08b36dba23
The clock may also be required to read registers from the IP core (if it is provided and the driver needs to control it). So, move it earlier in the probe. Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com> Link: https://lore.kernel.org/r/20200825151950.57605-4-alexandru.ardelean@analog.com Signed-off-by: Vinod Koul <vkoul@kernel.org>
981 lines
25 KiB
C
981 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Driver for the Analog Devices AXI-DMAC core
|
|
*
|
|
* Copyright 2013-2019 Analog Devices Inc.
|
|
* Author: Lars-Peter Clausen <lars@metafoo.de>
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/err.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_dma.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fpga/adi-axi-common.h>
|
|
|
|
#include <dt-bindings/dma/axi-dmac.h>
|
|
|
|
#include "dmaengine.h"
|
|
#include "virt-dma.h"
|
|
|
|
/*
|
|
* The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
|
|
* various instantiation parameters which decided the exact feature set support
|
|
* by the core.
|
|
*
|
|
* Each channel of the core has a source interface and a destination interface.
|
|
* The number of channels and the type of the channel interfaces is selected at
|
|
* configuration time. A interface can either be a connected to a central memory
|
|
* interconnect, which allows access to system memory, or it can be connected to
|
|
* a dedicated bus which is directly connected to a data port on a peripheral.
|
|
* Given that those are configuration options of the core that are selected when
|
|
* it is instantiated this means that they can not be changed by software at
|
|
* runtime. By extension this means that each channel is uni-directional. It can
|
|
* either be device to memory or memory to device, but not both. Also since the
|
|
* device side is a dedicated data bus only connected to a single peripheral
|
|
* there is no address than can or needs to be configured for the device side.
|
|
*/
|
|
|
|
#define AXI_DMAC_REG_IRQ_MASK 0x80
|
|
#define AXI_DMAC_REG_IRQ_PENDING 0x84
|
|
#define AXI_DMAC_REG_IRQ_SOURCE 0x88
|
|
|
|
#define AXI_DMAC_REG_CTRL 0x400
|
|
#define AXI_DMAC_REG_TRANSFER_ID 0x404
|
|
#define AXI_DMAC_REG_START_TRANSFER 0x408
|
|
#define AXI_DMAC_REG_FLAGS 0x40c
|
|
#define AXI_DMAC_REG_DEST_ADDRESS 0x410
|
|
#define AXI_DMAC_REG_SRC_ADDRESS 0x414
|
|
#define AXI_DMAC_REG_X_LENGTH 0x418
|
|
#define AXI_DMAC_REG_Y_LENGTH 0x41c
|
|
#define AXI_DMAC_REG_DEST_STRIDE 0x420
|
|
#define AXI_DMAC_REG_SRC_STRIDE 0x424
|
|
#define AXI_DMAC_REG_TRANSFER_DONE 0x428
|
|
#define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
|
|
#define AXI_DMAC_REG_STATUS 0x430
|
|
#define AXI_DMAC_REG_CURRENT_SRC_ADDR 0x434
|
|
#define AXI_DMAC_REG_CURRENT_DEST_ADDR 0x438
|
|
#define AXI_DMAC_REG_PARTIAL_XFER_LEN 0x44c
|
|
#define AXI_DMAC_REG_PARTIAL_XFER_ID 0x450
|
|
|
|
#define AXI_DMAC_CTRL_ENABLE BIT(0)
|
|
#define AXI_DMAC_CTRL_PAUSE BIT(1)
|
|
|
|
#define AXI_DMAC_IRQ_SOT BIT(0)
|
|
#define AXI_DMAC_IRQ_EOT BIT(1)
|
|
|
|
#define AXI_DMAC_FLAG_CYCLIC BIT(0)
|
|
#define AXI_DMAC_FLAG_LAST BIT(1)
|
|
#define AXI_DMAC_FLAG_PARTIAL_REPORT BIT(2)
|
|
|
|
#define AXI_DMAC_FLAG_PARTIAL_XFER_DONE BIT(31)
|
|
|
|
/* The maximum ID allocated by the hardware is 31 */
|
|
#define AXI_DMAC_SG_UNUSED 32U
|
|
|
|
struct axi_dmac_sg {
|
|
dma_addr_t src_addr;
|
|
dma_addr_t dest_addr;
|
|
unsigned int x_len;
|
|
unsigned int y_len;
|
|
unsigned int dest_stride;
|
|
unsigned int src_stride;
|
|
unsigned int id;
|
|
unsigned int partial_len;
|
|
bool schedule_when_free;
|
|
};
|
|
|
|
struct axi_dmac_desc {
|
|
struct virt_dma_desc vdesc;
|
|
bool cyclic;
|
|
bool have_partial_xfer;
|
|
|
|
unsigned int num_submitted;
|
|
unsigned int num_completed;
|
|
unsigned int num_sgs;
