linux/net/ipv4/af_inet.c
Menglong Dong 91a760b269 net: bpf: Handle return value of BPF_CGROUP_RUN_PROG_INET{4,6}_POST_BIND()
The return value of BPF_CGROUP_RUN_PROG_INET{4,6}_POST_BIND() in
__inet_bind() is not handled properly. While the return value
is non-zero, it will set inet_saddr and inet_rcv_saddr to 0 and
exit:

	err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk);
	if (err) {
		inet->inet_saddr = inet->inet_rcv_saddr = 0;
		goto out_release_sock;
	}

Let's take UDP for example and see what will happen. For UDP
socket, it will be added to 'udp_prot.h.udp_table->hash' and
'udp_prot.h.udp_table->hash2' after the sk->sk_prot->get_port()
called success. If 'inet->inet_rcv_saddr' is specified here,
then 'sk' will be in the 'hslot2' of 'hash2' that it don't belong
to (because inet_saddr is changed to 0), and UDP packet received
will not be passed to this sock. If 'inet->inet_rcv_saddr' is not
specified here, the sock will work fine, as it can receive packet
properly, which is wired, as the 'bind()' is already failed.

To undo the get_port() operation, introduce the 'put_port' field
for 'struct proto'. For TCP proto, it is inet_put_port(); For UDP
proto, it is udp_lib_unhash(); For icmp proto, it is
ping_unhash().

Therefore, after sys_bind() fail caused by
BPF_CGROUP_RUN_PROG_INET4_POST_BIND(), it will be unbinded, which
means that it can try to be binded to another port.

Signed-off-by: Menglong Dong <imagedong@tencent.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220106132022.3470772-2-imagedong@tencent.com
2022-01-06 17:08:35 -08:00

2085 lines
51 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* PF_INET protocol family socket handler.
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Florian La Roche, <flla@stud.uni-sb.de>
* Alan Cox, <A.Cox@swansea.ac.uk>
*
* Changes (see also sock.c)
*
* piggy,
* Karl Knutson : Socket protocol table
* A.N.Kuznetsov : Socket death error in accept().
* John Richardson : Fix non blocking error in connect()
* so sockets that fail to connect
* don't return -EINPROGRESS.
* Alan Cox : Asynchronous I/O support
* Alan Cox : Keep correct socket pointer on sock
* structures
* when accept() ed
* Alan Cox : Semantics of SO_LINGER aren't state
* moved to close when you look carefully.
* With this fixed and the accept bug fixed
* some RPC stuff seems happier.
* Niibe Yutaka : 4.4BSD style write async I/O
* Alan Cox,
* Tony Gale : Fixed reuse semantics.
* Alan Cox : bind() shouldn't abort existing but dead
* sockets. Stops FTP netin:.. I hope.
* Alan Cox : bind() works correctly for RAW sockets.
* Note that FreeBSD at least was broken
* in this respect so be careful with
* compatibility tests...
* Alan Cox : routing cache support
* Alan Cox : memzero the socket structure for
* compactness.
* Matt Day : nonblock connect error handler
* Alan Cox : Allow large numbers of pending sockets
* (eg for big web sites), but only if
* specifically application requested.
* Alan Cox : New buffering throughout IP. Used
* dumbly.
* Alan Cox : New buffering now used smartly.
* Alan Cox : BSD rather than common sense
* interpretation of listen.
* Germano Caronni : Assorted small races.
* Alan Cox : sendmsg/recvmsg basic support.
* Alan Cox : Only sendmsg/recvmsg now supported.
* Alan Cox : Locked down bind (see security list).
* Alan Cox : Loosened bind a little.
* Mike McLagan : ADD/DEL DLCI Ioctls
* Willy Konynenberg : Transparent proxying support.
* David S. Miller : New socket lookup architecture.
* Some other random speedups.
* Cyrus Durgin : Cleaned up file for kmod hacks.
* Andi Kleen : Fix inet_stream_connect TCP race.
*/
#define pr_fmt(fmt) "IPv4: " fmt
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/capability.h>
#include <linux/fcntl.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/netfilter_ipv4.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/inet.h>
#include <linux/igmp.h>
#include <linux/inetdevice.h>
#include <linux/netdevice.h>
#include <net/checksum.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <net/arp.h>
#include <net/route.h>
#include <net/ip_fib.h>
#include <net/inet_connection_sock.h>
#include <net/gro.h>
#include <net/tcp.h>
#include <net/udp.h>
#include <net/udplite.h>
#include <net/ping.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <net/raw.h>
#include <net/icmp.h>
#include <net/inet_common.h>
#include <net/ip_tunnels.h>
#include <net/xfrm.h>
#include <net/net_namespace.h>
#include <net/secure_seq.h>
#ifdef CONFIG_IP_MROUTE
#include <linux/mroute.h>
#endif
#include <net/l3mdev.h>
#include <net/compat.h>
#include <trace/events/sock.h>
/* The inetsw table contains everything that inet_create needs to
* build a new socket.
*/
static struct list_head inetsw[SOCK_MAX];
static DEFINE_SPINLOCK(inetsw_lock);
/* New destruction routine */
void inet_sock_destruct(struct sock *sk)
{
struct inet_sock *inet = inet_sk(sk);
__skb_queue_purge(&sk->sk_receive_queue);
__skb_queue_purge(&sk->sk_error_queue);
sk_mem_reclaim_final(sk);
if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) {
pr_err("Attempt to release TCP socket in state %d %p\n",
sk->sk_state, sk);
return;
}
if (!sock_flag(sk, SOCK_DEAD)) {
pr_err("Attempt to release alive inet socket %p\n", sk);
return;
}
WARN_ON(atomic_read(&sk->sk_rmem_alloc));
WARN_ON(refcount_read(&sk->sk_wmem_alloc));
WARN_ON(sk->sk_wmem_queued);
WARN_ON(sk_forward_alloc_get(sk));
kfree(rcu_dereference_protected(inet->inet_opt, 1));
dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1));
dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1));
sk_refcnt_debug_dec(sk);
}
EXPORT_SYMBOL(inet_sock_destruct);
/*
* The routines beyond this point handle the behaviour of an AF_INET
* socket object. Mostly it punts to the subprotocols of IP to do
* the work.
*/
/*
* Automatically bind an unbound socket.
*/
static int inet_autobind(struct sock *sk)
{
struct inet_sock *inet;
/* We may need to bind the socket. */
lock_sock(sk);
inet = inet_sk(sk);
if (!inet->inet_num) {
if (sk->sk_prot->get_port(sk, 0)) {
release_sock(sk);
return -EAGAIN;
}
inet->inet_sport = htons(inet->inet_num);
}
release_sock(sk);
return 0;
}
/*
* Move a socket into listening state.
*/
int inet_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
unsigned char old_state;
int err, tcp_fastopen;
lock_sock(sk);
err = -EINVAL;
if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
goto out;
old_state = sk->sk_state;
if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN)))
goto out;
WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
/* Really, if the socket is already in listen state
* we can only allow the backlog to be adjusted.
*/
if (old_state != TCP_LISTEN) {
/* Enable TFO w/o requiring TCP_FASTOPEN socket option.
* Note that only TCP sockets (SOCK_STREAM) will reach here.
