1562580e37
Assign the training power for PAPRD based on the chip. Signed-off-by: Sujith Manoharan <c_manoha@qca.qualcomm.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
1011 lines
28 KiB
C
1011 lines
28 KiB
C
/*
|
|
* Copyright (c) 2010-2011 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include "hw.h"
|
|
#include "ar9003_phy.h"
|
|
|
|
void ar9003_paprd_enable(struct ath_hw *ah, bool val)
|
|
{
|
|
struct ath9k_channel *chan = ah->curchan;
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
|
|
/*
|
|
* 3 bits for modalHeader5G.papdRateMaskHt20
|
|
* is used for sub-band disabling of PAPRD.
|
|
* 5G band is divided into 3 sub-bands -- upper,
|
|
* middle, lower.
|
|
* if bit 30 of modalHeader5G.papdRateMaskHt20 is set
|
|
* -- disable PAPRD for upper band 5GHz
|
|
* if bit 29 of modalHeader5G.papdRateMaskHt20 is set
|
|
* -- disable PAPRD for middle band 5GHz
|
|
* if bit 28 of modalHeader5G.papdRateMaskHt20 is set
|
|
* -- disable PAPRD for lower band 5GHz
|
|
*/
|
|
|
|
if (IS_CHAN_5GHZ(chan)) {
|
|
if (chan->channel >= UPPER_5G_SUB_BAND_START) {
|
|
if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
|
|
& BIT(30))
|
|
val = false;
|
|
} else if (chan->channel >= MID_5G_SUB_BAND_START) {
|
|
if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
|
|
& BIT(29))
|
|
val = false;
|
|
} else {
|
|
if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
|
|
& BIT(28))
|
|
val = false;
|
|
}
|
|
}
|
|
|
|
if (val) {
|
|
ah->paprd_table_write_done = true;
|
|
ath9k_hw_apply_txpower(ah, chan, false);
|
|
}
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0,
|
|
AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
|
|
if (ah->caps.tx_chainmask & BIT(1))
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1,
|
|
AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
|
|
if (ah->caps.tx_chainmask & BIT(2))
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2,
|
|
AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
|
|
}
|
|
EXPORT_SYMBOL(ar9003_paprd_enable);
|
|
|
|
static int ar9003_get_training_power_2g(struct ath_hw *ah)
|
|
{
|
|
struct ath9k_channel *chan = ah->curchan;
|
|
unsigned int power, scale, delta;
|
|
|
|
scale = ar9003_get_paprd_scale_factor(ah, chan);
|
|
|
|
if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
|
|
AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
|
|
power = ah->paprd_target_power + 2;
|
|
} else if (AR_SREV_9485(ah)) {
|
|
power = 25;
|
|
} else {
|
|
power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5,
|
|
AR_PHY_POWERTX_RATE5_POWERTXHT20_0);
|
|
|
|
delta = abs((int) ah->paprd_target_power - (int) power);
|
|
if (delta > scale)
|
|
return -1;
|
|
|
|
if (delta < 4)
|
|
power -= 4 - delta;
|
|
}
|
|
|
|
return power;
|
|
}
|
|
|
|
static int ar9003_get_training_power_5g(struct ath_hw *ah)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ath9k_channel *chan = ah->curchan;
|
|
unsigned int power, scale, delta;
|
|
|
|
scale = ar9003_get_paprd_scale_factor(ah, chan);
|
|
|
|
if (IS_CHAN_HT40(chan))
|
|
power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8,
|
|
AR_PHY_POWERTX_RATE8_POWERTXHT40_5);
|
|
else
|
|
power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6,
|
|
AR_PHY_POWERTX_RATE6_POWERTXHT20_5);
|
|
|
|
power += scale;
|
|
delta = abs((int) ah->paprd_target_power - (int) power);
|
|
if (delta > scale)
|
|
return -1;
|
|
|
|
switch (get_streams(ah->txchainmask)) {
|
|
case 1:
|
|
delta = 6;
|
|
break;
|
|
case 2:
|
|
delta = 4;
|
|
break;
|
|
case 3:
|
|
delta = 2;
|
|
break;
|
|
default:
|
|
delta = 0;
|
|
ath_dbg(common, CALIBRATE, "Invalid tx-chainmask: %u\n",
|
|
ah->txchainmask);
|
|
}
|
|
|
|
power += delta;
|
|