|
|
struct axi_dmac_sg sg[];
|
|
};
|
|
|
|
struct axi_dmac_chan {
|
|
struct virt_dma_chan vchan;
|
|
|
|
struct axi_dmac_desc *next_desc;
|
|
struct list_head active_descs;
|
|
enum dma_transfer_direction direction;
|
|
|
|
unsigned int src_width;
|
|
unsigned int dest_width;
|
|
unsigned int src_type;
|
|
unsigned int dest_type;
|
|
|
|
unsigned int max_length;
|
|
unsigned int address_align_mask;
|
|
unsigned int length_align_mask;
|
|
|
|
bool hw_partial_xfer;
|
|
bool hw_cyclic;
|
|
bool hw_2d;
|
|
};
|
|
|
|
struct axi_dmac {
|
|
void __iomem *base;
|
|
int irq;
|
|
|
|
struct clk *clk;
|
|
|
|
struct dma_device dma_dev;
|
|
struct axi_dmac_chan chan;
|
|
|
|
struct device_dma_parameters dma_parms;
|
|
};
|
|
|
|
static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
|
|
{
|
|
return container_of(chan->vchan.chan.device, struct axi_dmac,
|
|
dma_dev);
|
|
}
|
|
|
|
static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
|
|
{
|
|
return container_of(c, struct axi_dmac_chan, vchan.chan);
|
|
}
|
|
|
|
static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
|
|
{
|
|
return container_of(vdesc, struct axi_dmac_desc, vdesc);
|
|
}
|
|
|
|
static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
|
|
unsigned int val)
|
|
{
|
|
writel(val, axi_dmac->base + reg);
|
|
}
|
|
|
|
static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
|
|
{
|
|
return readl(axi_dmac->base + reg);
|
|
}
|
|
|
|
static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
|
|
{
|
|
return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
|
|
}
|
|
|
|
static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
|
|
{
|
|
return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
|
|
}
|
|
|
|
static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
|
|
{
|
|
if (len == 0)
|
|
return false;
|
|
if ((len & chan->length_align_mask) != 0) /* Not aligned */
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
|
|
{
|
|
if ((addr & chan->address_align_mask) != 0) /* Not aligned */
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
|
|
{
|
|
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
|
|
struct virt_dma_desc *vdesc;
|
|
struct axi_dmac_desc *desc;
|
|
struct axi_dmac_sg *sg;
|
|
unsigned int flags = 0;
|
|
unsigned int val;
|
|
|
|
val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER);
|
|
if (val) /* Queue is full, wait for the next SOT IRQ */
|
|
return;
|
|
|
|
desc = chan->next_desc;
|
|
|
|
if (!desc) {
|
|
vdesc = vchan_next_desc(&chan->vchan);
|
|
if (!vdesc)
|
|
return;
|
|
list_move_tail(&vdesc->node, &chan->active_descs);
|
|
desc = to_axi_dmac_desc(vdesc);
|
|
}
|
|
sg = &desc->sg[desc->num_submitted];
|
|
|
|
/* Already queued in cyclic mode. Wait for it to finish */
|
|
if (sg->id != AXI_DMAC_SG_UNUSED) {
|
|
sg->schedule_when_free = true;
|
|
return;
|
|
}
|
|
|
|
desc->num_submitted++;
|
|
if (desc->num_submitted == desc->num_sgs ||
|
|
desc->have_partial_xfer) {
|
|
if (desc->cyclic)
|
|
desc->num_submitted = 0; /* Start again */
|
|
else
|
|
chan->next_desc = NULL;
|
|
flags |= AXI_DMAC_FLAG_LAST;
|
|
} else {
|
|
chan->next_desc = desc;
|
|
}
|
|
|
|
sg->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);
|
|
|
|
if (axi_dmac_dest_is_mem(chan)) {
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->dest_addr);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->dest_stride);
|
|
}
|
|
|
|
if (axi_dmac_src_is_mem(chan)) {
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->src_addr);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->src_stride);
|
|
}
|
|
|
|
/*
|
|
* If the hardware supports cyclic transfers and there is no callback to
|
|
* call and only a single segment, enable hw cyclic mode to avoid
|
|
* unnecessary interrupts.