* Also fastopen backlog may already been set via the option
* because the socket was in TCP_LISTEN state previously but
* was shutdown() rather than close().
*/
tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen;
if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) &&
(tcp_fastopen & TFO_SERVER_ENABLE) &&
!inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) {
fastopen_queue_tune(sk, backlog);
tcp_fastopen_init_key_once(sock_net(sk));
}
err = inet_csk_listen_start(sk);
if (err)
goto out;
tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL);
}
err = 0;
out:
release_sock(sk);
return err;
}
EXPORT_SYMBOL(inet_listen);
/*
* Create an inet socket.
*/
static int inet_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct sock *sk;
struct inet_protosw *answer;
struct inet_sock *inet;
struct proto *answer_prot;
unsigned char answer_flags;
int try_loading_module = 0;
int err;
if (protocol < 0 || protocol >= IPPROTO_MAX)
return -EINVAL;
sock->state = SS_UNCONNECTED;
/* Look for the requested type/protocol pair. */
lookup_protocol:
err = -ESOCKTNOSUPPORT;
rcu_read_lock();
list_for_each_entry_rcu(answer, &inetsw[sock->type], list) {
err = 0;
/* Check the non-wild match. */
if (protocol == answer->protocol) {
if (protocol != IPPROTO_IP)
break;
} else {
/* Check for the two wild cases. */
if (IPPROTO_IP == protocol) {
protocol = answer->protocol;
break;
}
if (IPPROTO_IP == answer->protocol)
break;
}
err = -EPROTONOSUPPORT;
}
if (unlikely(err)) {
if (try_loading_module < 2) {
rcu_read_unlock();
/*
* Be more specific, e.g. net-pf-2-proto-132-type-1
* (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM)
*/
if (++try_loading_module == 1)
request_module("net-pf-%d-proto-%d-type-%d",
PF_INET, protocol, sock->type);
/*
* Fall back to generic, e.g. net-pf-2-proto-132
* (net-pf-PF_INET-proto-IPPROTO_SCTP)
*/
else
request_module("net-pf-%d-proto-%d",
PF_INET, protocol);
goto lookup_protocol;
} else
goto out_rcu_unlock;
}
err = -EPERM;
if (sock->type == SOCK_RAW && !kern &&
!ns_capable(net->user_ns, CAP_NET_RAW))
goto out_rcu_unlock;
sock->ops = answer->ops;
answer_prot = answer->prot;
answer_flags = answer->flags;
rcu_read_unlock();
WARN_ON(!answer_prot->slab);
err = -ENOMEM;
sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern);
if (!sk)
goto out;
err = 0;
if (INET_PROTOSW_REUSE & answer_flags)
sk->sk_reuse = SK_CAN_REUSE;
inet = inet_sk(sk);
inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0;
inet->nodefrag = 0;
if (SOCK_RAW == sock->type) {
inet->inet_num = protocol;
if (IPPROTO_RAW == protocol)
inet->hdrincl = 1;
}
if (net->ipv4.sysctl_ip_no_pmtu_disc)
inet->pmtudisc = IP_PMTUDISC_DONT;
else
inet->pmtudisc = IP_PMTUDISC_WANT;
inet->inet_id = 0;
sock_init_data(sock, sk);
sk->sk_destruct = inet_sock_destruct;
sk->sk_protocol = protocol;
sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
inet->uc_ttl = -1;
inet->mc_loop = 1;
inet->mc_ttl = 1;
inet->mc_all = 1;
inet->mc_index = 0;
inet->mc_list = NULL;
inet->rcv_tos = 0;
sk_refcnt_debug_inc(sk);
if (inet->inet_num) {
/* It assumes that any protocol which allows
* the user to assign a number at socket
* creation time automatically
* shares.
*/
inet->inet_sport = htons(inet->inet_num);
/* Add to protocol hash chains. */
err = sk->sk_prot->hash(sk);
if (err) {
sk_common_release(sk);
goto out;
}
}
if (sk->sk_prot->init) {
err = sk->sk_prot->init(sk);
if (err) {
sk_common_release(sk);
goto out;
}
}
if (!kern) {
err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk);
if (err) {
sk_common_release(sk);
goto out;
}
}
out:
return err;
out_rcu_unlock:
rcu_read_unlock();
goto out;
}
/*
* The peer socket should always be NULL (or else). When we call this
* function we are destroying the object and from then on nobody
* should refer to it.
*/
int inet_release(struct socket *sock)
{
struct sock *sk = sock->sk;
if (sk) {
long timeout;
if (!sk->sk_kern_sock)
BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk);
/* Applications forget to leave groups before exiting */
ip_mc_drop_socket(sk);
/* If linger is set, we don't return until the close
* is complete. Otherwise we return immediately. The
* actually closing is done the same either way.
*
* If the close is due to the process exiting, we never
* linger..
*/
timeout = 0;
if (sock_flag(sk, SOCK_LINGER) &&
!(current->flags & PF_EXITING))
timeout = sk->sk_lingertime;
sk->sk_prot->close(sk, timeout);
sock->sk = NULL;
}
return 0;
}
EXPORT_SYMBOL(inet_release);
int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
{
struct sock *sk = sock->sk;
u32 flags = BIND_WITH_LOCK;
int err;
/* If the socket has its own bind function then use it. (RAW) */
if (sk->sk_prot->bind) {
return sk->sk_prot->bind(sk, uaddr, addr_len);
}
if (addr_len < sizeof(struct sockaddr_in))
return -EINVAL;
/* BPF prog is run before any checks are done so that if the prog
* changes context in a wrong way it will be caught.
*/
err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr,
CGROUP_INET4_BIND, &flags);
if (err)
return err;
return __inet_bind(sk, uaddr, addr_len, flags);
}
EXPORT_SYMBOL(inet_bind);
int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len,
u32 flags)
{
struct sockaddr_in *addr = (struct sockaddr_in *)uaddr;
struct inet_sock *inet = inet_sk(sk);
struct net *net = sock_net(sk);
unsigned short snum;
int chk_addr_ret;
u32 tb_id = RT_TABLE_LOCAL;
int err;
if (addr->sin_family != AF_INET) {
/* Compatibility games : accept AF_UNSPEC (mapped to AF_INET)
* only if s_addr is INADDR_ANY.
*/
err = -EAFNOSUPPORT;
if (addr->sin_family != AF_UNSPEC ||
addr->sin_addr.s_addr != htonl(INADDR_ANY))
goto out;
}
tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id;
chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id);
/* Not specified by any standard per-se, however it breaks too
* many applications when removed. It is unfortunate since
* allowing applications to make a non-local bind solves
* several problems with systems using dynamic addressing.
* (ie. your servers still start up even if your ISDN link
* is temporarily down)
*/
err = -EADDRNOTAVAIL;
if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr,
chk_addr_ret))
goto out;
snum = ntohs(addr->sin_port);
err = -EACCES;
if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) &&
snum && inet_port_requires_bind_service(net, snum) &&
!ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
goto out;
/* We keep a pair of addresses. rcv_saddr is the one
* used by hash lookups, and saddr is used for transmit.
*
* In the BSD API these are the same except where it
* would be illegal to use them (multicast/broadcast) in
* which case the sending device address is used.
