE_SHIFT;
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
|
|
}
|
|
|
|
if (chan->has_sg && !chan->xdev->mcdma)
|
|
xilinx_write(chan, XILINX_DMA_REG_CURDESC,
|
|
head_desc->async_tx.phys);
|
|
|
|
if (chan->has_sg && chan->xdev->mcdma) {
|
|
if (chan->direction == DMA_MEM_TO_DEV) {
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_CURDESC,
|
|
head_desc->async_tx.phys);
|
|
} else {
|
|
if (!chan->tdest) {
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_CURDESC,
|
|
head_desc->async_tx.phys);
|
|
} else {
|
|
dma_ctrl_write(chan,
|
|
XILINX_DMA_MCRX_CDESC(chan->tdest),
|
|
head_desc->async_tx.phys);
|
|
}
|
|
}
|
|
}
|
|
|
|
xilinx_dma_start(chan);
|
|
|
|
if (chan->err)
|
|
return;
|
|
|
|
/* Start the transfer */
|
|
if (chan->has_sg && !chan->xdev->mcdma) {
|
|
if (chan->cyclic)
|
|
xilinx_write(chan, XILINX_DMA_REG_TAILDESC,
|
|
chan->cyclic_seg_v->phys);
|
|
else
|
|
xilinx_write(chan, XILINX_DMA_REG_TAILDESC,
|
|
tail_segment->phys);
|
|
} else if (chan->has_sg && chan->xdev->mcdma) {
|
|
if (chan->direction == DMA_MEM_TO_DEV) {
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_TAILDESC,
|
|
tail_segment->phys);
|
|
} else {
|
|
if (!chan->tdest) {
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_TAILDESC,
|
|
tail_segment->phys);
|
|
} else {
|
|
dma_ctrl_write(chan,
|
|
XILINX_DMA_MCRX_TDESC(chan->tdest),
|
|
tail_segment->phys);
|
|
}
|
|
}
|
|
} else {
|
|
struct xilinx_axidma_tx_segment *segment;
|
|
struct xilinx_axidma_desc_hw *hw;
|
|
|
|
segment = list_first_entry(&head_desc->segments,
|
|
struct xilinx_axidma_tx_segment,
|
|
node);
|
|
hw = &segment->hw;
|
|
|
|
xilinx_write(chan, XILINX_DMA_REG_SRCDSTADDR, hw->buf_addr);
|
|
|
|
/* Start the transfer */
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_BTT,
|
|
hw->control & XILINX_DMA_MAX_TRANS_LEN);
|
|
}
|
|
|
|
list_splice_tail_init(&chan->pending_list, &chan->active_list);
|
|
chan->desc_pendingcount = 0;
|
|
chan->idle = false;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_issue_pending - Issue pending transactions
|
|
* @dchan: DMA channel
|
|
*/
|
|
static void xilinx_dma_issue_pending(struct dma_chan *dchan)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
chan->start_transfer(chan);
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_complete_descriptor - Mark the active descriptor as complete
|
|
* @chan : xilinx DMA channel
|
|
*
|
|
* CONTEXT: hardirq
|
|
*/
|
|
static void xilinx_dma_complete_descriptor(struct xilinx_dma_chan *chan)
|
|
{
|
|
struct xilinx_dma_tx_descriptor *desc, *next;
|
|
|
|
/* This function was invoked with lock held */
|
|
if (list_empty(&chan->active_list))
|
|
return;
|
|
|
|
list_for_each_entry_safe(desc, next, &chan->active_list, node) {
|
|
list_del(&desc->node);
|
|
if (!desc->cyclic)
|
|
dma_cookie_complete(&desc->async_tx);
|
|
list_add_tail(&desc->node, &chan->done_list);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_reset - Reset DMA channel
|
|
* @chan: Driver specific DMA channel
|
|
*
|
|
* Return: '0' on success and failure value on error
|
|
*/
|
|
static int xilinx_dma_reset(struct xilinx_dma_chan *chan)
|
|
{
|
|
int err;
|
|
u32 tmp;
|
|
|
|
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RESET);
|
|
|
|
/* Wait for the hardware to finish reset */
|
|
err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMACR, tmp,
|
|
!(tmp & XILINX_DMA_DMACR_RESET), 0,
|
|
XILINX_DMA_LOOP_COUNT);
|
|
|
|
if (err) {
|
|
dev_err(chan->dev, "reset timeout, cr %x, sr %x\n",
|
|
dma_ctrl_read(chan, XILINX_DMA_REG_DMACR),
|
|
dma_ctrl_read(chan, XILINX_DMA_REG_DMASR));
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
chan->err = false;
|
|
chan->idle = true;
|
|
chan->desc_submitcount = 0;
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_chan_reset - Reset DMA channel and enable interrupts
|
|
* @chan: Driver specific DMA channel
|
|
*
|
|
* Return: '0' on success and failure value on error
|
|
*/
|
|
static int xilinx_dma_chan_reset(struct xilinx_dma_chan *chan)
|
|
{
|
|
int err;
|
|
|
|
/* Reset VDMA */
|
|
err = xilinx_dma_reset(chan);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Enable interrupts */
|
|
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
|
|
XILINX_DMA_DMAXR_ALL_IRQ_MASK);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_irq_handler - DMA Interrupt handler
|
|
* @irq: IRQ number
|
|
* @data: Pointer to the Xilinx DMA channel structure
|
|
*
|
|
* Return: IRQ_HANDLED/IRQ_NONE
|
|
*/
|
|
static irqreturn_t xilinx_dma_irq_handler(int irq, void *data)
|
|
{
|
|
struct xilinx_dma_chan *chan = data;
|
|
u32 status;
|
|
|
|
/* Read the status and ack the interrupts. */
|
|
status = dma_ctrl_read(chan, XILINX_DMA_REG_DMASR);
|
|
if (!(status & XILINX_DMA_DMAXR_ALL_IRQ_MASK))
|
|
return IRQ_NONE;
|
|
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_DMASR,
|
|
status & XILINX_DMA_DMAXR_ALL_IRQ_MASK);
|
|
|
|
if (status & XILINX_DMA_DMASR_ERR_IRQ) {
|
|
/*
|
|
* An error occurred. If C_FLUSH_ON_FSYNC is enabled and the
|
|
* error is recoverable, ignore it. Otherwise flag the error.
|
|
*
|
|
* Only recoverable errors can be cleared in the DMASR register,
|
|
* make sure not to write to other error bits to 1.