|
|
*/
|
|
if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback &&
|
|
desc->num_sgs == 1)
|
|
flags |= AXI_DMAC_FLAG_CYCLIC;
|
|
|
|
if (chan->hw_partial_xfer)
|
|
flags |= AXI_DMAC_FLAG_PARTIAL_REPORT;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->x_len - 1);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->y_len - 1);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1);
|
|
}
|
|
|
|
static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
|
|
{
|
|
return list_first_entry_or_null(&chan->active_descs,
|
|
struct axi_dmac_desc, vdesc.node);
|
|
}
|
|
|
|
static inline unsigned int axi_dmac_total_sg_bytes(struct axi_dmac_chan *chan,
|
|
struct axi_dmac_sg *sg)
|
|
{
|
|
if (chan->hw_2d)
|
|
return sg->x_len * sg->y_len;
|
|
else
|
|
return sg->x_len;
|
|
}
|
|
|
|
static void axi_dmac_dequeue_partial_xfers(struct axi_dmac_chan *chan)
|
|
{
|
|
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
|
|
struct axi_dmac_desc *desc;
|
|
struct axi_dmac_sg *sg;
|
|
u32 xfer_done, len, id, i;
|
|
bool found_sg;
|
|
|
|
do {
|
|
len = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_LEN);
|
|
id = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_ID);
|
|
|
|
found_sg = false;
|
|
list_for_each_entry(desc, &chan->active_descs, vdesc.node) {
|
|
for (i = 0; i < desc->num_sgs; i++) {
|
|
sg = &desc->sg[i];
|
|
if (sg->id == AXI_DMAC_SG_UNUSED)
|
|
continue;
|
|
if (sg->id == id) {
|
|
desc->have_partial_xfer = true;
|
|
sg->partial_len = len;
|
|
found_sg = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found_sg)
|
|
break;
|
|
}
|
|
|
|
if (found_sg) {
|
|
dev_dbg(dmac->dma_dev.dev,
|
|
"Found partial segment id=%u, len=%u\n",
|
|
id, len);
|
|
} else {
|
|
dev_warn(dmac->dma_dev.dev,
|
|
"Not found partial segment id=%u, len=%u\n",
|
|
id, len);
|
|
}
|
|
|
|
/* Check if we have any more partial transfers */
|
|
xfer_done = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
|
|
xfer_done = !(xfer_done & AXI_DMAC_FLAG_PARTIAL_XFER_DONE);
|
|
|
|
} while (!xfer_done);
|
|
}
|
|
|
|
static void axi_dmac_compute_residue(struct axi_dmac_chan *chan,
|
|
struct axi_dmac_desc *active)
|
|
{
|
|
struct dmaengine_result *rslt = &active->vdesc.tx_result;
|
|
unsigned int start = active->num_completed - 1;
|
|
struct axi_dmac_sg *sg;
|
|
unsigned int i, total;
|
|
|
|
rslt->result = DMA_TRANS_NOERROR;
|
|
rslt->residue = 0;
|
|
|
|
/*
|
|
* We get here if the last completed segment is partial, which
|
|
* means we can compute the residue from that segment onwards
|
|
*/
|
|
for (i = start; i < active->num_sgs; i++) {
|
|
sg = &active->sg[i];
|
|
total = axi_dmac_total_sg_bytes(chan, sg);
|
|
rslt->residue += (total - sg->partial_len);
|
|
}
|
|
}
|
|
|
|
static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan,
|
|
unsigned int completed_transfers)
|
|
{
|
|
struct axi_dmac_desc *active;
|
|
struct axi_dmac_sg *sg;
|
|
bool start_next = false;
|
|
|
|
active = axi_dmac_active_desc(chan);
|
|
if (!active)
|
|
return false;
|
|
|
|
if (chan->hw_partial_xfer &&
|
|
(completed_transfers & AXI_DMAC_FLAG_PARTIAL_XFER_DONE))
|
|
axi_dmac_dequeue_partial_xfers(chan);
|
|
|
|
do {
|
|
sg = &active->sg[active->num_completed];