*/
if (flags & BIND_WITH_LOCK)
lock_sock(sk);
/* Check these errors (active socket, double bind). */
err = -EINVAL;
if (sk->sk_state != TCP_CLOSE || inet->inet_num)
goto out_release_sock;
inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr;
if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST)
inet->inet_saddr = 0; /* Use device */
/* Make sure we are allowed to bind here. */
if (snum || !(inet->bind_address_no_port ||
(flags & BIND_FORCE_ADDRESS_NO_PORT))) {
if (sk->sk_prot->get_port(sk, snum)) {
inet->inet_saddr = inet->inet_rcv_saddr = 0;
err = -EADDRINUSE;
goto out_release_sock;
}
if (!(flags & BIND_FROM_BPF)) {
err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk);
if (err) {
inet->inet_saddr = inet->inet_rcv_saddr = 0;
if (sk->sk_prot->put_port)
sk->sk_prot->put_port(sk);
goto out_release_sock;
}
}
}
if (inet->inet_rcv_saddr)
sk->sk_userlocks |= SOCK_BINDADDR_LOCK;
if (snum)
sk->sk_userlocks |= SOCK_BINDPORT_LOCK;
inet->inet_sport = htons(inet->inet_num);
inet->inet_daddr = 0;
inet->inet_dport = 0;
sk_dst_reset(sk);
err = 0;
out_release_sock:
if (flags & BIND_WITH_LOCK)
release_sock(sk);
out:
return err;
}
int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr,
int addr_len, int flags)
{
struct sock *sk = sock->sk;
int err;
if (addr_len < sizeof(uaddr->sa_family))
return -EINVAL;
if (uaddr->sa_family == AF_UNSPEC)
return sk->sk_prot->disconnect(sk, flags);
if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) {
err = sk->sk_prot->pre_connect(sk, uaddr, addr_len);
if (err)
return err;
}
if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk))
return -EAGAIN;
return sk->sk_prot->connect(sk, uaddr, addr_len);
}
EXPORT_SYMBOL(inet_dgram_connect);
static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias)
{
DEFINE_WAIT_FUNC(wait, woken_wake_function);
add_wait_queue(sk_sleep(sk), &wait);
sk->sk_write_pending += writebias;
/* Basic assumption: if someone sets sk->sk_err, he _must_
* change state of the socket from TCP_SYN_*.
* Connect() does not allow to get error notifications
* without closing the socket.
*/
while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
release_sock(sk);
timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo);
lock_sock(sk);
if (signal_pending(current) || !timeo)
break;
}
remove_wait_queue(sk_sleep(sk), &wait);
sk->sk_write_pending -= writebias;
return timeo;
}
/*
* Connect to a remote host. There is regrettably still a little
* TCP 'magic' in here.
*/
int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
int addr_len, int flags, int is_sendmsg)
{
struct sock *sk = sock->sk;
int err;
long timeo;
/*
* uaddr can be NULL and addr_len can be 0 if:
* sk is a TCP fastopen active socket and
* TCP_FASTOPEN_CONNECT sockopt is set and
* we already have a valid cookie for this socket.
* In this case, user can call write() after connect().
* write() will invoke tcp_sendmsg_fastopen() which calls
* __inet_stream_connect().
*/
if (uaddr) {
if (addr_len < sizeof(uaddr->sa_family))
return -EINVAL;
if (uaddr->sa_family == AF_UNSPEC) {
err = sk->sk_prot->disconnect(sk, flags);
sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
goto out;
}
}
switch (sock->state) {
default:
err = -EINVAL;
goto out;
case SS_CONNECTED:
err = -EISCONN;
goto out;
case SS_CONNECTING:
if (inet_sk(sk)->defer_connect)
err = is_sendmsg ? -EINPROGRESS : -EISCONN;
else
err = -EALREADY;
/* Fall out of switch with err, set for this state */
break;
case SS_UNCONNECTED:
err = -EISCONN;
if (sk->sk_state != TCP_CLOSE)
goto out;
if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) {
err = sk->sk_prot->pre_connect(sk, uaddr, addr_len);
if (err)
goto out;
}
err = sk->sk_prot->connect(sk, uaddr, addr_len);
if (err < 0)
goto out;
sock->state = SS_CONNECTING;
if (!err && inet_sk(sk)->defer_connect)
goto out;
/* Just entered SS_CONNECTING state; the only
* difference is that return value in non-blocking
* case is EINPROGRESS, rather than EALREADY.
*/
err = -EINPROGRESS;
break;
}
timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
int writebias = (sk->sk_protocol == IPPROTO_TCP) &&
tcp_sk(sk)->fastopen_req &&
tcp_sk(sk)->fastopen_req->data ? 1 : 0;
/* Error code is set above */
if (!timeo || !inet_wait_for_connect(sk, timeo, writebias))
goto out;
err = sock_intr_errno(timeo);
if (signal_pending(current))
goto out;
}
/* Connection was closed by RST, timeout, ICMP error
* or another process disconnected us.
*/
if (sk->sk_state == TCP_CLOSE)
goto sock_error;
/* sk->sk_err may be not zero now, if RECVERR was ordered by user
* and error was received after socket entered established state.
* Hence, it is handled normally after connect() return successfully.
*/
sock->state = SS_CONNECTED;
err = 0;
out:
return err;
sock_error:
err = sock_error(sk) ? : -ECONNABORTED;
sock->state = SS_UNCONNECTED;
if (sk->sk_prot->disconnect(sk, flags))
sock->state = SS_DISCONNECTING;
goto out;
}
EXPORT_SYMBOL(__inet_stream_connect);
int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
int addr_len, int flags)
{
int err;
lock_sock(sock->sk);
err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0);
release_sock(sock->sk);
return err;
}
EXPORT_SYMBOL(inet_stream_connect);
/*
* Accept a pending connection. The TCP layer now gives BSD semantics.
*/
int inet_accept(struct socket *sock, struct socket *newsock, int flags,
bool kern)
{
struct sock *sk1 = sock->sk;
int err = -EINVAL;
struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err, kern);
if (!sk2)
goto do_err;
lock_sock(sk2);
sock_rps_record_flow(sk2);
WARN_ON(!((1 << sk2->sk_state) &
(TCPF_ESTABLISHED | TCPF_SYN_RECV |
TCPF_CLOSE_WAIT | TCPF_CLOSE)));
sock_graft(sk2, newsock);
newsock->state = SS_CONNECTED;
err = 0;
release_sock(sk2);
do_err:
return err;
}
EXPORT_SYMBOL(inet_accept);
/*
* This does both peername and sockname.