|
|
*/
|
|
u32 errors = status & XILINX_DMA_DMASR_ALL_ERR_MASK;
|
|
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_DMASR,
|
|
errors & XILINX_DMA_DMASR_ERR_RECOVER_MASK);
|
|
|
|
if (!chan->flush_on_fsync ||
|
|
(errors & ~XILINX_DMA_DMASR_ERR_RECOVER_MASK)) {
|
|
dev_err(chan->dev,
|
|
"Channel %p has errors %x, cdr %x tdr %x\n",
|
|
chan, errors,
|
|
dma_ctrl_read(chan, XILINX_DMA_REG_CURDESC),
|
|
dma_ctrl_read(chan, XILINX_DMA_REG_TAILDESC));
|
|
chan->err = true;
|
|
}
|
|
}
|
|
|
|
if (status & XILINX_DMA_DMASR_DLY_CNT_IRQ) {
|
|
/*
|
|
* Device takes too long to do the transfer when user requires
|
|
* responsiveness.
|
|
*/
|
|
dev_dbg(chan->dev, "Inter-packet latency too long\n");
|
|
}
|
|
|
|
if (status & XILINX_DMA_DMASR_FRM_CNT_IRQ) {
|
|
spin_lock(&chan->lock);
|
|
xilinx_dma_complete_descriptor(chan);
|
|
chan->idle = true;
|
|
chan->start_transfer(chan);
|
|
spin_unlock(&chan->lock);
|
|
}
|
|
|
|
tasklet_schedule(&chan->tasklet);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* append_desc_queue - Queuing descriptor
|
|
* @chan: Driver specific dma channel
|
|
* @desc: dma transaction descriptor
|
|
*/
|
|
static void append_desc_queue(struct xilinx_dma_chan *chan,
|
|
struct xilinx_dma_tx_descriptor *desc)
|
|
{
|
|
struct xilinx_vdma_tx_segment *tail_segment;
|
|
struct xilinx_dma_tx_descriptor *tail_desc;
|
|
struct xilinx_axidma_tx_segment *axidma_tail_segment;
|
|
struct xilinx_cdma_tx_segment *cdma_tail_segment;
|
|
|
|
if (list_empty(&chan->pending_list))
|
|
goto append;
|
|
|
|
/*
|
|
* Add the hardware descriptor to the chain of hardware descriptors
|
|
* that already exists in memory.
|
|
*/
|
|
tail_desc = list_last_entry(&chan->pending_list,
|
|
struct xilinx_dma_tx_descriptor, node);
|
|
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
|
|
tail_segment = list_last_entry(&tail_desc->segments,
|
|
struct xilinx_vdma_tx_segment,
|
|
node);
|
|
tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
|
|
} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
|
|
cdma_tail_segment = list_last_entry(&tail_desc->segments,
|
|
struct xilinx_cdma_tx_segment,
|
|
node);
|
|
cdma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
|
|
} else {
|
|
axidma_tail_segment = list_last_entry(&tail_desc->segments,
|
|
struct xilinx_axidma_tx_segment,
|
|
node);
|
|
axidma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
|
|
}
|
|
|
|
/*
|
|
* Add the software descriptor and all children to the list
|
|
* of pending transactions
|
|
*/
|
|
append:
|
|
list_add_tail(&desc->node, &chan->pending_list);
|
|
chan->desc_pendingcount++;
|
|
|
|
if (chan->has_sg && (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA)
|
|
&& unlikely(chan->desc_pendingcount > chan->num_frms)) {
|
|
dev_dbg(chan->dev, "desc pendingcount is too high\n");
|
|
chan->desc_pendingcount = chan->num_frms;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_tx_submit - Submit DMA transaction
|
|
* @tx: Async transaction descriptor
|
|
*
|
|
* Return: cookie value on success and failure value on error
|
|
*/
|
|
static dma_cookie_t xilinx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
struct xilinx_dma_tx_descriptor *desc = to_dma_tx_descriptor(tx);
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(tx->chan);
|
|
dma_cookie_t cookie;
|
|
unsigned long flags;
|
|
int err;
|
|
|
|
if (chan->cyclic) {
|
|
xilinx_dma_free_tx_descriptor(chan, desc);
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (chan->err) {
|
|
/*
|
|
* If reset fails, need to hard reset the system.
|
|
* Channel is no longer functional
|
|
*/
|
|
err = xilinx_dma_chan_reset(chan);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
|
|
cookie = dma_cookie_assign(tx);
|
|
|
|
/* Put this transaction onto the tail of the pending queue */
|
|
append_desc_queue(chan, desc);
|
|
|
|
if (desc->cyclic)
|
|
chan->cyclic = true;
|
|
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
|
|
return cookie;
|
|
}
|
|
|
|
/**
|
|
* xilinx_vdma_dma_prep_interleaved - prepare a descriptor for a
|
|
* DMA_SLAVE transaction
|
|
* @dchan: DMA channel
|
|
* @xt: Interleaved template pointer
|
|
* @flags: transfer ack flags
|
|
*
|
|
* Return: Async transaction descriptor on success and NULL on failure
|
|
*/
|
|
static struct dma_async_tx_descriptor *
|
|
xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan,
|
|
struct dma_interleaved_template *xt,
|
|
unsigned long flags)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
struct xilinx_dma_tx_descriptor *desc;
|
|
struct xilinx_vdma_tx_segment *segment;
|
|
struct xilinx_vdma_desc_hw *hw;
|
|
|
|
if (!is_slave_direction(xt->dir))
|
|
return NULL;
|
|
|
|
if (!xt->numf || !xt->sgl[0].size)
|
|
return NULL;
|
|
|
|
if (xt->frame_size != 1)
|
|
return NULL;
|
|
|
|
/* Allocate a transaction descriptor. */
|
|
desc = xilinx_dma_alloc_tx_descriptor(chan);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
|
|
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
|
|
async_tx_ack(&desc->async_tx);
|
|
|
|
