3ed03f4da0
This is the first upgrade to the Rust toolchain since the initial Rust
merge, from 1.62.0 to 1.68.2 (i.e. the latest).
# Context
The kernel currently supports only a single Rust version [1] (rather
than a minimum) given our usage of some "unstable" Rust features [2]
which do not promise backwards compatibility.
The goal is to reach a point where we can declare a minimum version for
the toolchain. For instance, by waiting for some of the features to be
stabilized. Therefore, the first minimum Rust version that the kernel
will support is "in the future".
# Upgrade policy
Given we will eventually need to reach that minimum version, it would be
ideal to upgrade the compiler from time to time to be as close as
possible to that goal and find any issues sooner. In the extreme, we
could upgrade as soon as a new Rust release is out. Of course, upgrading
so often is in stark contrast to what one normally would need for GCC
and LLVM, especially given the release schedule: 6 weeks for Rust vs.
half a year for LLVM and a year for GCC.
Having said that, there is no particular advantage to updating slowly
either: kernel developers in "stable" distributions are unlikely to be
able to use their distribution-provided Rust toolchain for the kernel
anyway [3]. Instead, by routinely upgrading to the latest instead,
kernel developers using Linux distributions that track the latest Rust
release may be able to use those rather than Rust-provided ones,
especially if their package manager allows to pin / hold back /
downgrade the version for some days during windows where the version may
not match. For instance, Arch, Fedora, Gentoo and openSUSE all provide
and track the latest version of Rust as they get released every 6 weeks.
Then, when the minimum version is reached, we will stop upgrading and
decide how wide the window of support will be. For instance, a year of
Rust versions. We will probably want to start small, and then widen it
over time, just like the kernel did originally for LLVM, see commit
3519c4d6e0
("Documentation: add minimum clang/llvm version").
# Unstable features stabilized
This upgrade allows us to remove the following unstable features since
they were stabilized:
- `feature(explicit_generic_args_with_impl_trait)` (1.63).
- `feature(core_ffi_c)` (1.64).
- `feature(generic_associated_types)` (1.65).
- `feature(const_ptr_offset_from)` (1.65, *).
- `feature(bench_black_box)` (1.66, *).
- `feature(pin_macro)` (1.68).
The ones marked with `*` apply only to our old `rust` branch, not
mainline yet, i.e. only for code that we may potentially upstream.
With this patch applied, the only unstable feature allowed to be used
outside the `kernel` crate is `new_uninit`, though other code to be
upstreamed may increase the list.
Please see [2] for details.
# Other required changes
Since 1.63, `rustdoc` triggers the `broken_intra_doc_links` lint for
links pointing to exported (`#[macro_export]`) `macro_rules`. An issue
was opened upstream [4], but it turns out it is intended behavior. For
the moment, just add an explicit reference for each link. Later we can
revisit this if `rustdoc` removes the compatibility measure.
Nevertheless, this was helpful to discover a link that was pointing to
the wrong place unintentionally. Since that one was actually wrong, it
is fixed in a previous commit independently.
Another change was the addition of `cfg(no_rc)` and `cfg(no_sync)` in
upstream [5], thus remove our original changes for that.
Similarly, upstream now tests that it compiles successfully with
`#[cfg(not(no_global_oom_handling))]` [6], which allow us to get rid
of some changes, such as an `#[allow(dead_code)]`.
In addition, remove another `#[allow(dead_code)]` due to new uses
within the standard library.
Finally, add `try_extend_trusted` and move the code in `spec_extend.rs`
since upstream moved it for the infallible version.
# `alloc` upgrade and reviewing
There are a large amount of changes, but the vast majority of them are
due to our `alloc` fork being upgraded at once.
There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.
Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.
Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.
To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:
# Get the difference with respect to the old version.
git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
cut -d/ -f3- |
grep -Fv README.md |
xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
git -C linux diff --patch-with-stat --summary -R > old.patch
git -C linux restore rust/alloc
# Apply this patch.
git -C linux am rust-upgrade.patch
# Get the difference with respect to the new version.
git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
cut -d/ -f3- |
grep -Fv README.md |
xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
git -C linux diff --patch-with-stat --summary -R > new.patch
git -C linux restore rust/alloc
Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.
Link: https://rust-for-linux.com/rust-version-policy [1]
Link: https://github.com/Rust-for-Linux/linux/issues/2 [2]
Link: https://lore.kernel.org/rust-for-linux/CANiq72mT3bVDKdHgaea-6WiZazd8Mvurqmqegbe5JZxVyLR8Yg@mail.gmail.com/ [3]
Link: https://github.com/rust-lang/rust/issues/106142 [4]
Link: https://github.com/rust-lang/rust/pull/89891 [5]
Link: https://github.com/rust-lang/rust/pull/98652 [6]
Reviewed-by: Björn Roy Baron <bjorn3_gh@protonmail.com>
Reviewed-by: Gary Guo <gary@garyguo.net>
Reviewed-By: Martin Rodriguez Reboredo <yakoyoku@gmail.com>
Tested-by: Ariel Miculas <amiculas@cisco.com>
Tested-by: David Gow <davidgow@google.com>
Tested-by: Boqun Feng <boqun.feng@gmail.com>
Link: https://lore.kernel.org/r/20230418214347.324156-4-ojeda@kernel.org
[ Removed `feature(core_ffi_c)` from `uapi` ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
1433 lines
48 KiB
Rust
1433 lines
48 KiB
Rust
// SPDX-License-Identifier: Apache-2.0 OR MIT
|
|
|
|
//! API to safely and fallibly initialize pinned `struct`s using in-place constructors.