*/
int inet_getname(struct socket *sock, struct sockaddr *uaddr,
int peer)
{
struct sock *sk = sock->sk;
struct inet_sock *inet = inet_sk(sk);
DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr);
sin->sin_family = AF_INET;
lock_sock(sk);
if (peer) {
if (!inet->inet_dport ||
(((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) &&
peer == 1)) {
release_sock(sk);
return -ENOTCONN;
}
sin->sin_port = inet->inet_dport;
sin->sin_addr.s_addr = inet->inet_daddr;
BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin,
CGROUP_INET4_GETPEERNAME);
} else {
__be32 addr = inet->inet_rcv_saddr;
if (!addr)
addr = inet->inet_saddr;
sin->sin_port = inet->inet_sport;
sin->sin_addr.s_addr = addr;
BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin,
CGROUP_INET4_GETSOCKNAME);
}
release_sock(sk);
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
return sizeof(*sin);
}
EXPORT_SYMBOL(inet_getname);
int inet_send_prepare(struct sock *sk)
{
sock_rps_record_flow(sk);
/* We may need to bind the socket. */
if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind &&
inet_autobind(sk))
return -EAGAIN;
return 0;
}
EXPORT_SYMBOL_GPL(inet_send_prepare);
int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
{
struct sock *sk = sock->sk;
if (unlikely(inet_send_prepare(sk)))
return -EAGAIN;
return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg,
sk, msg, size);
}
EXPORT_SYMBOL(inet_sendmsg);
ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset,
size_t size, int flags)
{
struct sock *sk = sock->sk;
if (unlikely(inet_send_prepare(sk)))
return -EAGAIN;
if (sk->sk_prot->sendpage)
return sk->sk_prot->sendpage(sk, page, offset, size, flags);
return sock_no_sendpage(sock, page, offset, size, flags);
}
EXPORT_SYMBOL(inet_sendpage);
INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *,
size_t, int, int, int *));
int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
int flags)
{
struct sock *sk = sock->sk;
int addr_len = 0;
int err;
if (likely(!(flags & MSG_ERRQUEUE)))
sock_rps_record_flow(sk);
err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg,
sk, msg, size, flags & MSG_DONTWAIT,
flags & ~MSG_DONTWAIT, &addr_len);
if (err >= 0)
msg->msg_namelen = addr_len;
return err;
}
EXPORT_SYMBOL(inet_recvmsg);
int inet_shutdown(struct socket *sock, int how)
{
struct sock *sk = sock->sk;
int err = 0;
/* This should really check to make sure
* the socket is a TCP socket. (WHY AC...)
*/
how++; /* maps 0->1 has the advantage of making bit 1 rcvs and
1->2 bit 2 snds.
2->3 */
if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */
return -EINVAL;
lock_sock(sk);
if (sock->state == SS_CONNECTING) {
if ((1 << sk->sk_state) &
(TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))
sock->state = SS_DISCONNECTING;
else
sock->state = SS_CONNECTED;
}
switch (sk->sk_state) {
case TCP_CLOSE:
err = -ENOTCONN;
/* Hack to wake up other listeners, who can poll for
EPOLLHUP, even on eg. unconnected UDP sockets -- RR */
fallthrough;
default:
sk->sk_shutdown |= how;
if (sk->sk_prot->shutdown)
sk->sk_prot->shutdown(sk, how);
break;
/* Remaining two branches are temporary solution for missing
* close() in multithreaded environment. It is _not_ a good idea,
* but we have no choice until close() is repaired at VFS level.
*/
case TCP_LISTEN:
if (!(how & RCV_SHUTDOWN))
break;
fallthrough;
case TCP_SYN_SENT:
err = sk->sk_prot->disconnect(sk, O_NONBLOCK);
sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
break;
}
/* Wake up anyone sleeping in poll. */
sk->sk_state_change(sk);
release_sock(sk);
return err;
}
EXPORT_SYMBOL(inet_shutdown);
/*
* ioctl() calls you can issue on an INET socket. Most of these are
* device configuration and stuff and very rarely used. Some ioctls
* pass on to the socket itself.
*
* NOTE: I like the idea of a module for the config stuff. ie ifconfig
* loads the devconfigure module does its configuring and unloads it.
* There's a good 20K of config code hanging around the kernel.
*/
int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
struct sock *sk = sock->sk;
int err = 0;
struct net *net = sock_net(sk);
void __user *p = (void __user *)arg;
struct ifreq ifr;
struct rtentry rt;
switch (cmd) {
case SIOCADDRT:
case SIOCDELRT:
if (copy_from_user(&rt, p, sizeof(struct rtentry)))
return -EFAULT;
err = ip_rt_ioctl(net, cmd, &rt);
break;
case SIOCRTMSG:
err = -EINVAL;
break;
case SIOCDARP:
case SIOCGARP:
case SIOCSARP:
err = arp_ioctl(net, cmd, (void __user *)arg);
break;
case SIOCGIFADDR:
case SIOCGIFBRDADDR:
case SIOCGIFNETMASK:
case SIOCGIFDSTADDR:
case SIOCGIFPFLAGS:
if (get_user_ifreq(&ifr, NULL, p))
return -EFAULT;
err = devinet_ioctl(net, cmd, &ifr);
if (!err && put_user_ifreq(&ifr, p))
err = -EFAULT;
break;
case SIOCSIFADDR:
case SIOCSIFBRDADDR:
case SIOCSIFNETMASK:
case SIOCSIFDSTADDR:
case SIOCSIFPFLAGS:
case SIOCSIFFLAGS:
if (get_user_ifreq(&ifr, NULL, p))
return -EFAULT;
err = devinet_ioctl(net, cmd, &ifr);
break;
default:
if (sk->sk_prot->ioctl)
err = sk->sk_prot->ioctl(sk, cmd, arg);
else
err = -ENOIOCTLCMD;
break;
}
return err;
}
EXPORT_SYMBOL(inet_ioctl);
#ifdef CONFIG_COMPAT
static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd,
struct compat_rtentry __user *ur)
{
compat_uptr_t rtdev;
struct rtentry rt;
if (copy_from_user(&rt.rt_dst, &ur->rt_dst,
3 * sizeof(struct sockaddr)) ||
get_user(rt.rt_flags, &ur->rt_flags) ||
get_user(rt.rt_metric, &ur->rt_metric) ||
get_user(rt.rt_mtu, &ur->rt_mtu) ||
get_user(rt.rt_window, &ur->rt_window) ||
get_user(rt.rt_irtt, &ur->rt_irtt) ||
get_user(rtdev, &ur->rt_dev))
return -EFAULT;
rt.rt_dev = compat_ptr(rtdev);
return ip_rt_ioctl(sock_net(sk), cmd, &rt);
}
static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
void __user *argp = compat_ptr(arg);
struct sock *sk = sock->sk;
switch (cmd) {
case SIOCADDRT:
case SIOCDELRT:
return inet_compat_routing_ioctl(sk, cmd, argp);
default:
if (!sk->sk_prot->compat_ioctl)
return -ENOIOCTLCMD;
return sk->sk_prot->compat_ioctl(sk, cmd, arg);
}
}
#endif /* CONFIG_COMPAT */
const struct proto_ops inet_stream_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release,
.bind = inet_bind,
.connect = inet_stream_connect,
.socketpair = sock_no_socketpair,
.accept = inet_accept,
.getname = inet_getname,
.poll = tcp_poll,
.ioctl = inet_ioctl,
.gettstamp = sock_gettstamp,
.listen = inet_listen,
.shutdown = inet_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
.recvmsg = inet_recvmsg,
#ifdef CONFIG_MMU
.mmap = tcp_mmap,
#endif
.sendpage = inet_sendpage,
.splice_read = tcp_splice_read,
.read_sock = tcp_read_sock,
.sendmsg_locked = tcp_sendmsg_locked,
.sendpage_locked = tcp_sendpage_locked,
.peek_len = tcp_peek_len,
#ifdef CONFIG_COMPAT
.compat_ioctl = inet_compat_ioctl,
#endif
.set_rcvlowat = tcp_set_rcvlowat,
};
EXPORT_SYMBOL(inet_stream_ops);
const struct proto_ops inet_dgram_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release,
.bind = inet_bind,
.connect = inet_dgram_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = inet_getname,
.poll = udp_poll,
.ioctl = inet_ioctl,
.gettstamp = sock_gettstamp,
.listen = sock_no_listen,
.shutdown = inet_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
.read_sock = udp_read_sock,
.recvmsg = inet_recvmsg,
.mmap = sock_no_mmap,
.sendpage = inet_sendpage,
.set_peek_off = sk_set_peek_off,
#ifdef CONFIG_COMPAT
.compat_ioctl = inet_compat_ioctl,
#endif
};
EXPORT_SYMBOL(inet_dgram_ops);
/*
* For SOCK_RAW sockets; should be the same as inet_dgram_ops but without
* udp_poll
*/
static const struct proto_ops inet_sockraw_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release,
.bind = inet_bind,
.connect = inet_dgram_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = inet_getname,
.poll = datagram_poll,
.ioctl = inet_ioctl,
.gettstamp = sock_gettstamp,
.listen = sock_no_listen,
.shutdown = inet_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
.recvmsg = inet_recvmsg,
.mmap = sock_no_mmap,
.sendpage = inet_sendpage,
#ifdef CONFIG_COMPAT
.compat_ioctl = inet_compat_ioctl,
#endif
};
static const struct net_proto_family inet_family_ops = {
.family = PF_INET,
.create = inet_create,
.owner = THIS_MODULE,
};
/* Upon startup we insert all the elements in inetsw_array[] into
* the linked list inetsw.