/* Allocate the link descriptor from DMA pool */
|
|
segment = xilinx_vdma_alloc_tx_segment(chan);
|
|
if (!segment)
|
|
goto error;
|
|
|
|
/* Fill in the hardware descriptor */
|
|
hw = &segment->hw;
|
|
hw->vsize = xt->numf;
|
|
hw->hsize = xt->sgl[0].size;
|
|
hw->stride = (xt->sgl[0].icg + xt->sgl[0].size) <<
|
|
XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT;
|
|
hw->stride |= chan->config.frm_dly <<
|
|
XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT;
|
|
|
|
if (xt->dir != DMA_MEM_TO_DEV) {
|
|
if (chan->ext_addr) {
|
|
hw->buf_addr = lower_32_bits(xt->dst_start);
|
|
hw->buf_addr_msb = upper_32_bits(xt->dst_start);
|
|
} else {
|
|
hw->buf_addr = xt->dst_start;
|
|
}
|
|
} else {
|
|
if (chan->ext_addr) {
|
|
hw->buf_addr = lower_32_bits(xt->src_start);
|
|
hw->buf_addr_msb = upper_32_bits(xt->src_start);
|
|
} else {
|
|
hw->buf_addr = xt->src_start;
|
|
}
|
|
}
|
|
|
|
/* Insert the segment into the descriptor segments list. */
|
|
list_add_tail(&segment->node, &desc->segments);
|
|
|
|
/* Link the last hardware descriptor with the first. */
|
|
segment = list_first_entry(&desc->segments,
|
|
struct xilinx_vdma_tx_segment, node);
|
|
desc->async_tx.phys = segment->phys;
|
|
|
|
return &desc->async_tx;
|
|
|
|
error:
|
|
xilinx_dma_free_tx_descriptor(chan, desc);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* xilinx_cdma_prep_memcpy - prepare descriptors for a memcpy transaction
|
|
* @dchan: DMA channel
|
|
* @dma_dst: destination address
|
|
* @dma_src: source address
|
|
* @len: transfer length
|
|
* @flags: transfer ack flags
|
|
*
|
|
* Return: Async transaction descriptor on success and NULL on failure
|
|
*/
|
|
static struct dma_async_tx_descriptor *
|
|
xilinx_cdma_prep_memcpy(struct dma_chan *dchan, dma_addr_t dma_dst,
|
|
dma_addr_t dma_src, size_t len, unsigned long flags)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
struct xilinx_dma_tx_descriptor *desc;
|
|
struct xilinx_cdma_tx_segment *segment;
|
|
struct xilinx_cdma_desc_hw *hw;
|
|
|
|
if (!len || len > XILINX_DMA_MAX_TRANS_LEN)
|
|
return NULL;
|
|
|
|
desc = xilinx_dma_alloc_tx_descriptor(chan);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
|
|
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
|
|
|
|
/* Allocate the link descriptor from DMA pool */
|
|
segment = xilinx_cdma_alloc_tx_segment(chan);
|
|
if (!segment)
|
|
goto error;
|
|
|
|
hw = &segment->hw;
|
|
hw->control = len;
|
|
hw->src_addr = dma_src;
|
|
hw->dest_addr = dma_dst;
|
|
if (chan->ext_addr) {
|
|
hw->src_addr_msb = upper_32_bits(dma_src);
|
|
hw->dest_addr_msb = upper_32_bits(dma_dst);
|
|
}
|
|
|
|
/* Insert the segment into the descriptor segments list. */
|
|
list_add_tail(&segment->node, &desc->segments);
|
|
|
|
desc->async_tx.phys = segment->phys;
|
|
hw->next_desc = segment->phys;
|
|
|
|
return &desc->async_tx;
|
|
|
|
error:
|
|
xilinx_dma_free_tx_descriptor(chan, desc);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
|
|
* @dchan: DMA channel
|
|
* @sgl: scatterlist to transfer to/from
|
|
* @sg_len: number of entries in @scatterlist
|
|
* @direction: DMA direction
|
|
* @flags: transfer ack flags
|
|
* @context: APP words of the descriptor
|
|
*
|
|
* Return: Async transaction descriptor on success and NULL on failure
|
|
*/
|
|
static struct dma_async_tx_descriptor *xilinx_dma_prep_slave_sg(
|
|
struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
|
|
enum dma_transfer_direction direction, unsigned long flags,
|
|
void *context)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
struct xilinx_dma_tx_descriptor *desc;
|
|
struct xilinx_axidma_tx_segment *segment = NULL;
|
|
u32 *app_w = (u32 *)context;
|
|
struct scatterlist *sg;
|
|
size_t copy;
|
|
size_t sg_used;
|
|
unsigned int i;
|
|
|
|
if (!is_slave_direction(direction))
|
|
return NULL;
|
|
|
|
/* Allocate a transaction descriptor. */
|
|
desc = xilinx_dma_alloc_tx_descriptor(chan);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
|
|
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
|
|
|
|
/* Build transactions using information in the scatter gather list */
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
sg_used = 0;
|
|
|
|
/* Loop until the entire scatterlist entry is used */
|
|
while (sg_used < sg_dma_len(sg)) {
|
|
struct xilinx_axidma_desc_hw *hw;
|
|
|
|
/* Get a free segment */
|
|
segment = xilinx_axidma_alloc_tx_segment(chan);
|
|
if (!segment)
|
|
goto error;
|
|
|
|
/*
|
|
* Calculate the maximum number of bytes to transfer,
|
|
* making sure it is less than the hw limit
|
|
*/
|
|
copy = min_t(size_t, sg_dma_len(sg) - sg_used,
|
|
XILINX_DMA_MAX_TRANS_LEN);
|
|
hw = &segment->hw;
|
|
|
|
/* Fill in the descriptor */
|
|
xilinx_axidma_buf(chan, hw, sg_dma_address(sg),
|
|
sg_used, 0);
|
|
|
|
hw->control = copy;
|
|
|
|
if (chan->direction == DMA_MEM_TO_DEV) {
|
|
if (app_w)
|
|
memcpy(hw->app, app_w, sizeof(u32) *
|
|
XILINX_DMA_NUM_APP_WORDS);
|
|
}
|
|
|
|
sg_used += copy;
|
|
|
|
/*
|
|
* Insert the segment into the descriptor segments
|
|
* list.