return power;
|
|
}
|
|
|
|
static int ar9003_paprd_setup_single_table(struct ath_hw *ah)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
static const u32 ctrl0[3] = {
|
|
AR_PHY_PAPRD_CTRL0_B0,
|
|
AR_PHY_PAPRD_CTRL0_B1,
|
|
AR_PHY_PAPRD_CTRL0_B2
|
|
};
|
|
static const u32 ctrl1[3] = {
|
|
AR_PHY_PAPRD_CTRL1_B0,
|
|
AR_PHY_PAPRD_CTRL1_B1,
|
|
AR_PHY_PAPRD_CTRL1_B2
|
|
};
|
|
int training_power;
|
|
int i, val;
|
|
u32 am2pm_mask = ah->paprd_ratemask;
|
|
|
|
if (IS_CHAN_2GHZ(ah->curchan))
|
|
training_power = ar9003_get_training_power_2g(ah);
|
|
else
|
|
training_power = ar9003_get_training_power_5g(ah);
|
|
|
|
ath_dbg(common, CALIBRATE, "Training power: %d, Target power: %d\n",
|
|
training_power, ah->paprd_target_power);
|
|
|
|
if (training_power < 0) {
|
|
ath_dbg(common, CALIBRATE,
|
|
"PAPRD target power delta out of range\n");
|
|
return -ERANGE;
|
|
}
|
|
ah->paprd_training_power = training_power;
|
|
|
|
if (AR_SREV_9330(ah))
|
|
am2pm_mask = 0;
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK,
|
|
ah->paprd_ratemask);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK,
|
|
am2pm_mask);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK,
|
|
ah->paprd_ratemask_ht40);
|
|
|
|
ath_dbg(common, CALIBRATE, "PAPRD HT20 mask: 0x%x, HT40 mask: 0x%x\n",
|
|
ah->paprd_ratemask, ah->paprd_ratemask_ht40);
|
|
|
|
for (i = 0; i < ah->caps.max_txchains; i++) {
|
|
REG_RMW_FIELD(ah, ctrl0[i],
|
|
AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1);
|
|
REG_RMW_FIELD(ah, ctrl1[i],
|
|
AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1);
|
|
REG_RMW_FIELD(ah, ctrl1[i],
|
|
AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1);
|
|
REG_RMW_FIELD(ah, ctrl1[i],
|
|
AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
|
|
REG_RMW_FIELD(ah, ctrl1[i],
|
|
AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181);
|
|
REG_RMW_FIELD(ah, ctrl1[i],
|
|
AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361);
|
|
REG_RMW_FIELD(ah, ctrl1[i],
|
|
AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
|
|
REG_RMW_FIELD(ah, ctrl0[i],
|
|
AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
|
|
}
|
|
|
|
ar9003_paprd_enable(ah, false);
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
|
|
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
|
|
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
|
|
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
|
|
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
|
|
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
|
|
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
|
|
AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1);
|
|
|
|
if (AR_SREV_9485(ah)) {
|
|
val = 148;
|
|
} else {
|
|
if (IS_CHAN_2GHZ(ah->curchan)) {
|
|
if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
|
|
val = 145;
|
|
else
|
|
val = 147;
|
|
} else {
|
|
val = 137;
|
|
}
|
|
}
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2,
|
|
AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, val);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1);
|
|
|
|
if (AR_SREV_9485(ah) ||
|
|
AR_SREV_9462(ah) ||
|
|
AR_SREV_9565(ah) ||
|
|
AR_SREV_9550(ah) ||
|
|
AR_SREV_9330(ah) ||
|
|
AR_SREV_9340(ah))
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, -3);
|
|
else
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, -6);
|
|
|
|
val = -10;
|
|
|
|
if (IS_CHAN_2GHZ(ah->curchan) && !AR_SREV_9462(ah) && !AR_SREV_9565(ah))
|
|
val = -15;
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE,
|
|
val);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
|
|
AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
|
|
AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