*/
static struct inet_protosw inetsw_array[] =
{
{
.type = SOCK_STREAM,
.protocol = IPPROTO_TCP,
.prot = &tcp_prot,
.ops = &inet_stream_ops,
.flags = INET_PROTOSW_PERMANENT |
INET_PROTOSW_ICSK,
},
{
.type = SOCK_DGRAM,
.protocol = IPPROTO_UDP,
.prot = &udp_prot,
.ops = &inet_dgram_ops,
.flags = INET_PROTOSW_PERMANENT,
},
{
.type = SOCK_DGRAM,
.protocol = IPPROTO_ICMP,
.prot = &ping_prot,
.ops = &inet_sockraw_ops,
.flags = INET_PROTOSW_REUSE,
},
{
.type = SOCK_RAW,
.protocol = IPPROTO_IP, /* wild card */
.prot = &raw_prot,
.ops = &inet_sockraw_ops,
.flags = INET_PROTOSW_REUSE,
}
};
#define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array)
void inet_register_protosw(struct inet_protosw *p)
{
struct list_head *lh;
struct inet_protosw *answer;
int protocol = p->protocol;
struct list_head *last_perm;
spin_lock_bh(&inetsw_lock);
if (p->type >= SOCK_MAX)
goto out_illegal;
/* If we are trying to override a permanent protocol, bail. */
last_perm = &inetsw[p->type];
list_for_each(lh, &inetsw[p->type]) {
answer = list_entry(lh, struct inet_protosw, list);
/* Check only the non-wild match. */
if ((INET_PROTOSW_PERMANENT & answer->flags) == 0)
break;
if (protocol == answer->protocol)
goto out_permanent;
last_perm = lh;
}
/* Add the new entry after the last permanent entry if any, so that
* the new entry does not override a permanent entry when matched with
* a wild-card protocol. But it is allowed to override any existing
* non-permanent entry. This means that when we remove this entry, the
* system automatically returns to the old behavior.
*/
list_add_rcu(&p->list, last_perm);
out:
spin_unlock_bh(&inetsw_lock);
return;
out_permanent:
pr_err("Attempt to override permanent protocol %d\n", protocol);
goto out;
out_illegal:
pr_err("Ignoring attempt to register invalid socket type %d\n",
p->type);
goto out;
}
EXPORT_SYMBOL(inet_register_protosw);
void inet_unregister_protosw(struct inet_protosw *p)
{
if (INET_PROTOSW_PERMANENT & p->flags) {
pr_err("Attempt to unregister permanent protocol %d\n",
p->protocol);
} else {
spin_lock_bh(&inetsw_lock);
list_del_rcu(&p->list);
spin_unlock_bh(&inetsw_lock);
synchronize_net();
}
}
EXPORT_SYMBOL(inet_unregister_protosw);
static int inet_sk_reselect_saddr(struct sock *sk)
{
struct inet_sock *inet = inet_sk(sk);
__be32 old_saddr = inet->inet_saddr;
__be32 daddr = inet->inet_daddr;
struct flowi4 *fl4;
struct rtable *rt;
__be32 new_saddr;
struct ip_options_rcu *inet_opt;
inet_opt = rcu_dereference_protected(inet->inet_opt,
lockdep_sock_is_held(sk));
if (inet_opt && inet_opt->opt.srr)
daddr = inet_opt->opt.faddr;
/* Query new route. */
fl4 = &inet->cork.fl.u.ip4;
rt = ip_route_connect(fl4, daddr, 0, RT_CONN_FLAGS(sk),
sk->sk_bound_dev_if, sk->sk_protocol,
inet->inet_sport, inet->inet_dport, sk);
if (IS_ERR(rt))
return PTR_ERR(rt);
sk_setup_caps(sk, &rt->dst);
new_saddr = fl4->saddr;
if (new_saddr == old_saddr)
return 0;
if (sock_net(sk)->ipv4.sysctl_ip_dynaddr > 1) {
pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n",
__func__, &old_saddr, &new_saddr);
}
inet->inet_saddr = inet->inet_rcv_saddr = new_saddr;
/*
* XXX The only one ugly spot where we need to
* XXX really change the sockets identity after
* XXX it has entered the hashes. -DaveM
*
* Besides that, it does not check for connection
* uniqueness. Wait for troubles.
*/
return __sk_prot_rehash(sk);
}
int inet_sk_rebuild_header(struct sock *sk)
{
struct inet_sock *inet = inet_sk(sk);
struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0);
__be32 daddr;
struct ip_options_rcu *inet_opt;
struct flowi4 *fl4;
int err;
/* Route is OK, nothing to do. */
if (rt)
return 0;
/* Reroute. */
rcu_read_lock();
inet_opt = rcu_dereference(inet->inet_opt);
daddr = inet->inet_daddr;
if (inet_opt && inet_opt->opt.srr)
daddr = inet_opt->opt.faddr;
rcu_read_unlock();
fl4 = &inet->cork.fl.u.ip4;
rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr,
inet->inet_dport, inet->inet_sport,
sk->sk_protocol, RT_CONN_FLAGS(sk),
sk->sk_bound_dev_if);
if (!IS_ERR(rt)) {
err = 0;
sk_setup_caps(sk, &rt->dst);
} else {
err = PTR_ERR(rt);
/* Routing failed... */
sk->sk_route_caps = 0;
/*
* Other protocols have to map its equivalent state to TCP_SYN_SENT.
* DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme
*/
if (!sock_net(sk)->ipv4.sysctl_ip_dynaddr ||
sk->sk_state != TCP_SYN_SENT ||
(sk->sk_userlocks & SOCK_BINDADDR_LOCK) ||
(err = inet_sk_reselect_saddr(sk)) != 0)
sk->sk_err_soft = -err;
}
return err;
}
EXPORT_SYMBOL(inet_sk_rebuild_header);
void inet_sk_set_state(struct sock *sk, int state)
{
trace_inet_sock_set_state(sk, sk->sk_state, state);
sk->sk_state = state;
}
EXPORT_SYMBOL(inet_sk_set_state);
void inet_sk_state_store(struct sock *sk, int newstate)
{
trace_inet_sock_set_state(sk, sk->sk_state, newstate);
smp_store_release(&sk->sk_state, newstate);
}
struct sk_buff *inet_gso_segment(struct sk_buff *skb,
netdev_features_t features)
{
bool udpfrag = false, fixedid = false, gso_partial, encap;
struct sk_buff *segs = ERR_PTR(-EINVAL);
const struct net_offload *ops;
unsigned int offset = 0;
struct iphdr *iph;
int proto, tot_len;
int nhoff;
int ihl;
int id;
skb_reset_network_header(skb);
nhoff = skb_network_header(skb) - skb_mac_header(skb);
if (unlikely(!pskb_may_pull(skb, sizeof(*iph))))
goto out;
iph = ip_hdr(skb);
ihl = iph->ihl * 4;
if (ihl < sizeof(*iph))
goto out;
id = ntohs(iph->id);
proto = iph->protocol;
/* Warning: after this point, iph might be no longer valid */
if (unlikely(!pskb_may_pull(skb, ihl)))
goto out;
__skb_pull(skb, ihl);
encap = SKB_GSO_CB(skb)->encap_level > 0;
if (encap)
features &= skb->dev->hw_enc_features;
SKB_GSO_CB(skb)->encap_level += ihl;
skb_reset_transport_header(skb);
segs = ERR_PTR(-EPROTONOSUPPORT);
if (!skb->encapsulation || encap) {
udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP);
fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID);
/* fixed ID is invalid if DF bit is not set */
if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF)))
goto out;
}
ops = rcu_dereference(inet_offloads[proto]);
if (likely(ops && ops->callbacks.gso_segment))
segs = ops->callbacks.gso_segment(skb, features);
if (IS_ERR_OR_NULL(segs))
goto out;
gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL);
skb = segs;
do {
iph = (struct iphdr *)(skb_mac_header(skb) + nhoff);
if (udpfrag) {
iph->frag_off = htons(offset >> 3);
if (skb->next)
iph->frag_off |= htons(IP_MF);
offset += skb->len - nhoff - ihl;
tot_len = skb->len - nhoff;
} else if (skb_is_gso(skb)) {
if (!fixedid) {
iph->id = htons(id);
id += skb_shinfo(skb)->gso_segs;
}
if (gso_partial)
tot_len = skb_shinfo(skb)->gso_size +
SKB_GSO_CB(skb)->data_offset +
skb->head - (unsigned char *)iph;
else
tot_len = skb->len - nhoff;
} else {
if (!fixedid)
iph->id = htons(id++);
tot_len = skb->len - nhoff;
}
iph->tot_len = htons(tot_len);
ip_send_check(iph);
if (encap)
skb_reset_inner_headers(skb);
skb->network_header = (u8 *)iph - skb->head;
skb_reset_mac_len(skb);
} while ((skb = skb->next));
out:
return segs;
}
static struct sk_buff *ipip_gso_segment(struct sk_buff *skb,
netdev_features_t features)
{
if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4))
return ERR_PTR(-EINVAL);
return inet_gso_segment(skb, features);
}
struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb)
{
const struct net_offload *ops;
struct sk_buff *pp = NULL;
const struct iphdr *iph;
struct sk_buff *p;
unsigned int hlen;
unsigned int off;
unsigned int id;
int flush = 1;
int proto;
off = skb_gro_offset(skb);
hlen = off + sizeof(*iph);
iph = skb_gro_header_fast(skb, off);
if (skb_gro_header_hard(skb, hlen)) {
iph = skb_gro_header_slow(skb, hlen, off);
if (unlikely(!iph))
goto out;
}
proto = iph->protocol;
ops = rcu_dereference(inet_offloads[proto]);
if (!ops || !ops->callbacks.gro_receive)
goto out;
if (*(u8 *)iph != 0x45)
goto out;
if (ip_is_fragment(iph))
goto out;
if (unlikely(ip_fast_csum((u8 *)iph, 5)))
goto out;
id = ntohl(*(__be32 *)&iph->id);
flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF));
id >>= 16;
list_for_each_entry(p, head, list) {
struct iphdr *iph2;
u16 flush_id;
if (!NAPI_GRO_CB(p)->same_flow)
continue;
iph2 = (struct iphdr *)(p->data + off);
/* The above works because, with the exception of the top
* (inner most) layer, we only aggregate pkts with the same
* hdr length so all the hdrs we'll need to verify will start
* at the same offset.
*/
if ((iph->protocol ^ iph2->protocol) |
((__force u32)iph->saddr ^ (__force u32)iph2->saddr) |
((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) {
NAPI_GRO_CB(p)->same_flow = 0;
continue;
}
/* All fields must match except length and checksum. */
NAPI_GRO_CB(p)->flush |=
(iph->ttl ^ iph2->ttl) |
(iph->tos ^ iph2->tos) |
((iph->frag_off ^ iph2->frag_off) & htons(IP_DF));
NAPI_GRO_CB(p)->flush |= flush;
/* We need to store of the IP ID check to be included later
* when we can verify that this packet does in fact belong
* to a given flow.
*/
flush_id = (u16)(id - ntohs(iph2->id));
/* This bit of code makes it much easier for us to identify
* the cases where we are doing atomic vs non-atomic IP ID
* checks. Specifically an atomic check can return IP ID
* values 0 - 0xFFFF, while a non-atomic check can only
* return 0 or 0xFFFF.
*/
if (!NAPI_GRO_CB(p)->is_atomic ||
!(iph->frag_off & htons(IP_DF))) {
flush_id ^= NAPI_GRO_CB(p)->count;
flush_id = flush_id ? 0xFFFF : 0;
}
/* If the previous IP ID value was based on an atomic
* datagram we can overwrite the value and ignore it.
*/
if (NAPI_GRO_CB(skb)->is_atomic)
NAPI_GRO_CB(p)->flush_id = flush_id;
else
NAPI_GRO_CB(p)->flush_id |= flush_id;
}
NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF));
NAPI_GRO_CB(skb)->flush |= flush;
skb_set_network_header(skb, off);
/* The above will be needed by the transport layer if there is one
* immediately following this IP hdr.