|
|
*/
|
|
list_add_tail(&segment->node, &desc->segments);
|
|
}
|
|
}
|
|
|
|
segment = list_first_entry(&desc->segments,
|
|
struct xilinx_axidma_tx_segment, node);
|
|
desc->async_tx.phys = segment->phys;
|
|
|
|
/* For the last DMA_MEM_TO_DEV transfer, set EOP */
|
|
if (chan->direction == DMA_MEM_TO_DEV) {
|
|
segment->hw.control |= XILINX_DMA_BD_SOP;
|
|
segment = list_last_entry(&desc->segments,
|
|
struct xilinx_axidma_tx_segment,
|
|
node);
|
|
segment->hw.control |= XILINX_DMA_BD_EOP;
|
|
}
|
|
|
|
return &desc->async_tx;
|
|
|
|
error:
|
|
xilinx_dma_free_tx_descriptor(chan, desc);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_prep_dma_cyclic - prepare descriptors for a DMA_SLAVE transaction
|
|
* @dchan: DMA channel
|
|
* @buf_addr: Physical address of the buffer
|
|
* @buf_len: Total length of the cyclic buffers
|
|
* @period_len: length of individual cyclic buffer
|
|
* @direction: DMA direction
|
|
* @flags: transfer ack flags
|
|
*
|
|
* Return: Async transaction descriptor on success and NULL on failure
|
|
*/
|
|
static struct dma_async_tx_descriptor *xilinx_dma_prep_dma_cyclic(
|
|
struct dma_chan *dchan, dma_addr_t buf_addr, size_t buf_len,
|
|
size_t period_len, enum dma_transfer_direction direction,
|
|
unsigned long flags)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
struct xilinx_dma_tx_descriptor *desc;
|
|
struct xilinx_axidma_tx_segment *segment, *head_segment, *prev = NULL;
|
|
size_t copy, sg_used;
|
|
unsigned int num_periods;
|
|
int i;
|
|
u32 reg;
|
|
|
|
if (!period_len)
|
|
return NULL;
|
|
|
|
num_periods = buf_len / period_len;
|
|
|
|
if (!num_periods)
|
|
return NULL;
|
|
|
|
if (!is_slave_direction(direction))
|
|
return NULL;
|
|
|
|
/* Allocate a transaction descriptor. */
|
|
desc = xilinx_dma_alloc_tx_descriptor(chan);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
chan->direction = direction;
|
|
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
|
|
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
|
|
|
|
for (i = 0; i < num_periods; ++i) {
|
|
sg_used = 0;
|
|
|
|
while (sg_used < period_len) {
|
|
struct xilinx_axidma_desc_hw *hw;
|
|
|
|
/* Get a free segment */
|
|
segment = xilinx_axidma_alloc_tx_segment(chan);
|
|
if (!segment)
|
|
goto error;
|
|
|
|
/*
|
|
* Calculate the maximum number of bytes to transfer,
|
|
* making sure it is less than the hw limit
|
|
*/
|
|
copy = min_t(size_t, period_len - sg_used,
|
|
XILINX_DMA_MAX_TRANS_LEN);
|
|
hw = &segment->hw;
|
|
xilinx_axidma_buf(chan, hw, buf_addr, sg_used,
|
|
period_len * i);
|
|
hw->control = copy;
|
|
|
|
if (prev)
|
|
prev->hw.next_desc = segment->phys;
|
|
|
|
prev = segment;
|
|
sg_used += copy;
|
|
|
|
/*
|
|
* Insert the segment into the descriptor segments
|
|
* list.
|
|
*/
|
|
list_add_tail(&segment->node, &desc->segments);
|
|
}
|
|
}
|
|
|
|
head_segment = list_first_entry(&desc->segments,
|
|
struct xilinx_axidma_tx_segment, node);
|
|
desc->async_tx.phys = head_segment->phys;
|
|
|
|
desc->cyclic = true;
|
|
reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
|
|
reg |= XILINX_DMA_CR_CYCLIC_BD_EN_MASK;
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
|
|
|
|
segment = list_last_entry(&desc->segments,
|
|
struct xilinx_axidma_tx_segment,
|
|
node);
|
|
segment->hw.next_desc = (u32) head_segment->phys;
|
|
|
|
/* For the last DMA_MEM_TO_DEV transfer, set EOP */
|
|
if (direction == DMA_MEM_TO_DEV) {
|
|
head_segment->hw.control |= XILINX_DMA_BD_SOP;
|
|
segment->hw.control |= XILINX_DMA_BD_EOP;
|
|
}
|
|
|
|
return &desc->async_tx;
|
|
|
|
error:
|
|
xilinx_dma_free_tx_descriptor(chan, desc);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_prep_interleaved - prepare a descriptor for a
|
|
* DMA_SLAVE transaction
|
|
* @dchan: DMA channel
|
|
* @xt: Interleaved template pointer
|
|
* @flags: transfer ack flags
|
|
*
|
|
* Return: Async transaction descriptor on success and NULL on failure
|
|
*/
|
|
static struct dma_async_tx_descriptor *
|
|
xilinx_dma_prep_interleaved(struct dma_chan *dchan,
|
|
struct dma_interleaved_template *xt,
|
|
unsigned long flags)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
struct xilinx_dma_tx_descriptor *desc;
|
|
struct xilinx_axidma_tx_segment *segment;
|
|
struct xilinx_axidma_desc_hw *hw;
|
|
|
|
if (!is_slave_direction(xt->dir))
|
|
return NULL;
|
|
|
|
if (!xt->numf || !xt->sgl[0].size)
|
|
return NULL;
|
|
|
|
if (xt->frame_size != 1)
|
|
return NULL;
|
|
|
|
/* Allocate a transaction descriptor. */
|
|
desc = xilinx_dma_alloc_tx_descriptor(chan);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
chan->direction = xt->dir;
|
|
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
|
|
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
|
|
|
|
/* Get a free segment */
|
|
segment = xilinx_axidma_alloc_tx_segment(chan);
|
|
if (!segment)
|
|
goto error;
|
|
|
|
hw = &segment->hw;
|
|
|
|
/* Fill in the descriptor */
|
|
if (xt->dir != DMA_MEM_TO_DEV)
|
|
hw->buf_addr = xt->dst_start;
|
|
else
|
|
hw->buf_addr = xt->src_start;
|
|
|
|
hw->mcdma_control = chan->tdest & XILINX_DMA_BD_TDEST_MASK;
|
|
hw->vsize_stride = (xt->numf << XILINX_DMA_BD_VSIZE_SHIFT) &
|
|
XILINX_DMA_BD_VSIZE_MASK;
|
|
hw->vsize_stride |= (xt->sgl[0].icg + xt->sgl[0].size) &
|
|
XILINX_DMA_BD_STRIDE_MASK;
|
|
hw->control = xt->sgl[0].size & XILINX_DMA_BD_HSIZE_MASK;
|
|
|
|
/*
|
|
* Insert the segment into the descriptor segments
|
|
* list.
|
|
*/
|
|
list_add_tail(&segment->node, &desc->segments);
|
|
|
|
|
|
segment = list_first_entry(&desc->segments,
|
|
struct xilinx_axidma_tx_segment, node);
|
|
desc->async_tx.phys = segment->phys;
|
|
|
|
/* For the last DMA_MEM_TO_DEV transfer, set EOP */
|
|
if (xt->dir == DMA_MEM_TO_DEV) {
|
|
segment->hw.control |= XILINX_DMA_BD_SOP;
|
|
segment = list_last_entry(&desc->segments,
|
|
struct xilinx_axidma_tx_segment,
|
|
node);
|
|
segment->hw.control |= XILINX_DMA_BD_EOP;
|
|
}
|
|
|
|
return &desc->async_tx;
|
|
|
|
error:
|
|
xilinx_dma_free_tx_descriptor(chan, desc);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_terminate_all - Halt the channel and free descriptors
|
|
* @dchan: Driver specific DMA Channel pointer
|
|
*
|
|
* Return: '0' always.