|
|
if (sg->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */
|
|
break;
|
|
if (!(BIT(sg->id) & completed_transfers))
|
|
break;
|
|
active->num_completed++;
|
|
sg->id = AXI_DMAC_SG_UNUSED;
|
|
if (sg->schedule_when_free) {
|
|
sg->schedule_when_free = false;
|
|
start_next = true;
|
|
}
|
|
|
|
if (sg->partial_len)
|
|
axi_dmac_compute_residue(chan, active);
|
|
|
|
if (active->cyclic)
|
|
vchan_cyclic_callback(&active->vdesc);
|
|
|
|
if (active->num_completed == active->num_sgs ||
|
|
sg->partial_len) {
|
|
if (active->cyclic) {
|
|
active->num_completed = 0; /* wrap around */
|
|
} else {
|
|
list_del(&active->vdesc.node);
|
|
vchan_cookie_complete(&active->vdesc);
|
|
active = axi_dmac_active_desc(chan);
|
|
}
|
|
}
|
|
} while (active);
|
|
|
|
return start_next;
|
|
}
|
|
|
|
static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
|
|
{
|
|
struct axi_dmac *dmac = devid;
|
|
unsigned int pending;
|
|
bool start_next = false;
|
|
|
|
pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
|
|
if (!pending)
|
|
return IRQ_NONE;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending);
|
|
|
|
spin_lock(&dmac->chan.vchan.lock);
|
|
/* One or more transfers have finished */
|
|
if (pending & AXI_DMAC_IRQ_EOT) {
|
|
unsigned int completed;
|
|
|
|
completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
|
|
start_next = axi_dmac_transfer_done(&dmac->chan, completed);
|
|
}
|
|
/* Space has become available in the descriptor queue */
|
|
if ((pending & AXI_DMAC_IRQ_SOT) || start_next)
|
|
axi_dmac_start_transfer(&dmac->chan);
|
|
spin_unlock(&dmac->chan.vchan.lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int axi_dmac_terminate_all(struct dma_chan *c)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
|
|
unsigned long flags;
|
|
LIST_HEAD(head);
|
|
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0);
|
|
chan->next_desc = NULL;
|
|
vchan_get_all_descriptors(&chan->vchan, &head);
|
|
list_splice_tail_init(&chan->active_descs, &head);
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
|
|
vchan_dma_desc_free_list(&chan->vchan, &head);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void axi_dmac_synchronize(struct dma_chan *c)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
|
|
vchan_synchronize(&chan->vchan);
|
|
}
|
|
|
|
static void axi_dmac_issue_pending(struct dma_chan *c)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
|
|
unsigned long flags;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, AXI_DMAC_CTRL_ENABLE);
|
|
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
if (vchan_issue_pending(&chan->vchan))
|
|
axi_dmac_start_transfer(chan);
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
}
|
|
|
|
static struct axi_dmac_desc *axi_dmac_alloc_desc(unsigned int num_sgs)
|
|
{
|
|
struct axi_dmac_desc *desc;
|
|
unsigned int i;
|
|
|
|
desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
for (i = 0; i < num_sgs; i++)
|
|
desc->sg[i].id = AXI_DMAC_SG_UNUSED;
|
|
|
|
desc->num_sgs = num_sgs;
|
|
|
|
return desc;
|
|
}
|
|
|
|
static struct axi_dmac_sg *axi_dmac_fill_linear_sg(struct axi_dmac_chan *chan,
|
|
enum dma_transfer_direction direction, dma_addr_t addr,
|
|