|
|
AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES,
|
|
100);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0,
|
|
AR_PHY_PAPRD_PRE_POST_SCALING, 261376);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0,
|
|
AR_PHY_PAPRD_PRE_POST_SCALING, 248079);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0,
|
|
AR_PHY_PAPRD_PRE_POST_SCALING, 233759);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0,
|
|
AR_PHY_PAPRD_PRE_POST_SCALING, 220464);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0,
|
|
AR_PHY_PAPRD_PRE_POST_SCALING, 208194);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0,
|
|
AR_PHY_PAPRD_PRE_POST_SCALING, 196949);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0,
|
|
AR_PHY_PAPRD_PRE_POST_SCALING, 185706);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0,
|
|
AR_PHY_PAPRD_PRE_POST_SCALING, 175487);
|
|
return 0;
|
|
}
|
|
|
|
static void ar9003_paprd_get_gain_table(struct ath_hw *ah)
|
|
{
|
|
u32 *entry = ah->paprd_gain_table_entries;
|
|
u8 *index = ah->paprd_gain_table_index;
|
|
u32 reg = AR_PHY_TXGAIN_TABLE;
|
|
int i;
|
|
|
|
for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
|
|
entry[i] = REG_READ(ah, reg);
|
|
index[i] = (entry[i] >> 24) & 0xff;
|
|
reg += 4;
|
|
}
|
|
}
|
|
|
|
static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain,
|
|
int target_power)
|
|
{
|
|
int olpc_gain_delta = 0, cl_gain_mod;
|
|
int alpha_therm, alpha_volt;
|
|
int therm_cal_value, volt_cal_value;
|
|
int therm_value, volt_value;
|
|
int thermal_gain_corr, voltage_gain_corr;
|
|
int desired_scale, desired_gain = 0;
|
|
u32 reg_olpc = 0, reg_cl_gain = 0;
|
|
|
|
REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
|
|
AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
|
|
desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12,
|
|
AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
|
|
alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19,
|
|
AR_PHY_TPC_19_ALPHA_THERM);
|
|
alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19,
|
|
AR_PHY_TPC_19_ALPHA_VOLT);
|
|
therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
|
|
AR_PHY_TPC_18_THERM_CAL_VALUE);
|
|
volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
|
|
AR_PHY_TPC_18_VOLT_CAL_VALUE);
|
|
therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
|
|
AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE);
|
|
volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
|
|
AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE);
|
|
|
|
switch (chain) {
|
|
case 0:
|
|
reg_olpc = AR_PHY_TPC_11_B0;
|
|
reg_cl_gain = AR_PHY_CL_TAB_0;
|
|
break;
|
|
case 1:
|
|
reg_olpc = AR_PHY_TPC_11_B1;
|
|
reg_cl_gain = AR_PHY_CL_TAB_1;
|
|
break;
|
|
case 2:
|
|
reg_olpc = AR_PHY_TPC_11_B2;
|
|
reg_cl_gain = AR_PHY_CL_TAB_2;
|
|
break;
|
|
default:
|
|
ath_dbg(ath9k_hw_common(ah), CALIBRATE,
|
|
"Invalid chainmask: %d\n", chain);
|
|
break;
|
|
}
|
|
|
|
olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc,
|
|
AR_PHY_TPC_11_OLPC_GAIN_DELTA);
|
|
cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain,
|
|
AR_PHY_CL_TAB_CL_GAIN_MOD);
|
|
|
|
if (olpc_gain_delta >= 128)
|
|
olpc_gain_delta = olpc_gain_delta - 256;
|
|
|
|
thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) +
|
|
(256 / 2)) / 256;
|
|
voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) +
|
|
(128 / 2)) / 128;
|
|
desired_gain = target_power - olpc_gain_delta - thermal_gain_corr -
|
|
voltage_gain_corr + desired_scale + cl_gain_mod;
|
|
|
|
return desired_gain;
|
|
}
|
|
|
|
static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index)
|
|
{
|
|
int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain;