|
|
*/
|
|
static int xilinx_dma_terminate_all(struct dma_chan *dchan)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
u32 reg;
|
|
int err;
|
|
|
|
if (chan->cyclic)
|
|
xilinx_dma_chan_reset(chan);
|
|
|
|
err = chan->stop_transfer(chan);
|
|
if (err) {
|
|
dev_err(chan->dev, "Cannot stop channel %p: %x\n",
|
|
chan, dma_ctrl_read(chan, XILINX_DMA_REG_DMASR));
|
|
chan->err = true;
|
|
}
|
|
|
|
/* Remove and free all of the descriptors in the lists */
|
|
xilinx_dma_free_descriptors(chan);
|
|
chan->idle = true;
|
|
|
|
if (chan->cyclic) {
|
|
reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
|
|
reg &= ~XILINX_DMA_CR_CYCLIC_BD_EN_MASK;
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
|
|
chan->cyclic = false;
|
|
}
|
|
|
|
if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg)
|
|
dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR,
|
|
XILINX_CDMA_CR_SGMODE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_channel_set_config - Configure VDMA channel
|
|
* Run-time configuration for Axi VDMA, supports:
|
|
* . halt the channel
|
|
* . configure interrupt coalescing and inter-packet delay threshold
|
|
* . start/stop parking
|
|
* . enable genlock
|
|
*
|
|
* @dchan: DMA channel
|
|
* @cfg: VDMA device configuration pointer
|
|
*
|
|
* Return: '0' on success and failure value on error
|
|
*/
|
|
int xilinx_vdma_channel_set_config(struct dma_chan *dchan,
|
|
struct xilinx_vdma_config *cfg)
|
|
{
|
|
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
|
|
u32 dmacr;
|
|
|
|
if (cfg->reset)
|
|
return xilinx_dma_chan_reset(chan);
|
|
|
|
dmacr = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
|
|
|
|
chan->config.frm_dly = cfg->frm_dly;
|
|
chan->config.park = cfg->park;
|
|
|
|
/* genlock settings */
|
|
chan->config.gen_lock = cfg->gen_lock;
|
|
chan->config.master = cfg->master;
|
|
|
|
if (cfg->gen_lock && chan->genlock) {
|
|
dmacr |= XILINX_DMA_DMACR_GENLOCK_EN;
|
|
dmacr |= cfg->master << XILINX_DMA_DMACR_MASTER_SHIFT;
|
|
}
|
|
|
|
chan->config.frm_cnt_en = cfg->frm_cnt_en;
|
|
if (cfg->park)
|
|
chan->config.park_frm = cfg->park_frm;
|
|
else
|
|
chan->config.park_frm = -1;
|
|
|
|
chan->config.coalesc = cfg->coalesc;
|
|
chan->config.delay = cfg->delay;
|
|
|
|
if (cfg->coalesc <= XILINX_DMA_DMACR_FRAME_COUNT_MAX) {
|
|
dmacr |= cfg->coalesc << XILINX_DMA_DMACR_FRAME_COUNT_SHIFT;
|
|
chan->config.coalesc = cfg->coalesc;
|
|
}
|
|
|
|
if (cfg->delay <= XILINX_DMA_DMACR_DELAY_MAX) {
|
|
dmacr |= cfg->delay << XILINX_DMA_DMACR_DELAY_SHIFT;
|
|
chan->config.delay = cfg->delay;
|
|
}
|
|
|
|
/* FSync Source selection */
|
|
dmacr &= ~XILINX_DMA_DMACR_FSYNCSRC_MASK;
|
|
dmacr |= cfg->ext_fsync << XILINX_DMA_DMACR_FSYNCSRC_SHIFT;
|
|
|
|
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, dmacr);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(xilinx_vdma_channel_set_config);
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Probe and remove
|
|
*/
|
|
|
|
/**
|
|
* xilinx_dma_chan_remove - Per Channel remove function
|
|
* @chan: Driver specific DMA channel
|
|
*/
|
|
static void xilinx_dma_chan_remove(struct xilinx_dma_chan *chan)
|
|
{
|
|
/* Disable all interrupts */
|
|
dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR,
|
|
XILINX_DMA_DMAXR_ALL_IRQ_MASK);
|
|
|
|
if (chan->irq > 0)
|
|
free_irq(chan->irq, chan);
|
|
|
|
tasklet_kill(&chan->tasklet);
|
|
|
|
list_del(&chan->common.device_node);
|
|
}
|
|
|
|
static int axidma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
|
|
struct clk **tx_clk, struct clk **rx_clk,
|
|
struct clk **sg_clk, struct clk **tmp_clk)
|
|
{
|
|
int err;
|
|
|
|
*tmp_clk = NULL;
|
|
|
|
*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
|
|
if (IS_ERR(*axi_clk)) {
|
|
err = PTR_ERR(*axi_clk);
|
|
dev_err(&pdev->dev, "failed to get axi_aclk (%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
*tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk");
|
|
if (IS_ERR(*tx_clk))
|
|
*tx_clk = NULL;
|
|
|
|
*rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk");
|
|
if (IS_ERR(*rx_clk))
|
|
*rx_clk = NULL;
|
|
|
|
*sg_clk = devm_clk_get(&pdev->dev, "m_axi_sg_aclk");
|
|
if (IS_ERR(*sg_clk))
|
|
*sg_clk = NULL;
|
|
|
|
err = clk_prepare_enable(*axi_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
err = clk_prepare_enable(*tx_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
|
|
goto err_disable_axiclk;
|
|
}
|
|
|
|
err = clk_prepare_enable(*rx_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
|
|
goto err_disable_txclk;
|
|
}
|
|
|
|
err = clk_prepare_enable(*sg_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable sg_clk (%d)\n", err);
|
|
goto err_disable_rxclk;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_disable_rxclk:
|
|
clk_disable_unprepare(*rx_clk);
|
|
err_disable_txclk:
|
|
clk_disable_unprepare(*tx_clk);
|
|
err_disable_axiclk:
|
|
clk_disable_unprepare(*axi_clk);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int axicdma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
|
|
struct clk **dev_clk, struct clk **tmp_clk,
|
|
struct clk **tmp1_clk, struct clk **tmp2_clk)
|
|
{
|
|
int err;
|
|
|
|
*tmp_clk = NULL;
|
|
*tmp1_clk = NULL;
|
|
*tmp2_clk = NULL;
|
|
|
|
*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