unsigned int num_periods, unsigned int period_len,
|
|
struct axi_dmac_sg *sg)
|
|
{
|
|
unsigned int num_segments, i;
|
|
unsigned int segment_size;
|
|
unsigned int len;
|
|
|
|
/* Split into multiple equally sized segments if necessary */
|
|
num_segments = DIV_ROUND_UP(period_len, chan->max_length);
|
|
segment_size = DIV_ROUND_UP(period_len, num_segments);
|
|
/* Take care of alignment */
|
|
segment_size = ((segment_size - 1) | chan->length_align_mask) + 1;
|
|
|
|
for (i = 0; i < num_periods; i++) {
|
|
len = period_len;
|
|
|
|
while (len > segment_size) {
|
|
if (direction == DMA_DEV_TO_MEM)
|
|
sg->dest_addr = addr;
|
|
else
|
|
sg->src_addr = addr;
|
|
sg->x_len = segment_size;
|
|
sg->y_len = 1;
|
|
sg++;
|
|
addr += segment_size;
|
|
len -= segment_size;
|
|
}
|
|
|
|
if (direction == DMA_DEV_TO_MEM)
|
|
sg->dest_addr = addr;
|
|
else
|
|
sg->src_addr = addr;
|
|
sg->x_len = len;
|
|
sg->y_len = 1;
|
|
sg++;
|
|
addr += len;
|
|
}
|
|
|
|
return sg;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
|
|
struct dma_chan *c, struct scatterlist *sgl,
|
|
unsigned int sg_len, enum dma_transfer_direction direction,
|
|
unsigned long flags, void *context)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
struct axi_dmac_desc *desc;
|
|
struct axi_dmac_sg *dsg;
|
|
struct scatterlist *sg;
|
|
unsigned int num_sgs;
|
|
unsigned int i;
|
|
|
|
if (direction != chan->direction)
|
|
return NULL;
|
|
|
|
num_sgs = 0;
|
|
for_each_sg(sgl, sg, sg_len, i)
|
|
num_sgs += DIV_ROUND_UP(sg_dma_len(sg), chan->max_length);
|
|
|
|
desc = axi_dmac_alloc_desc(num_sgs);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
dsg = desc->sg;
|
|
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
|
|
!axi_dmac_check_len(chan, sg_dma_len(sg))) {
|
|
kfree(desc);
|
|
return NULL;
|
|
}
|
|
|
|
dsg = axi_dmac_fill_linear_sg(chan, direction, sg_dma_address(sg), 1,
|
|
sg_dma_len(sg), dsg);
|
|
}
|
|
|
|
desc->cyclic = false;
|
|
|
|
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
|
|
struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
|
|
size_t period_len, enum dma_transfer_direction direction,
|
|
unsigned long flags)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
struct axi_dmac_desc *desc;
|
|
unsigned int num_periods, num_segments;
|
|
|
|
if (direction != chan->direction)
|
|
return NULL;
|
|
|
|
if (!axi_dmac_check_len(chan, buf_len) ||
|
|
!axi_dmac_check_addr(chan, buf_addr))
|
|
return NULL;
|
|
|
|
if (period_len == 0 || buf_len % period_len)
|
|
return NULL;
|
|
|
|
num_periods = buf_len / period_len;
|
|
num_segments = DIV_ROUND_UP(period_len, chan->max_length);
|
|
|
|
desc = axi_dmac_alloc_desc(num_periods * num_segments);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
axi_dmac_fill_linear_sg(chan, direction, buf_addr, num_periods,
|
|
period_len, desc->sg);
|
|
|
|
desc->cyclic = true;
|
|
|
|
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
|
|
struct dma_chan *c, struct dma_interleaved_template *xt,
|
|
unsigned long flags)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
struct axi_dmac_desc *desc;
|
|
size_t dst_icg, src_icg;
|
|
|
|
if (xt->frame_size != 1)
|
|
return NULL;
|
|
|
|
if (xt->dir != chan->direction)