|
|
//!
|
|
//! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
|
|
//! overflow.
|
|
//!
|
|
//! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential
|
|
//! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move.
|
|
//!
|
|
//! # Overview
|
|
//!
|
|
//! To initialize a `struct` with an in-place constructor you will need two things:
|
|
//! - an in-place constructor,
|
|
//! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
|
|
//! [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]).
|
|
//!
|
|
//! To get an in-place constructor there are generally three options:
|
|
//! - directly creating an in-place constructor using the [`pin_init!`] macro,
|
|
//! - a custom function/macro returning an in-place constructor provided by someone else,
|
|
//! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
|
|
//!
|
|
//! Aside from pinned initialization, this API also supports in-place construction without pinning,
|
|
//! the macros/types/functions are generally named like the pinned variants without the `pin`
|
|
//! prefix.
|
|
//!
|
|
//! # Examples
|
|
//!
|
|
//! ## Using the [`pin_init!`] macro
|
|
//!
|
|
//! If you want to use [`PinInit`], then you will have to annotate your `struct` with
|
|
//! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
|
|
//! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
|
|
//! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
|
|
//! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
|
|
//!
|
|
//! ```rust
|
|
//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
|
|
//! use kernel::{prelude::*, sync::Mutex, new_mutex};
|
|
//! # use core::pin::Pin;
|
|
//! #[pin_data]
|
|
//! struct Foo {
|
|
//! #[pin]
|
|
//! a: Mutex<usize>,
|
|
//! b: u32,
|
|
//! }
|
|
//!
|
|
//! let foo = pin_init!(Foo {
|
|
//! a <- new_mutex!(42, "Foo::a"),
|
|
//! b: 24,
|
|
//! });
|
|
//! ```
|
|
//!
|
|
//! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
|
|
//! (or just the stack) to actually initialize a `Foo`:
|
|
//!
|
|
//! ```rust
|
|
//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
|
|
//! # use kernel::{prelude::*, sync::Mutex, new_mutex};
|
|
//! # use core::pin::Pin;
|
|
//! # #[pin_data]
|
|
//! # struct Foo {
|
|
//! # #[pin]
|
|
//! # a: Mutex<usize>,
|
|
//! # b: u32,
|
|
//! # }
|
|
//! # let foo = pin_init!(Foo {
|
|
//! # a <- new_mutex!(42, "Foo::a"),
|
|
//! # b: 24,
|
|
//! # });
|
|
//! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo);
|
|
//! ```
|
|
//!
|
|
//! For more information see the [`pin_init!`] macro.
|
|
//!
|
|
//! ## Using a custom function/macro that returns an initializer
|
|
//!
|
|
//! Many types from the kernel supply a function/macro that returns an initializer, because the
|
|
//! above method only works for types where you can access the fields.
|
|
//!
|
|
//! ```rust
|
|
//! # use kernel::{new_mutex, sync::{Arc, Mutex}};
|
|
//! let mtx: Result<Arc<Mutex<usize>>> = Arc::pin_init(new_mutex!(42, "example::mtx"));
|
|
//! ```
|
|
//!
|
|
//! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
|
|
//!
|
|
//! ```rust
|
|
//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
|
|
//! # use kernel::{sync::Mutex, prelude::*, new_mutex, init::PinInit, try_pin_init};
|
|
//! #[pin_data]
|
|
//! struct DriverData {
|
|
//! #[pin]
|
|
//! status: Mutex<i32>,
|
|
//! buffer: Box<[u8; 1_000_000]>,
|
|
//! }
|
|
//!
|
|
//! impl DriverData {
|
|
//! fn new() -> impl PinInit<Self, Error> {
|
|
//! try_pin_init!(Self {
|
|
//! status <- new_mutex!(0, "DriverData::status"),
|
|
//! buffer: Box::init(kernel::init::zeroed())?,
|
|
//! })
|
|
//! }
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! ## Manual creation of an initializer
|
|
//!
|
|
//! Often when working with primitives the previous approaches are not sufficient. That is where
|
|
//! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
|
|
//! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
|
|
//! actually does the initialization in the correct way. Here are the things to look out for
|
|
//! (we are calling the parameter to the closure `slot`):
|
|
//! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
|
|
//! `slot` now contains a valid bit pattern for the type `T`,
|
|
//! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
|
|
//! you need to take care to clean up anything if your initialization fails mid-way,
|
|
//! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
|
|
//! `slot` gets called.
|
|
//!