|
|
if (IS_ERR(*axi_clk)) {
|
|
err = PTR_ERR(*axi_clk);
|
|
dev_err(&pdev->dev, "failed to get axi_clk (%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
*dev_clk = devm_clk_get(&pdev->dev, "m_axi_aclk");
|
|
if (IS_ERR(*dev_clk)) {
|
|
err = PTR_ERR(*dev_clk);
|
|
dev_err(&pdev->dev, "failed to get dev_clk (%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
err = clk_prepare_enable(*axi_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
err = clk_prepare_enable(*dev_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable dev_clk (%d)\n", err);
|
|
goto err_disable_axiclk;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_disable_axiclk:
|
|
clk_disable_unprepare(*axi_clk);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int axivdma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
|
|
struct clk **tx_clk, struct clk **txs_clk,
|
|
struct clk **rx_clk, struct clk **rxs_clk)
|
|
{
|
|
int err;
|
|
|
|
*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
|
|
if (IS_ERR(*axi_clk)) {
|
|
err = PTR_ERR(*axi_clk);
|
|
dev_err(&pdev->dev, "failed to get axi_aclk (%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
*tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk");
|
|
if (IS_ERR(*tx_clk))
|
|
*tx_clk = NULL;
|
|
|
|
*txs_clk = devm_clk_get(&pdev->dev, "m_axis_mm2s_aclk");
|
|
if (IS_ERR(*txs_clk))
|
|
*txs_clk = NULL;
|
|
|
|
*rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk");
|
|
if (IS_ERR(*rx_clk))
|
|
*rx_clk = NULL;
|
|
|
|
*rxs_clk = devm_clk_get(&pdev->dev, "s_axis_s2mm_aclk");
|
|
if (IS_ERR(*rxs_clk))
|
|
*rxs_clk = NULL;
|
|
|
|
err = clk_prepare_enable(*axi_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
err = clk_prepare_enable(*tx_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
|
|
goto err_disable_axiclk;
|
|
}
|
|
|
|
err = clk_prepare_enable(*txs_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable txs_clk (%d)\n", err);
|
|
goto err_disable_txclk;
|
|
}
|
|
|
|
err = clk_prepare_enable(*rx_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
|
|
goto err_disable_txsclk;
|
|
}
|
|
|
|
err = clk_prepare_enable(*rxs_clk);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "failed to enable rxs_clk (%d)\n", err);
|
|
goto err_disable_rxclk;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_disable_rxclk:
|
|
clk_disable_unprepare(*rx_clk);
|
|
err_disable_txsclk:
|
|
clk_disable_unprepare(*txs_clk);
|
|
err_disable_txclk:
|
|
clk_disable_unprepare(*tx_clk);
|
|
err_disable_axiclk:
|
|
clk_disable_unprepare(*axi_clk);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void xdma_disable_allclks(struct xilinx_dma_device *xdev)
|
|
{
|
|
clk_disable_unprepare(xdev->rxs_clk);
|
|
clk_disable_unprepare(xdev->rx_clk);
|
|
clk_disable_unprepare(xdev->txs_clk);
|
|
clk_disable_unprepare(xdev->tx_clk);
|
|
clk_disable_unprepare(xdev->axi_clk);
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_chan_probe - Per Channel Probing
|
|
* It get channel features from the device tree entry and
|
|
* initialize special channel handling routines
|
|
*
|
|
* @xdev: Driver specific device structure
|
|
* @node: Device node
|
|
* @chan_id: DMA Channel id
|
|
*
|
|
* Return: '0' on success and failure value on error
|
|
*/
|
|
static int xilinx_dma_chan_probe(struct xilinx_dma_device *xdev,
|
|
struct device_node *node, int chan_id)
|
|
{
|
|
struct xilinx_dma_chan *chan;
|
|
bool has_dre = false;
|
|
u32 value, width;
|
|
int err;
|
|
|
|
/* Allocate and initialize the channel structure */
|
|
chan = devm_kzalloc(xdev->dev, sizeof(*chan), GFP_KERNEL);
|
|
if (!chan)
|
|
return -ENOMEM;
|
|
|
|
chan->dev = xdev->dev;
|
|
chan->xdev = xdev;
|
|
chan->has_sg = xdev->has_sg;
|
|
chan->desc_pendingcount = 0x0;
|
|
chan->ext_addr = xdev->ext_addr;
|
|
/* This variable ensures that descriptors are not
|
|
* Submitted when dma engine is in progress. This variable is
|
|
* Added to avoid polling for a bit in the status register to
|
|
* Know dma state in the driver hot path.
|
|
*/
|
|
chan->idle = true;
|
|
|
|
spin_lock_init(&chan->lock);
|
|
INIT_LIST_HEAD(&chan->pending_list);
|
|
INIT_LIST_HEAD(&chan->done_list);
|
|
INIT_LIST_HEAD(&chan->active_list);
|
|
INIT_LIST_HEAD(&chan->free_seg_list);
|
|
|
|
/* Retrieve the channel properties from the device tree */
|
|
has_dre = of_property_read_bool(node, "xlnx,include-dre");
|
|
|
|
chan->genlock = of_property_read_bool(node, "xlnx,genlock-mode");
|
|
|
|
err = of_property_read_u32(node, "xlnx,datawidth", &value);
|
|
if (err) {
|
|
dev_err(xdev->dev, "missing xlnx,datawidth property\n");
|
|
return err;
|
|
}
|
|
width = value >> 3; /* Convert bits to bytes */
|
|
|
|
/* If data width is greater than 8 bytes, DRE is not in hw */
|
|
if (width > 8)
|
|
has_dre = false;
|
|
|
|
if (!has_dre)
|
|
xdev->common.copy_align = fls(width - 1);
|
|
|
|
if (of_device_is_compatible(node, "xlnx,axi-vdma-mm2s-channel") ||
|
|
of_device_is_compatible(node, "xlnx,axi-dma-mm2s-channel") ||
|
|
of_device_is_compatible(node, "xlnx,axi-cdma-channel")) {
|
|
chan->direction = DMA_MEM_TO_DEV;
|
|
chan->id = chan_id;
|
|
chan->tdest = chan_id;
|
|
|
|
chan->ctrl_offset = XILINX_DMA_MM2S_CTRL_OFFSET;
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