|
|
return NULL;
|
|
|
|
if (axi_dmac_src_is_mem(chan)) {
|
|
if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start))
|
|
return NULL;
|
|
}
|
|
|
|
if (axi_dmac_dest_is_mem(chan)) {
|
|
if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start))
|
|
return NULL;
|
|
}
|
|
|
|
dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
|
|
src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
|
|
|
|
if (chan->hw_2d) {
|
|
if (!axi_dmac_check_len(chan, xt->sgl[0].size) ||
|
|
xt->numf == 0)
|
|
return NULL;
|
|
if (xt->sgl[0].size + dst_icg > chan->max_length ||
|
|
xt->sgl[0].size + src_icg > chan->max_length)
|
|
return NULL;
|
|
} else {
|
|
if (dst_icg != 0 || src_icg != 0)
|
|
return NULL;
|
|
if (chan->max_length / xt->sgl[0].size < xt->numf)
|
|
return NULL;
|
|
if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf))
|
|
return NULL;
|
|
}
|
|
|
|
desc = axi_dmac_alloc_desc(1);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
if (axi_dmac_src_is_mem(chan)) {
|
|
desc->sg[0].src_addr = xt->src_start;
|
|
desc->sg[0].src_stride = xt->sgl[0].size + src_icg;
|
|
}
|
|
|
|
if (axi_dmac_dest_is_mem(chan)) {
|
|
desc->sg[0].dest_addr = xt->dst_start;
|
|
desc->sg[0].dest_stride = xt->sgl[0].size + dst_icg;
|
|
}
|
|
|
|
if (chan->hw_2d) {
|
|
desc->sg[0].x_len = xt->sgl[0].size;
|
|
desc->sg[0].y_len = xt->numf;
|
|
} else {
|
|
desc->sg[0].x_len = xt->sgl[0].size * xt->numf;
|
|
desc->sg[0].y_len = 1;
|
|
}
|
|
|
|
if (flags & DMA_CYCLIC)
|
|
desc->cyclic = true;
|
|
|
|
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
|
|
}
|
|
|
|
static void axi_dmac_free_chan_resources(struct dma_chan *c)
|
|
{
|
|
vchan_free_chan_resources(to_virt_chan(c));
|
|
}
|
|
|
|
static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
|
|
{
|
|
kfree(container_of(vdesc, struct axi_dmac_desc, vdesc));
|
|
}
|
|
|
|
static bool axi_dmac_regmap_rdwr(struct device *dev, unsigned int reg)
|
|
{
|
|
switch (reg) {
|
|
case AXI_DMAC_REG_IRQ_MASK:
|
|
case AXI_DMAC_REG_IRQ_SOURCE:
|
|
case AXI_DMAC_REG_IRQ_PENDING:
|
|
case AXI_DMAC_REG_CTRL:
|
|
case AXI_DMAC_REG_TRANSFER_ID:
|
|
case AXI_DMAC_REG_START_TRANSFER:
|
|
case AXI_DMAC_REG_FLAGS:
|
|
case AXI_DMAC_REG_DEST_ADDRESS:
|
|
case AXI_DMAC_REG_SRC_ADDRESS:
|
|
case AXI_DMAC_REG_X_LENGTH:
|
|
case AXI_DMAC_REG_Y_LENGTH:
|
|
case AXI_DMAC_REG_DEST_STRIDE:
|
|
case AXI_DMAC_REG_SRC_STRIDE:
|
|
case AXI_DMAC_REG_TRANSFER_DONE:
|
|
case AXI_DMAC_REG_ACTIVE_TRANSFER_ID:
|
|
case AXI_DMAC_REG_STATUS:
|
|
case AXI_DMAC_REG_CURRENT_SRC_ADDR:
|
|
case AXI_DMAC_REG_CURRENT_DEST_ADDR:
|
|
case AXI_DMAC_REG_PARTIAL_XFER_LEN:
|
|
case AXI_DMAC_REG_PARTIAL_XFER_ID:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static const struct regmap_config axi_dmac_regmap_config = {
|
|
.reg_bits = 32,
|
|
.val_bits = 32,
|
|
.reg_stride = 4,
|
|
.max_register = AXI_DMAC_REG_PARTIAL_XFER_ID,
|
|
.readable_reg = axi_dmac_regmap_rdwr,
|
|
.writeable_reg = axi_dmac_regmap_rdwr,
|
|
};
|
|
|
|
/*
|
|
* The configuration stored in the devicetree matches the configuration
|
|
* parameters of the peripheral instance and allows the driver to know which
|
|
* features are implemented and how it should behave.