|
|
int padrvgnA, padrvgnB, padrvgnC, padrvgnD;
|
|
u32 *gain_table_entries = ah->paprd_gain_table_entries;
|
|
|
|
selected_gain_entry = gain_table_entries[gain_index];
|
|
txbb1dbgain = selected_gain_entry & 0x7;
|
|
txbb6dbgain = (selected_gain_entry >> 3) & 0x3;
|
|
txmxrgain = (selected_gain_entry >> 5) & 0xf;
|
|
padrvgnA = (selected_gain_entry >> 9) & 0xf;
|
|
padrvgnB = (selected_gain_entry >> 13) & 0xf;
|
|
padrvgnC = (selected_gain_entry >> 17) & 0xf;
|
|
padrvgnD = (selected_gain_entry >> 21) & 0x3;
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain);
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain);
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain);
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA);
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB);
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC);
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD);
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0);
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
|
|
AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0);
|
|
REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
|
|
REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0);
|
|
}
|
|
|
|
static inline int find_expn(int num)
|
|
{
|
|
return fls(num) - 1;
|
|
}
|
|
|
|
static inline int find_proper_scale(int expn, int N)
|
|
{
|
|
return (expn > N) ? expn - 10 : 0;
|
|
}
|
|
|
|
#define NUM_BIN 23
|
|
|
|
static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain)
|
|
{
|
|
unsigned int thresh_accum_cnt;
|
|
int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1];
|
|
int PA_in[NUM_BIN + 1];
|
|
int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1];
|
|
unsigned int B1_abs_max, B2_abs_max;
|
|
int max_index, scale_factor;
|
|
int y_est[NUM_BIN + 1];
|
|
int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1];
|
|
unsigned int x_tilde_abs;
|
|
int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad;
|
|
int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B;
|
|
int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2;
|
|
int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem;
|
|
int y5, y3, tmp;
|
|
int theta_low_bin = 0;
|
|
int i;
|
|
|
|
/* disregard any bin that contains <= 16 samples */
|
|
thresh_accum_cnt = 16;
|
|
scale_factor = 5;
|
|
max_index = 0;
|
|
memset(theta, 0, sizeof(theta));
|
|
memset(x_est, 0, sizeof(x_est));
|
|
memset(Y, 0, sizeof(Y));
|
|
memset(y_est, 0, sizeof(y_est));
|
|
memset(x_tilde, 0, sizeof(x_tilde));
|
|
|
|
for (i = 0; i < NUM_BIN; i++) {
|
|
s32 accum_cnt, accum_tx, accum_rx, accum_ang;
|
|
|
|
/* number of samples */
|
|
accum_cnt = data_L[i] & 0xffff;
|
|
|
|
if (accum_cnt <= thresh_accum_cnt)
|
|
continue;
|
|
|
|
/* sum(tx amplitude) */
|
|
accum_tx = ((data_L[i] >> 16) & 0xffff) |
|
|
((data_U[i] & 0x7ff) << 16);
|
|
|
|
/* sum(rx amplitude distance to lower bin edge) */
|
|
accum_rx = ((data_U[i] >> 11) & 0x1f) |
|
|
((data_L[i + 23] & 0xffff) << 5);
|
|
|
|
/* sum(angles) */
|
|
accum_ang = ((data_L[i + 23] >> 16) & 0xffff) |
|
|
((data_U[i + 23] & 0x7ff) << 16);
|
|
|
|
accum_tx <<= scale_factor;
|
|
accum_rx <<= scale_factor;
|
|
x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >>
|
|
scale_factor;
|
|
|
|
Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >>
|
|
scale_factor) +
|
|
(1 << scale_factor) * max_index + 16;
|
|
|
|
if (accum_ang >= (1 << 26))
|
|
accum_ang -= 1 << 27;
|
|
|
|
theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) /
|
|
accum_cnt;
|
|
|
|
max_index++;
|
|
}
|
|
|
|
/*
|
|
* Find average theta of first 5 bin and all of those to same value.
|
|
* Curve is linear at that range.