|
|
chan->desc_offset = XILINX_VDMA_MM2S_DESC_OFFSET;
|
|
chan->config.park = 1;
|
|
|
|
if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH ||
|
|
xdev->flush_on_fsync == XILINX_DMA_FLUSH_MM2S)
|
|
chan->flush_on_fsync = true;
|
|
}
|
|
} else if (of_device_is_compatible(node,
|
|
"xlnx,axi-vdma-s2mm-channel") ||
|
|
of_device_is_compatible(node,
|
|
"xlnx,axi-dma-s2mm-channel")) {
|
|
chan->direction = DMA_DEV_TO_MEM;
|
|
chan->id = chan_id;
|
|
chan->tdest = chan_id - xdev->nr_channels;
|
|
|
|
chan->ctrl_offset = XILINX_DMA_S2MM_CTRL_OFFSET;
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
|
|
chan->desc_offset = XILINX_VDMA_S2MM_DESC_OFFSET;
|
|
chan->config.park = 1;
|
|
|
|
if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH ||
|
|
xdev->flush_on_fsync == XILINX_DMA_FLUSH_S2MM)
|
|
chan->flush_on_fsync = true;
|
|
}
|
|
} else {
|
|
dev_err(xdev->dev, "Invalid channel compatible node\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Request the interrupt */
|
|
chan->irq = irq_of_parse_and_map(node, 0);
|
|
err = request_irq(chan->irq, xilinx_dma_irq_handler, IRQF_SHARED,
|
|
"xilinx-dma-controller", chan);
|
|
if (err) {
|
|
dev_err(xdev->dev, "unable to request IRQ %d\n", chan->irq);
|
|
return err;
|
|
}
|
|
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
|
|
chan->start_transfer = xilinx_dma_start_transfer;
|
|
chan->stop_transfer = xilinx_dma_stop_transfer;
|
|
} else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
|
|
chan->start_transfer = xilinx_cdma_start_transfer;
|
|
chan->stop_transfer = xilinx_cdma_stop_transfer;
|
|
} else {
|
|
chan->start_transfer = xilinx_vdma_start_transfer;
|
|
chan->stop_transfer = xilinx_dma_stop_transfer;
|
|
}
|
|
|
|
/* Initialize the tasklet */
|
|
tasklet_init(&chan->tasklet, xilinx_dma_do_tasklet,
|
|
(unsigned long)chan);
|
|
|
|
/*
|
|
* Initialize the DMA channel and add it to the DMA engine channels
|
|
* list.
|
|
*/
|
|
chan->common.device = &xdev->common;
|
|
|
|
list_add_tail(&chan->common.device_node, &xdev->common.channels);
|
|
xdev->chan[chan->id] = chan;
|
|
|
|
/* Reset the channel */
|
|
err = xilinx_dma_chan_reset(chan);
|
|
if (err < 0) {
|
|
dev_err(xdev->dev, "Reset channel failed\n");
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_child_probe - Per child node probe
|
|
* It get number of dma-channels per child node from
|
|
* device-tree and initializes all the channels.
|
|
*
|
|
* @xdev: Driver specific device structure
|
|
* @node: Device node
|
|
*
|
|
* Return: 0 always.
|
|
*/
|
|
static int xilinx_dma_child_probe(struct xilinx_dma_device *xdev,
|
|
struct device_node *node)
|
|
{
|
|
int ret, i, nr_channels = 1;
|
|
|
|
ret = of_property_read_u32(node, "dma-channels", &nr_channels);
|
|
if ((ret < 0) && xdev->mcdma)
|
|
dev_warn(xdev->dev, "missing dma-channels property\n");
|
|
|
|
for (i = 0; i < nr_channels; i++)
|
|
xilinx_dma_chan_probe(xdev, node, xdev->chan_id++);
|
|
|
|
xdev->nr_channels += nr_channels;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* of_dma_xilinx_xlate - Translation function
|
|
* @dma_spec: Pointer to DMA specifier as found in the device tree
|
|
* @ofdma: Pointer to DMA controller data
|
|
*
|
|
* Return: DMA channel pointer on success and NULL on error
|
|
*/
|
|
static struct dma_chan *of_dma_xilinx_xlate(struct of_phandle_args *dma_spec,
|
|
struct of_dma *ofdma)
|
|
{
|
|
struct xilinx_dma_device *xdev = ofdma->of_dma_data;
|
|
int chan_id = dma_spec->args[0];
|
|
|
|
if (chan_id >= xdev->nr_channels || !xdev->chan[chan_id])
|
|
return NULL;
|
|
|
|
return dma_get_slave_channel(&xdev->chan[chan_id]->common);
|
|
}
|
|
|
|
static const struct xilinx_dma_config axidma_config = {
|
|
.dmatype = XDMA_TYPE_AXIDMA,
|
|
.clk_init = axidma_clk_init,
|
|
};
|
|
|
|
static const struct xilinx_dma_config axicdma_config = {
|
|
.dmatype = XDMA_TYPE_CDMA,
|
|
.clk_init = axicdma_clk_init,
|
|
};
|
|
|
|
static const struct xilinx_dma_config axivdma_config = {
|
|
.dmatype = XDMA_TYPE_VDMA,
|
|
.clk_init = axivdma_clk_init,
|
|
};
|
|
|
|
static const struct of_device_id xilinx_dma_of_ids[] = {
|
|
{ .compatible = "xlnx,axi-dma-1.00.a", .data = &axidma_config },
|
|
{ .compatible = "xlnx,axi-cdma-1.00.a", .data = &axicdma_config },
|
|
{ .compatible = "xlnx,axi-vdma-1.00.a", .data = &axivdma_config },
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, xilinx_dma_of_ids);
|
|
|
|
/**
|
|
* xilinx_dma_probe - Driver probe function
|
|
* @pdev: Pointer to the platform_device structure
|
|
*
|
|
* Return: '0' on success and failure value on error
|
|
*/
|
|
static int xilinx_dma_probe(struct platform_device *pdev)
|
|
{
|
|
int (*clk_init)(struct platform_device *, struct clk **, struct clk **,
|
|
struct clk **, struct clk **, struct clk **)
|
|
= axivdma_clk_init;
|
|
struct device_node *node = pdev->dev.of_node;
|
|
struct xilinx_dma_device *xdev;
|
|
struct device_node *child, *np = pdev->dev.of_node;
|
|
struct resource *io;
|
|
u32 num_frames, addr_width;
|
|
int i, err;
|
|
|
|
/* Allocate and initialize the DMA engine structure */
|
|
xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL);
|
|
if (!xdev)
|
|
return -ENOMEM;
|
|
|
|
xdev->dev = &pdev->dev;
|
|
if (np) {
|
|