|
|
*/
|
|
static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
|
|
struct axi_dmac_chan *chan)
|
|
{
|
|
u32 val;
|
|
int ret;
|
|
|
|
ret = of_property_read_u32(of_chan, "reg", &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* We only support 1 channel for now */
|
|
if (val != 0)
|
|
return -EINVAL;
|
|
|
|
ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val);
|
|
if (ret)
|
|
return ret;
|
|
if (val > AXI_DMAC_BUS_TYPE_FIFO)
|
|
return -EINVAL;
|
|
chan->src_type = val;
|
|
|
|
ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val);
|
|
if (ret)
|
|
return ret;
|
|
if (val > AXI_DMAC_BUS_TYPE_FIFO)
|
|
return -EINVAL;
|
|
chan->dest_type = val;
|
|
|
|
ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val);
|
|
if (ret)
|
|
return ret;
|
|
chan->src_width = val / 8;
|
|
|
|
ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val);
|
|
if (ret)
|
|
return ret;
|
|
chan->dest_width = val / 8;
|
|
|
|
chan->address_align_mask = max(chan->dest_width, chan->src_width) - 1;
|
|
|
|
if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
|
|
chan->direction = DMA_MEM_TO_MEM;
|
|
else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
|
|
chan->direction = DMA_MEM_TO_DEV;
|
|
else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
|
|
chan->direction = DMA_DEV_TO_MEM;
|
|
else
|
|
chan->direction = DMA_DEV_TO_DEV;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int axi_dmac_detect_caps(struct axi_dmac *dmac, unsigned int version)
|
|
{
|
|
struct axi_dmac_chan *chan = &dmac->chan;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, AXI_DMAC_FLAG_CYCLIC);
|
|
if (axi_dmac_read(dmac, AXI_DMAC_REG_FLAGS) == AXI_DMAC_FLAG_CYCLIC)
|
|
chan->hw_cyclic = true;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, 1);
|
|
if (axi_dmac_read(dmac, AXI_DMAC_REG_Y_LENGTH) == 1)
|
|
chan->hw_2d = true;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0xffffffff);
|
|
chan->max_length = axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
|
|
if (chan->max_length != UINT_MAX)
|
|
chan->max_length++;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, 0xffffffff);
|
|
if (axi_dmac_read(dmac, AXI_DMAC_REG_DEST_ADDRESS) == 0 &&
|
|
chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
|
|
dev_err(dmac->dma_dev.dev,
|
|
"Destination memory-mapped interface not supported.");
|
|
return -ENODEV;
|
|
}
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, 0xffffffff);
|
|
if (axi_dmac_read(dmac, AXI_DMAC_REG_SRC_ADDRESS) == 0 &&
|
|
chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
|
|
dev_err(dmac->dma_dev.dev,
|
|
"Source memory-mapped interface not supported.");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (version >= ADI_AXI_PCORE_VER(4, 2, 'a'))
|
|
chan->hw_partial_xfer = true;
|
|
|
|
if (version >= ADI_AXI_PCORE_VER(4, 1, 'a')) {
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0x00);
|
|
chan->length_align_mask =
|
|
axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
|
|
} else {
|
|
chan->length_align_mask = chan->address_align_mask;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int axi_dmac_probe(struct platform_device *pdev)
|
|
{
|
|
struct device_node *of_channels, *of_chan;
|
|
struct dma_device *dma_dev;
|
|
struct axi_dmac *dmac;
|
|
struct resource *res;
|
|
struct regmap *regmap;
|
|
unsigned int version;
|
|
int ret;
|
|
|
|
dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
|
|
if (!dmac)
|
|
return -ENOMEM;
|
|
|
|
dmac->irq = platform_get_irq(pdev, 0);
|
|
if (dmac->irq < 0)
|
|
return dmac->irq;
|
|
if (dmac->irq == 0)
|
|
return -EINVAL;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
dmac->base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(dmac->base))
|
|
return PTR_ERR(dmac->base);
|
|
|
|
dmac->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(dmac->clk))
|
|
return PTR_ERR(dmac->clk);
|
|
|
|