*/
/* Note : No need to call skb_gro_postpull_rcsum() here,
* as we already checked checksum over ipv4 header was 0
*/
skb_gro_pull(skb, sizeof(*iph));
skb_set_transport_header(skb, skb_gro_offset(skb));
pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive,
ops->callbacks.gro_receive, head, skb);
out:
skb_gro_flush_final(skb, pp, flush);
return pp;
}
static struct sk_buff *ipip_gro_receive(struct list_head *head,
struct sk_buff *skb)
{
if (NAPI_GRO_CB(skb)->encap_mark) {
NAPI_GRO_CB(skb)->flush = 1;
return NULL;
}
NAPI_GRO_CB(skb)->encap_mark = 1;
return inet_gro_receive(head, skb);
}
#define SECONDS_PER_DAY 86400
/* inet_current_timestamp - Return IP network timestamp
*
* Return milliseconds since midnight in network byte order.
*/
__be32 inet_current_timestamp(void)
{
u32 secs;
u32 msecs;
struct timespec64 ts;
ktime_get_real_ts64(&ts);
/* Get secs since midnight. */
(void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs);
/* Convert to msecs. */
msecs = secs * MSEC_PER_SEC;
/* Convert nsec to msec. */
msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC;
/* Convert to network byte order. */
return htonl(msecs);
}
EXPORT_SYMBOL(inet_current_timestamp);
int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len)
{
if (sk->sk_family == AF_INET)
return ip_recv_error(sk, msg, len, addr_len);
#if IS_ENABLED(CONFIG_IPV6)
if (sk->sk_family == AF_INET6)
return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len);
#endif
return -EINVAL;
}
int inet_gro_complete(struct sk_buff *skb, int nhoff)
{
__be16 newlen = htons(skb->len - nhoff);
struct iphdr *iph = (struct iphdr *)(skb->data + nhoff);
const struct net_offload *ops;
int proto = iph->protocol;
int err = -ENOSYS;
if (skb->encapsulation) {
skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP));
skb_set_inner_network_header(skb, nhoff);
}
csum_replace2(&iph->check, iph->tot_len, newlen);
iph->tot_len = newlen;
ops = rcu_dereference(inet_offloads[proto]);
if (WARN_ON(!ops || !ops->callbacks.gro_complete))
goto out;
/* Only need to add sizeof(*iph) to get to the next hdr below
* because any hdr with option will have been flushed in
* inet_gro_receive().
*/
err = INDIRECT_CALL_2(ops->callbacks.gro_complete,
tcp4_gro_complete, udp4_gro_complete,
skb, nhoff + sizeof(*iph));
out:
return err;
}
static int ipip_gro_complete(struct sk_buff *skb, int nhoff)
{
skb->encapsulation = 1;
skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4;
return inet_gro_complete(skb, nhoff);
}
int inet_ctl_sock_create(struct sock **sk, unsigned short family,
unsigned short type, unsigned char protocol,
struct net *net)
{
struct socket *sock;
int rc = sock_create_kern(net, family, type, protocol, &sock);
if (rc == 0) {
*sk = sock->sk;
(*sk)->sk_allocation = GFP_ATOMIC;
/*
* Unhash it so that IP input processing does not even see it,
* we do not wish this socket to see incoming packets.
*/
(*sk)->sk_prot->unhash(*sk);
}
return rc;
}
EXPORT_SYMBOL_GPL(inet_ctl_sock_create);
unsigned long snmp_fold_field(void __percpu *mib, int offt)
{
unsigned long res = 0;
int i;
for_each_possible_cpu(i)
res += snmp_get_cpu_field(mib, i, offt);
return res;
}
EXPORT_SYMBOL_GPL(snmp_fold_field);
#if BITS_PER_LONG==32
u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt,
size_t syncp_offset)
{
void *bhptr;
struct u64_stats_sync *syncp;
u64 v;
unsigned int start;
bhptr = per_cpu_ptr(mib, cpu);
syncp = (struct u64_stats_sync *)(bhptr + syncp_offset);
do {
start = u64_stats_fetch_begin_irq(syncp);
v = *(((u64 *)bhptr) + offt);
} while (u64_stats_fetch_retry_irq(syncp, start));
return v;
}
EXPORT_SYMBOL_GPL(snmp_get_cpu_field64);
u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset)
{
u64 res = 0;
int cpu;
for_each_possible_cpu(cpu) {
res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset);
}
return res;
}
EXPORT_SYMBOL_GPL(snmp_fold_field64);
#endif
#ifdef CONFIG_IP_MULTICAST
static const struct net_protocol igmp_protocol = {
.handler = igmp_rcv,
};
#endif
/* thinking of making this const? Don't.
* early_demux can change based on sysctl.
*/
static struct net_protocol tcp_protocol = {
.early_demux = tcp_v4_early_demux,
.early_demux_handler = tcp_v4_early_demux,
.handler = tcp_v4_rcv,
.err_handler = tcp_v4_err,
.no_policy = 1,
.icmp_strict_tag_validation = 1,
};
/* thinking of making this const? Don't.
* early_demux can change based on sysctl.
*/
static struct net_protocol udp_protocol = {
.early_demux = udp_v4_early_demux,
.early_demux_handler = udp_v4_early_demux,
.handler = udp_rcv,
.err_handler = udp_err,
.no_policy = 1,
};
static const struct net_protocol icmp_protocol = {
.handler = icmp_rcv,
.err_handler = icmp_err,
.no_policy = 1,
};
static __net_init int ipv4_mib_init_net(struct net *net)
{
int i;
net->mib.tcp_statistics = alloc_percpu(struct tcp_mib);
if (!net->mib.tcp_statistics)
goto err_tcp_mib;
net->mib.ip_statistics = alloc_percpu(struct ipstats_mib);
if (!net->mib.ip_statistics)
goto err_ip_mib;
for_each_possible_cpu(i) {
struct ipstats_mib *af_inet_stats;
af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i);
u64_stats_init(&af_inet_stats->syncp);
}
net->mib.net_statistics = alloc_percpu(struct linux_mib);
if (!net->mib.net_statistics)
goto err_net_mib;
net->mib.udp_statistics = alloc_percpu(struct udp_mib);
if (!net->mib.udp_statistics)
goto err_udp_mib;
net->mib.udplite_statistics = alloc_percpu(struct udp_mib);
if (!net->mib.udplite_statistics)
goto err_udplite_mib;
net->mib.icmp_statistics = alloc_percpu(struct icmp_mib);
if (!net->mib.icmp_statistics)
goto err_icmp_mib;
net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib),
GFP_KERNEL);
if (!net->mib.icmpmsg_statistics)
goto err_icmpmsg_mib;
tcp_mib_init(net);
return 0;
err_icmpmsg_mib:
free_percpu(net->mib.icmp_statistics);
err_icmp_mib:
free_percpu(net->mib.udplite_statistics);
err_udplite_mib:
free_percpu(net->mib.udp_statistics);
err_udp_mib:
free_percpu(net->mib.net_statistics);
err_net_mib:
free_percpu(net->mib.ip_statistics);
err_ip_mib:
free_percpu(net->mib.tcp_statistics);
err_tcp_mib:
return -ENOMEM;
}
static __net_exit void ipv4_mib_exit_net(struct net *net)
{
kfree(net->mib.icmpmsg_statistics);
free_percpu(net->mib.icmp_statistics);
free_percpu(net->mib.udplite_statistics);
free_percpu(net->mib.udp_statistics);
free_percpu(net->mib.net_statistics);
free_percpu(net->mib.ip_statistics);
free_percpu(net->mib.tcp_statistics);
#ifdef CONFIG_MPTCP
/* allocated on demand, see mptcp_init_sock() */
free_percpu(net->mib.mptcp_statistics);
#endif
}
static __net_initdata struct pernet_operations ipv4_mib_ops = {
.init = ipv4_mib_init_net,
.exit = ipv4_mib_exit_net,
};
static int __init init_ipv4_mibs(void)
{
return register_pernet_subsys(&ipv4_mib_ops);
}
static __net_init int inet_init_net(struct net *net)
{
/*
* Set defaults for local port range
*/
seqlock_init(&net->ipv4.ip_local_ports.lock);
net->ipv4.ip_local_ports.range[0] = 32768;
net->ipv4.ip_local_ports.range[1] = 60999;
seqlock_init(&net->ipv4.ping_group_range.lock);
/*
* Sane defaults - nobody may create ping sockets.