const struct of_device_id *match;
|
|
|
|
match = of_match_node(xilinx_dma_of_ids, np);
|
|
if (match && match->data) {
|
|
xdev->dma_config = match->data;
|
|
clk_init = xdev->dma_config->clk_init;
|
|
}
|
|
}
|
|
|
|
err = clk_init(pdev, &xdev->axi_clk, &xdev->tx_clk, &xdev->txs_clk,
|
|
&xdev->rx_clk, &xdev->rxs_clk);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Request and map I/O memory */
|
|
io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
xdev->regs = devm_ioremap_resource(&pdev->dev, io);
|
|
if (IS_ERR(xdev->regs))
|
|
return PTR_ERR(xdev->regs);
|
|
|
|
/* Retrieve the DMA engine properties from the device tree */
|
|
xdev->has_sg = of_property_read_bool(node, "xlnx,include-sg");
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA)
|
|
xdev->mcdma = of_property_read_bool(node, "xlnx,mcdma");
|
|
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
|
|
err = of_property_read_u32(node, "xlnx,num-fstores",
|
|
&num_frames);
|
|
if (err < 0) {
|
|
dev_err(xdev->dev,
|
|
"missing xlnx,num-fstores property\n");
|
|
return err;
|
|
}
|
|
|
|
err = of_property_read_u32(node, "xlnx,flush-fsync",
|
|
&xdev->flush_on_fsync);
|
|
if (err < 0)
|
|
dev_warn(xdev->dev,
|
|
"missing xlnx,flush-fsync property\n");
|
|
}
|
|
|
|
err = of_property_read_u32(node, "xlnx,addrwidth", &addr_width);
|
|
if (err < 0)
|
|
dev_warn(xdev->dev, "missing xlnx,addrwidth property\n");
|
|
|
|
if (addr_width > 32)
|
|
xdev->ext_addr = true;
|
|
else
|
|
xdev->ext_addr = false;
|
|
|
|
/* Set the dma mask bits */
|
|
dma_set_mask(xdev->dev, DMA_BIT_MASK(addr_width));
|
|
|
|
/* Initialize the DMA engine */
|
|
xdev->common.dev = &pdev->dev;
|
|
|
|
INIT_LIST_HEAD(&xdev->common.channels);
|
|
if (!(xdev->dma_config->dmatype == XDMA_TYPE_CDMA)) {
|
|
dma_cap_set(DMA_SLAVE, xdev->common.cap_mask);
|
|
dma_cap_set(DMA_PRIVATE, xdev->common.cap_mask);
|
|
}
|
|
|
|
xdev->common.device_alloc_chan_resources =
|
|
xilinx_dma_alloc_chan_resources;
|
|
xdev->common.device_free_chan_resources =
|
|
xilinx_dma_free_chan_resources;
|
|
xdev->common.device_terminate_all = xilinx_dma_terminate_all;
|
|
xdev->common.device_tx_status = xilinx_dma_tx_status;
|
|
xdev->common.device_issue_pending = xilinx_dma_issue_pending;
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
|
|
dma_cap_set(DMA_CYCLIC, xdev->common.cap_mask);
|
|
xdev->common.device_prep_slave_sg = xilinx_dma_prep_slave_sg;
|
|
xdev->common.device_prep_dma_cyclic =
|
|
xilinx_dma_prep_dma_cyclic;
|
|
xdev->common.device_prep_interleaved_dma =
|
|
xilinx_dma_prep_interleaved;
|
|
/* Residue calculation is supported by only AXI DMA */
|
|
xdev->common.residue_granularity =
|
|
DMA_RESIDUE_GRANULARITY_SEGMENT;
|
|
} else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
|
|
dma_cap_set(DMA_MEMCPY, xdev->common.cap_mask);
|
|
xdev->common.device_prep_dma_memcpy = xilinx_cdma_prep_memcpy;
|
|
} else {
|
|
xdev->common.device_prep_interleaved_dma =
|
|
xilinx_vdma_dma_prep_interleaved;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, xdev);
|
|
|
|
/* Initialize the channels */
|
|
for_each_child_of_node(node, child) {
|
|
err = xilinx_dma_child_probe(xdev, child);
|
|
if (err < 0)
|
|
goto disable_clks;
|
|
}
|
|
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
|
|
for (i = 0; i < xdev->nr_channels; i++)
|
|
if (xdev->chan[i])
|
|
xdev->chan[i]->num_frms = num_frames;
|
|
}
|
|
|
|
/* Register the DMA engine with the core */
|
|
dma_async_device_register(&xdev->common);
|
|
|
|
err = of_dma_controller_register(node, of_dma_xilinx_xlate,
|
|
xdev);
|
|
if (err < 0) {
|
|
dev_err(&pdev->dev, "Unable to register DMA to DT\n");
|
|
dma_async_device_unregister(&xdev->common);
|
|
goto error;
|
|
}
|
|
|
|
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA)
|
|
dev_info(&pdev->dev, "Xilinx AXI DMA Engine Driver Probed!!\n");
|
|
else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA)
|
|
dev_info(&pdev->dev, "Xilinx AXI CDMA Engine Driver Probed!!\n");
|
|
else
|
|
dev_info(&pdev->dev, "Xilinx AXI VDMA Engine Driver Probed!!\n");
|
|
|
|
return 0;
|
|
|
|
disable_clks:
|
|
xdma_disable_allclks(xdev);
|
|
error:
|
|
for (i = 0; i < xdev->nr_channels; i++)
|
|
if (xdev->chan[i])
|
|
xilinx_dma_chan_remove(xdev->chan[i]);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* xilinx_dma_remove - Driver remove function
|
|
* @pdev: Pointer to the platform_device structure
|
|
*
|
|
* Return: Always '0'
|
|
*/
|
|
static int xilinx_dma_remove(struct platform_device *pdev)
|
|
{
|
|
struct xilinx_dma_device *xdev = platform_get_drvdata(pdev);
|
|
int i;
|
|
|
|
of_dma_controller_free(pdev->dev.of_node);
|
|
|
|
dma_async_device_unregister(&xdev->common);
|
|
|
|
for (i = 0; i < xdev->nr_channels; i++)
|
|
if (xdev->chan[i])
|
|
xilinx_dma_chan_remove(xdev->chan[i]);
|
|
|
|
xdma_disable_allclks(xdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver xilinx_vdma_driver = {
|
|
.driver = {
|
|
.name = "xilinx-vdma",
|
|
.of_match_table = xilinx_dma_of_ids,
|
|
},
|
|
.probe = xilinx_dma_probe,
|
|
.remove = xilinx_dma_remove,
|
|
};
|
|
|
|
module_platform_driver(xilinx_vdma_driver);
|
|
|
|
MODULE_AUTHOR("Xilinx, Inc.");
|
|
MODULE_DESCRIPTION("Xilinx VDMA driver");
|
|
MODULE_LICENSE("GPL v2");
|