ret = clk_prepare_enable(dmac->clk);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
of_channels = of_get_child_by_name(pdev->dev.of_node, "adi,channels");
|
|
if (of_channels == NULL) {
|
|
ret = -ENODEV;
|
|
goto err_clk_disable;
|
|
}
|
|
|
|
for_each_child_of_node(of_channels, of_chan) {
|
|
ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan);
|
|
if (ret) {
|
|
of_node_put(of_chan);
|
|
of_node_put(of_channels);
|
|
ret = -EINVAL;
|
|
goto err_clk_disable;
|
|
}
|
|
}
|
|
of_node_put(of_channels);
|
|
|
|
INIT_LIST_HEAD(&dmac->chan.active_descs);
|
|
|
|
pdev->dev.dma_parms = &dmac->dma_parms;
|
|
dma_set_max_seg_size(&pdev->dev, UINT_MAX);
|
|
|
|
dma_dev = &dmac->dma_dev;
|
|
dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
|
|
dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
|
|
dma_cap_set(DMA_INTERLEAVE, dma_dev->cap_mask);
|
|
dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
|
|
dma_dev->device_tx_status = dma_cookie_status;
|
|
dma_dev->device_issue_pending = axi_dmac_issue_pending;
|
|
dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
|
|
dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
|
|
dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
|
|
dma_dev->device_terminate_all = axi_dmac_terminate_all;
|
|
dma_dev->device_synchronize = axi_dmac_synchronize;
|
|
dma_dev->dev = &pdev->dev;
|
|
dma_dev->chancnt = 1;
|
|
dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
|
|
dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
|
|
dma_dev->directions = BIT(dmac->chan.direction);
|
|
dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
|
|
INIT_LIST_HEAD(&dma_dev->channels);
|
|
|
|
dmac->chan.vchan.desc_free = axi_dmac_desc_free;
|
|
vchan_init(&dmac->chan.vchan, dma_dev);
|
|
|
|
version = axi_dmac_read(dmac, ADI_AXI_REG_VERSION);
|
|
|
|
ret = axi_dmac_detect_caps(dmac, version);
|
|
if (ret)
|
|
goto err_clk_disable;
|
|
|
|
dma_dev->copy_align = (dmac->chan.address_align_mask + 1);
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, 0x00);
|
|
|
|
ret = dma_async_device_register(dma_dev);
|
|
if (ret)
|
|
goto err_clk_disable;
|
|
|
|
ret = of_dma_controller_register(pdev->dev.of_node,
|
|
of_dma_xlate_by_chan_id, dma_dev);
|
|
if (ret)
|
|
goto err_unregister_device;
|
|
|
|
ret = request_irq(dmac->irq, axi_dmac_interrupt_handler, IRQF_SHARED,
|
|
dev_name(&pdev->dev), dmac);
|
|
if (ret)
|
|
goto err_unregister_of;
|
|
|
|
platform_set_drvdata(pdev, dmac);
|
|
|
|
regmap = devm_regmap_init_mmio(&pdev->dev, dmac->base,
|
|
&axi_dmac_regmap_config);
|
|
if (IS_ERR(regmap)) {
|
|
ret = PTR_ERR(regmap);
|
|
goto err_free_irq;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_free_irq:
|
|
free_irq(dmac->irq, dmac);
|
|
err_unregister_of:
|
|
of_dma_controller_free(pdev->dev.of_node);
|
|
err_unregister_device:
|
|
dma_async_device_unregister(&dmac->dma_dev);
|
|
err_clk_disable:
|
|
clk_disable_unprepare(dmac->clk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int axi_dmac_remove(struct platform_device *pdev)
|
|
{
|
|
struct axi_dmac *dmac = platform_get_drvdata(pdev);
|
|
|
|
of_dma_controller_free(pdev->dev.of_node);
|
|
free_irq(dmac->irq, dmac);
|
|
tasklet_kill(&dmac->chan.vchan.task);
|
|
dma_async_device_unregister(&dmac->dma_dev);
|
|
clk_disable_unprepare(dmac->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id axi_dmac_of_match_table[] = {
|
|
{ .compatible = "adi,axi-dmac-1.00.a" },
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table);
|
|
|
|
static struct platform_driver axi_dmac_driver = {
|
|
.driver = {
|
|
.name = "dma-axi-dmac",
|
|
.of_match_table = axi_dmac_of_match_table,
|
|
},
|
|
.probe = axi_dmac_probe,
|
|
.remove = axi_dmac_remove,
|
|
};
|
|
module_platform_driver(axi_dmac_driver);
|
|
|
|
MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
|
|
MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
|
|
MODULE_LICENSE("GPL v2");
|