|
|
*/
|
|
for (i = 1; i < 6; i++)
|
|
theta_low_bin += theta[i];
|
|
|
|
theta_low_bin = theta_low_bin / 5;
|
|
for (i = 1; i < 6; i++)
|
|
theta[i] = theta_low_bin;
|
|
|
|
/* Set values at origin */
|
|
theta[0] = theta_low_bin;
|
|
for (i = 0; i <= max_index; i++)
|
|
theta[i] -= theta_low_bin;
|
|
|
|
x_est[0] = 0;
|
|
Y[0] = 0;
|
|
scale_factor = 8;
|
|
|
|
/* low signal gain */
|
|
if (x_est[6] == x_est[3])
|
|
return false;
|
|
|
|
G_fxp =
|
|
(((Y[6] - Y[3]) * 1 << scale_factor) +
|
|
(x_est[6] - x_est[3])) / (x_est[6] - x_est[3]);
|
|
|
|
/* prevent division by zero */
|
|
if (G_fxp == 0)
|
|
return false;
|
|
|
|
Y_intercept =
|
|
(G_fxp * (x_est[0] - x_est[3]) +
|
|
(1 << scale_factor)) / (1 << scale_factor) + Y[3];
|
|
|
|
for (i = 0; i <= max_index; i++)
|
|
y_est[i] = Y[i] - Y_intercept;
|
|
|
|
for (i = 0; i <= 3; i++) {
|
|
y_est[i] = i * 32;
|
|
x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp;
|
|
}
|
|
|
|
if (y_est[max_index] == 0)
|
|
return false;
|
|
|
|
x_est_fxp1_nonlin =
|
|
x_est[max_index] - ((1 << scale_factor) * y_est[max_index] +
|
|
G_fxp) / G_fxp;
|
|
|
|
order_x_by_y =
|
|
(x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index];
|
|
|
|
if (order_x_by_y == 0)
|
|
M = 10;
|
|
else if (order_x_by_y == 1)
|
|
M = 9;
|
|
else
|
|
M = 8;
|
|
|
|
I = (max_index > 15) ? 7 : max_index >> 1;
|
|
L = max_index - I;
|
|
scale_factor = 8;
|
|
sum_y_sqr = 0;
|
|
sum_y_quad = 0;
|
|
x_tilde_abs = 0;
|
|
|
|
for (i = 0; i <= L; i++) {
|
|
unsigned int y_sqr;
|
|
unsigned int y_quad;
|
|
unsigned int tmp_abs;
|
|
|
|
/* prevent division by zero */
|
|
if (y_est[i + I] == 0)
|
|
return false;
|
|
|
|
x_est_fxp1_nonlin =
|
|
x_est[i + I] - ((1 << scale_factor) * y_est[i + I] +
|
|
G_fxp) / G_fxp;
|
|
|
|
x_tilde[i] =
|
|
(x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i +
|
|
I];
|
|
x_tilde[i] =
|
|
(x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
|
|
x_tilde[i] =
|
|
(x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
|
|
y_sqr =
|
|
(y_est[i + I] * y_est[i + I] +
|
|
(scale_factor * scale_factor)) / (scale_factor *
|
|
scale_factor);
|
|
tmp_abs = abs(x_tilde[i]);
|
|
if (tmp_abs > x_tilde_abs)
|
|
x_tilde_abs = tmp_abs;
|
|
|
|
y_quad = y_sqr * y_sqr;
|
|
sum_y_sqr = sum_y_sqr + y_sqr;
|
|
sum_y_quad = sum_y_quad + y_quad;
|
|
B1_tmp[i] = y_sqr * (L + 1);
|
|
B2_tmp[i] = y_sqr;
|
|
}
|
|
|
|
B1_abs_max = 0;
|
|
B2_abs_max = 0;
|
|
for (i = 0; i <= L; i++) {
|
|
int abs_val;
|
|
|
|
B1_tmp[i] -= sum_y_sqr;
|
|
B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i];
|
|
|
|
abs_val = abs(B1_tmp[i]);
|
|
if (abs_val > B1_abs_max)
|
|
B1_abs_max = abs_val;
|
|
|
|
abs_val = abs(B2_tmp[i]);
|
|
if (abs_val > B2_abs_max)
|
|
B2_abs_max = abs_val;
|
|
}
|
|
|
|
Q_x = find_proper_scale(find_expn(x_tilde_abs), 10);
|
|
Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10);
|
|
Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10);
|
|
|
|
beta_raw = 0;
|
|
alpha_raw = 0;
|
|
for (i = 0; i <= L; i++) {
|
|
x_tilde[i] = x_tilde[i] / (1 << Q_x);
|
|
B1_tmp[i] = B1_tmp[i] / (1 << Q_B1);
|
|
B2_tmp[i] = B2_tmp[i] / (1 << Q_B2);
|
|
beta_raw = beta_raw + B1_tmp[i] * x_tilde[i];
|
|
alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i];
|
|
}
|
|
|
|
scale_B =
|
|
((sum_y_quad / scale_factor) * (L + 1) -
|
|
(sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor;
|
|
|
|
Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10);
|
|
scale_B = scale_B / (1 << Q_scale_B);
|
|
if (scale_B == 0)
|
|
return false;
|
|
Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
|
|
Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
|
|
beta_raw = beta_raw / (1 << Q_beta);
|
|
alpha_raw = alpha_raw / (1 << Q_alpha);
|
|
alpha = (alpha_raw << 10) / scale_B;
|
|
beta = (beta_raw << 10) / scale_B;
|
|
order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B;
|
|
order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B;
|
|
order1_5x = order_1 / 5;
|
|
order2_3x = order_2 / 3;
|
|
order1_5x_rem = order_1 - 5 * order1_5x;
|
|
order2_3x_rem = order_2 - 3 * order2_3x;
|
|
|
|
for (i = 0; i < PAPRD_TABLE_SZ; i++) {
|
|
tmp = i * 32;
|
|
y5 = ((beta * tmp) >> 6) >> order1_5x;
|
|
y5 = (y5 * tmp) >> order1_5x;
|
|
y5 = (y5 * tmp) >> order1_5x;
|
|
y5 = (y5 * tmp) >> order1_5x;
|
|
y5 = (y5 * tmp) >> order1_5x;
|
|
y5 = y5 >> order1_5x_rem;
|
|
y3 = (alpha * tmp) >> order2_3x;
|
|
y3 = (y3 * tmp) >> order2_3x;
|
|
y3 = (y3 * tmp) >> order2_3x;
|
|
y3 = y3 >> order2_3x_rem;
|
|
PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp;
|
|
|
|
if (i >= 2) {
|
|
tmp = PA_in[i] - PA_in[i - 1];
|
|
if (tmp < 0)
|
|
PA_in[i] =
|
|
PA_in[i - 1] + (PA_in[i - 1] -
|
|
PA_in[i - 2]);
|
|
}
|
|
|
|
PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400;
|
|
}
|
|
|
|
beta_raw = 0;
|
|
alpha_raw = 0;
|
|
|
|
for (i = 0; i <= L; i++) {
|
|
int theta_tilde =
|
|
((theta[i + I] << M) + y_est[i + I]) / y_est[i + I];
|
|
theta_tilde =
|
|
((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
|
|
theta_tilde =
|
|
((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
|
|
beta_raw = beta_raw + B1_tmp[i] * theta_tilde;
|
|
alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde;
|
|
}
|
|
|
|
Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
|
|
Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
|
|
beta_raw = beta_raw / (1 << Q_beta);
|
|
alpha_raw = alpha_raw / (1 << Q_alpha);
|
|
|
|
alpha = (alpha_raw << 10) / scale_B;
|
|
beta = (beta_raw << 10) / scale_B;
|
|
order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5;
|
|
order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5;
|
|
order1_5x = order_1 / 5;
|
|
order2_3x = order_2 / 3;
|
|
order1_5x_rem = order_1 - 5 * order1_5x;
|
|
order2_3x_rem = order_2 - 3 * order2_3x;
|
|
|
|
for (i = 0; i < PAPRD_TABLE_SZ; i++) {
|
|
int PA_angle;
|
|
|
|
/* pa_table[4] is calculated from PA_angle for i=5 */
|
|
if (i == 4)
|
|
continue;
|
|
|
|
tmp = i * 32;
|
|
if (beta > 0)
|
|
y5 = (((beta * tmp - 64) >> 6) -
|
|
(1 << order1_5x)) / (1 << order1_5x);
|
|
else
|
|
y5 = ((((beta * tmp - 64) >> 6) +
|
|
(1 << order1_5x)) / (1 << order1_5x));
|
|
|
|
y5 = (y5 * tmp) / (1 << order1_5x);
|
|
y5 = (y5 * tmp) / (1 << order1_5x);
|
|
y5 = (y5 * tmp) / (1 << order1_5x);
|
|
y5 = (y5 * tmp) / (1 << order1_5x);
|
|
y5 = y5 / (1 << order1_5x_rem);
|
|
|
|
if (beta > 0)
|
|
y3 = (alpha * tmp -
|
|
(1 << order2_3x)) / (1 << order2_3x);
|
|
else
|
|
y3 = (alpha * tmp +
|
|
(1 << order2_3x)) / (1 << order2_3x);
|
|
y3 = (y3 * tmp) / (1 << order2_3x);
|
|
y3 = (y3 * tmp) / (1 << order2_3x);
|
|
y3 = y3 / (1 << order2_3x_rem);
|
|
|
|
if (i < 4) {
|
|
PA_angle = 0;
|
|
} else {
|
|
PA_angle = y5 + y3;
|
|
if (PA_angle < -150)
|
|
PA_angle = -150;
|
|
else if (PA_angle > 150)
|
|
PA_angle = 150;
|
|
}
|
|
|
|
pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff);
|
|
if (i == 5) {
|
|
PA_angle = (PA_angle + 2) >> 1;
|
|
pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) +
|
|
(PA_angle & 0x7ff);
|
|
}
|
|
}
|
|
|
|
*gain = G_fxp;
|
|
return true;
|
|