* Boot scripts should set this to distro-specific group.
*/
net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1);
net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0);
/* Default values for sysctl-controlled parameters.
* We set them here, in case sysctl is not compiled.
*/
net->ipv4.sysctl_ip_default_ttl = IPDEFTTL;
net->ipv4.sysctl_ip_fwd_update_priority = 1;
net->ipv4.sysctl_ip_dynaddr = 0;
net->ipv4.sysctl_ip_early_demux = 1;
net->ipv4.sysctl_udp_early_demux = 1;
net->ipv4.sysctl_tcp_early_demux = 1;
net->ipv4.sysctl_nexthop_compat_mode = 1;
#ifdef CONFIG_SYSCTL
net->ipv4.sysctl_ip_prot_sock = PROT_SOCK;
#endif
/* Some igmp sysctl, whose values are always used */
net->ipv4.sysctl_igmp_max_memberships = 20;
net->ipv4.sysctl_igmp_max_msf = 10;
/* IGMP reports for link-local multicast groups are enabled by default */
net->ipv4.sysctl_igmp_llm_reports = 1;
net->ipv4.sysctl_igmp_qrv = 2;
net->ipv4.sysctl_fib_notify_on_flag_change = 0;
return 0;
}
static __net_initdata struct pernet_operations af_inet_ops = {
.init = inet_init_net,
};
static int __init init_inet_pernet_ops(void)
{
return register_pernet_subsys(&af_inet_ops);
}
static int ipv4_proc_init(void);
/*
* IP protocol layer initialiser
*/
static struct packet_offload ip_packet_offload __read_mostly = {
.type = cpu_to_be16(ETH_P_IP),
.callbacks = {
.gso_segment = inet_gso_segment,
.gro_receive = inet_gro_receive,
.gro_complete = inet_gro_complete,
},
};
static const struct net_offload ipip_offload = {
.callbacks = {
.gso_segment = ipip_gso_segment,
.gro_receive = ipip_gro_receive,
.gro_complete = ipip_gro_complete,
},
};
static int __init ipip_offload_init(void)
{
return inet_add_offload(&ipip_offload, IPPROTO_IPIP);
}
static int __init ipv4_offload_init(void)
{
/*
* Add offloads
*/
if (udpv4_offload_init() < 0)
pr_crit("%s: Cannot add UDP protocol offload\n", __func__);
if (tcpv4_offload_init() < 0)
pr_crit("%s: Cannot add TCP protocol offload\n", __func__);
if (ipip_offload_init() < 0)
pr_crit("%s: Cannot add IPIP protocol offload\n", __func__);
dev_add_offload(&ip_packet_offload);
return 0;
}
fs_initcall(ipv4_offload_init);
static struct packet_type ip_packet_type __read_mostly = {
.type = cpu_to_be16(ETH_P_IP),
.func = ip_rcv,
.list_func = ip_list_rcv,
};
static int __init inet_init(void)
{
struct inet_protosw *q;
struct list_head *r;
int rc;
sock_skb_cb_check_size(sizeof(struct inet_skb_parm));
rc = proto_register(&tcp_prot, 1);
if (rc)
goto out;
rc = proto_register(&udp_prot, 1);
if (rc)
goto out_unregister_tcp_proto;
rc = proto_register(&raw_prot, 1);
if (rc)
goto out_unregister_udp_proto;
rc = proto_register(&ping_prot, 1);
if (rc)
goto out_unregister_raw_proto;
/*
* Tell SOCKET that we are alive...
*/
(void)sock_register(&inet_family_ops);
#ifdef CONFIG_SYSCTL
ip_static_sysctl_init();
#endif
/*
* Add all the base protocols.
*/
if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0)
pr_crit("%s: Cannot add ICMP protocol\n", __func__);
if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0)
pr_crit("%s: Cannot add UDP protocol\n", __func__);
if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0)
pr_crit("%s: Cannot add TCP protocol\n", __func__);
#ifdef CONFIG_IP_MULTICAST
if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0)
pr_crit("%s: Cannot add IGMP protocol\n", __func__);
#endif
/* Register the socket-side information for inet_create. */
for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r)
INIT_LIST_HEAD(r);
for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q)
inet_register_protosw(q);
/*
* Set the ARP module up
*/
arp_init();
/*
* Set the IP module up
*/
ip_init();
/* Initialise per-cpu ipv4 mibs */
if (init_ipv4_mibs())
panic("%s: Cannot init ipv4 mibs\n", __func__);
/* Setup TCP slab cache for open requests. */
tcp_init();
/* Setup UDP memory threshold */
udp_init();
/* Add UDP-Lite (RFC 3828) */
udplite4_register();
raw_init();
ping_init();
/*
* Set the ICMP layer up
*/
if (icmp_init() < 0)
panic("Failed to create the ICMP control socket.\n");
/*
* Initialise the multicast router
*/
#if defined(CONFIG_IP_MROUTE)
if (ip_mr_init())
pr_crit("%s: Cannot init ipv4 mroute\n", __func__);
#endif
if (init_inet_pernet_ops())
pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__);
ipv4_proc_init();
ipfrag_init();
dev_add_pack(&ip_packet_type);
ip_tunnel_core_init();
rc = 0;
out:
return rc;
out_unregister_raw_proto:
proto_unregister(&raw_prot);
out_unregister_udp_proto:
proto_unregister(&udp_prot);
out_unregister_tcp_proto:
proto_unregister(&tcp_prot);
goto out;
}
fs_initcall(inet_init);
/* ------------------------------------------------------------------------ */
#ifdef CONFIG_PROC_FS
static int __init ipv4_proc_init(void)
{
int rc = 0;
if (raw_proc_init())
goto out_raw;
if (tcp4_proc_init())
goto out_tcp;
if (udp4_proc_init())
goto out_udp;
if (ping_proc_init())
goto out_ping;
if (ip_misc_proc_init())
goto out_misc;
out:
return rc;
out_misc:
ping_proc_exit();
out_ping:
udp4_proc_exit();
out_udp:
tcp4_proc_exit();
out_tcp:
raw_proc_exit();
out_raw:
rc = -ENOMEM;
goto out;
}
#else /* CONFIG_PROC_FS */
static int __init ipv4_proc_init(void)
{
return 0;
}
#endif /* CONFIG_PROC_FS */