}
|
|
|
|
void ar9003_paprd_populate_single_table(struct ath_hw *ah,
|
|
struct ath9k_hw_cal_data *caldata,
|
|
int chain)
|
|
{
|
|
u32 *paprd_table_val = caldata->pa_table[chain];
|
|
u32 small_signal_gain = caldata->small_signal_gain[chain];
|
|
u32 training_power = ah->paprd_training_power;
|
|
u32 reg = 0;
|
|
int i;
|
|
|
|
if (chain == 0)
|
|
reg = AR_PHY_PAPRD_MEM_TAB_B0;
|
|
else if (chain == 1)
|
|
reg = AR_PHY_PAPRD_MEM_TAB_B1;
|
|
else if (chain == 2)
|
|
reg = AR_PHY_PAPRD_MEM_TAB_B2;
|
|
|
|
for (i = 0; i < PAPRD_TABLE_SZ; i++) {
|
|
REG_WRITE(ah, reg, paprd_table_val[i]);
|
|
reg = reg + 4;
|
|
}
|
|
|
|
if (chain == 0)
|
|
reg = AR_PHY_PA_GAIN123_B0;
|
|
else if (chain == 1)
|
|
reg = AR_PHY_PA_GAIN123_B1;
|
|
else
|
|
reg = AR_PHY_PA_GAIN123_B2;
|
|
|
|
REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain);
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0,
|
|
AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
|
|
training_power);
|
|
|
|
if (ah->caps.tx_chainmask & BIT(1))
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1,
|
|
AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
|
|
training_power);
|
|
|
|
if (ah->caps.tx_chainmask & BIT(2))
|
|
/* val AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL correct? */
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2,
|
|
AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
|
|
training_power);
|
|
}
|
|
EXPORT_SYMBOL(ar9003_paprd_populate_single_table);
|
|
|
|
void ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain)
|
|
{
|
|
unsigned int i, desired_gain, gain_index;
|
|
unsigned int train_power = ah->paprd_training_power;
|
|
|
|
desired_gain = ar9003_get_desired_gain(ah, chain, train_power);
|
|
|
|
gain_index = 0;
|
|
for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
|
|
if (ah->paprd_gain_table_index[i] >= desired_gain)
|
|
break;
|
|
gain_index++;
|
|
}
|
|
|
|
ar9003_tx_force_gain(ah, gain_index);
|
|
|
|
REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
|
|
AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
|
|
}
|
|
EXPORT_SYMBOL(ar9003_paprd_setup_gain_table);
|
|
|
|
static bool ar9003_paprd_retrain_pa_in(struct ath_hw *ah,
|
|
struct ath9k_hw_cal_data *caldata,
|
|
int chain)
|
|
{
|
|
u32 *pa_in = caldata->pa_table[chain];
|
|
int capdiv_offset, quick_drop_offset;
|
|
int capdiv2g, quick_drop;
|
|
int count = 0;
|
|
int i;
|
|
|
|
if (!AR_SREV_9485(ah) && !AR_SREV_9330(ah))
|
|
return false;
|
|
|
|
capdiv2g = REG_READ_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
|
|
AR_PHY_65NM_CH0_TXRF3_CAPDIV2G);
|
|
|
|
quick_drop = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP);
|
|
|
|
if (quick_drop)
|
|
quick_drop -= 0x40;
|
|
|
|
for (i = 0; i < NUM_BIN + 1; i++) {
|
|
if (pa_in[i] == 1400)
|
|
count++;
|
|
}
|
|
|
|
if (AR_SREV_9485(ah)) {
|
|
if (pa_in[23] < 800) {
|
|
capdiv_offset = (int)((1000 - pa_in[23] + 75) / 150);
|
|
capdiv2g += capdiv_offset;
|
|
if (capdiv2g > 7) {
|
|
capdiv2g = 7;
|
|
if (pa_in[23] < 600) {
|
|
quick_drop++;
|
|
if (quick_drop > 0)
|
|
quick_drop = 0;
|
|
}
|
|
}
|
|
} else if (pa_in[23] == 1400) {
|
|
quick_drop_offset = min_t(int, count / 3, 2);
|
|
quick_drop += quick_drop_offset;
|
|
capdiv2g += quick_drop_offset / 2;
|
|
|
|
if (capdiv2g > 7)
|
|
capdiv2g = 7;
|
|
|
|
if (quick_drop > 0) {
|
|
quick_drop = 0;
|
|
capdiv2g -= quick_drop_offset;
|
|
if (capdiv2g < 0)
|
|
capdiv2g = 0;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
} else if (AR_SREV_9330(ah)) {
|
|
if (pa_in[23] < 1000) {
|
|
capdiv_offset = (1000 - pa_in[23]) / 100;
|
|
capdiv2g += capdiv_offset;
|
|
if (capdiv_offset > 3) {
|
|
capdiv_offset = 1;
|
|
quick_drop--;
|
|
}
|
|
|
|
capdiv2g += capdiv_offset;
|
|
if (capdiv2g > 6)
|
|
capdiv2g = 6;
|
|
if (quick_drop < -4)
|
|
quick_drop = -4;
|
|
} else if (pa_in[23] == 1400) {
|
|
if (count > 3) {
|
|
quick_drop++;
|
|
capdiv2g -= count / 4;
|
|
if (quick_drop > -2)
|
|
quick_drop = -2;
|
|
} else {
|
|
capdiv2g--;
|
|
}
|
|
|
|
if (capdiv2g < 0)
|
|
capdiv2g = 0;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
|
|
AR_PHY_65NM_CH0_TXRF3_CAPDIV2G, capdiv2g);
|
|
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
|
|
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
|
|
quick_drop);
|
|
|
|
return true;
|
|
}
|
|
|
|
int ar9003_paprd_create_curve(struct ath_hw *ah,
|
|
struct ath9k_hw_cal_data *caldata, int chain)
|
|
{
|
|
u16 *small_signal_gain = &caldata->small_signal_gain[chain];
|
|
u32 *pa_table = caldata->pa_table[chain];
|
|
u32 *data_L, *data_U;
|
|
int i, status = 0;
|
|
u32 *buf;
|
|
u32 reg;
|
|
|
|
memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain]));
|
|
|
|
buf = kmalloc(2 * 48 * sizeof(u32), GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
data_L = &buf[0];
|
|
data_U = &buf[48];
|
|
|
|
REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
|
|
AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
|
|
|
|
reg = AR_PHY_CHAN_INFO_TAB_0;
|
|
for (i = 0; i < 48; i++)
|
|
data_L[i] = REG_READ(ah, reg + (i << 2));
|
|
|
|
REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
|
|
AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
|
|
|
|
for (i = 0; i < 48; i++)
|
|
data_U[i] = REG_READ(ah, reg + (i << 2));
|
|
|
|
if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain))
|
|
status = -2;
|
|
|
|
if (ar9003_paprd_retrain_pa_in(ah, caldata, chain))
|
|
status = -EINPROGRESS;
|
|
|
|
REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
|
|
AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
|
|
|
|
kfree(buf);
|
|
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL(ar9003_paprd_create_curve);
|
|
|
|
int ar9003_paprd_init_table(struct ath_hw *ah)
|
|
{
|
|
int ret;
|
|
|
|
ret = ar9003_paprd_setup_single_table(ah);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ar9003_paprd_get_gain_table(ah);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ar9003_paprd_init_table);
|
|
|
|
bool ar9003_paprd_is_done(struct ath_hw *ah)
|
|
{
|
|
int paprd_done, agc2_pwr;
|
|
|
|
paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
|
|
AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
|
|
|
|
if (AR_SREV_9485(ah))
|
|
goto exit;
|
|
|
|
if (paprd_done == 0x1) {
|
|
agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
|
|
AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR);
|
|
|
|
ath_dbg(ath9k_hw_common(ah), CALIBRATE,
|
|
"AGC2_PWR = 0x%x training done = 0x%x\n",
|
|
agc2_pwr, paprd_done);
|
|
/*
|
|
* agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE'
|
|
* when the training is completely done, otherwise retraining is
|
|
* done to make sure the value is in ideal range
|
|
*/
|
|
if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE)
|
|
paprd_done = 0;
|
|
}
|
|
exit:
|
|
return !!paprd_done;
|
|
}
|
|
EXPORT_SYMBOL(ar9003_paprd_is_done);
|
|
|
|
bool ar9003_is_paprd_enabled(struct ath_hw *ah)
|
|
{
|
|
if ((ah->caps.hw_caps & ATH9K_HW_CAP_PAPRD) && ah->config.enable_paprd)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(ar9003_is_paprd_enabled);
|