|
|
//! ```rust
|
|
//! use kernel::{prelude::*, init};
|
|
//! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin};
|
|
//! # mod bindings {
|
|
//! # pub struct foo;
|
|
//! # pub unsafe fn init_foo(_ptr: *mut foo) {}
|
|
//! # pub unsafe fn destroy_foo(_ptr: *mut foo) {}
|
|
//! # pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 }
|
|
//! # }
|
|
//! /// # Invariants
|
|
//! ///
|
|
//! /// `foo` is always initialized
|
|
//! #[pin_data(PinnedDrop)]
|
|
//! pub struct RawFoo {
|
|
//! #[pin]
|
|
//! foo: Opaque<bindings::foo>,
|
|
//! #[pin]
|
|
//! _p: PhantomPinned,
|
|
//! }
|
|
//!
|
|
//! impl RawFoo {
|
|
//! pub fn new(flags: u32) -> impl PinInit<Self, Error> {
|
|
//! // SAFETY:
|
|
//! // - when the closure returns `Ok(())`, then it has successfully initialized and
|
|
//! // enabled `foo`,
|
|
//! // - when it returns `Err(e)`, then it has cleaned up before
|
|
//! unsafe {
|
|
//! init::pin_init_from_closure(move |slot: *mut Self| {
|
|
//! // `slot` contains uninit memory, avoid creating a reference.
|
|
//! let foo = addr_of_mut!((*slot).foo);
|
|
//!
|
|
//! // Initialize the `foo`
|
|
//! bindings::init_foo(Opaque::raw_get(foo));
|
|
//!
|
|
//! // Try to enable it.
|
|
//! let err = bindings::enable_foo(Opaque::raw_get(foo), flags);
|
|
//! if err != 0 {
|
|
//! // Enabling has failed, first clean up the foo and then return the error.
|
|
//! bindings::destroy_foo(Opaque::raw_get(foo));
|
|
//! return Err(Error::from_kernel_errno(err));
|
|
//! }
|
|
//!
|
|
//! // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
|
|
//! Ok(())
|
|
//! })
|
|
//! }
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! #[pinned_drop]
|
|
//! impl PinnedDrop for RawFoo {
|
|
//! fn drop(self: Pin<&mut Self>) {
|
|
//! // SAFETY: Since `foo` is initialized, destroying is safe.
|
|
//! unsafe { bindings::destroy_foo(self.foo.get()) };
|
|
//! }
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! For the special case where initializing a field is a single FFI-function call that cannot fail,
|
|
//! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single
|
|
//! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination
|
|
//! with [`pin_init!`].
|
|
//!
|
|
//! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside
|
|
//! the `kernel` crate. The [`sync`] module is a good starting point.
|
|
//!
|
|
//! [`sync`]: kernel::sync
|
|
//! [pinning]: https://doc.rust-lang.org/std/pin/index.html
|
|
//! [structurally pinned fields]:
|
|
//! https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field
|
|
//! [stack]: crate::stack_pin_init
|
|
//! [`Arc<T>`]: crate::sync::Arc
|
|
//! [`impl PinInit<Foo>`]: PinInit
|
|
//! [`impl PinInit<T, E>`]: PinInit
|
|
//! [`impl Init<T, E>`]: Init
|
|
//! [`Opaque`]: kernel::types::Opaque
|
|
//! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init
|
|
//! [`pin_data`]: ::macros::pin_data
|
|
//! [`pin_init!`]: crate::pin_init!
|
|
|
|
use crate::{
|
|
error::{self, Error},
|
|
sync::UniqueArc,
|
|
};
|
|
use alloc::boxed::Box;
|
|
use core::{
|
|
alloc::AllocError,
|
|
cell::Cell,
|
|
convert::Infallible,
|
|
marker::PhantomData,
|
|
mem::MaybeUninit,
|
|
num::*,
|
|
pin::Pin,
|
|
ptr::{self, NonNull},
|
|
};
|
|
|
|
#[doc(hidden)]
|
|
pub mod __internal;
|
|
#[doc(hidden)]
|
|
pub mod macros;
|
|
|
|
/// Initialize and pin a type directly on the stack.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```rust
|
|
/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
|
|
/// # use kernel::{init, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex};
|
|
/// # use macros::pin_data;
|
|
/// # use core::pin::Pin;
|
|
/// #[pin_data]
|
|
/// struct Foo {
|
|
/// #[pin]
|
|
/// a: Mutex<usize>,
|
|
/// b: Bar,
|
|
/// }
|
|
///
|
|
/// #[pin_data]
|
|
/// struct Bar {
|
|
/// x: u32,
|
|
/// }
|
|
///
|
|
/// stack_pin_init!(let foo = pin_init!(Foo {
|
|
/// a <- new_mutex!(42),
|
|
/// b: Bar {
|
|
/// x: 64,
|
|
/// },
|
|
/// }));
|
|
/// let foo: Pin<&mut Foo> = foo;
|
|
/// pr_info!("a: {}", &*foo.a.lock());
|
|
/// ```
|
|
///
|
|
/// # Syntax
|
|
///
|
|
/// A normal `let` binding with optional type annotation. The expression is expected to implement
|
|
/// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
|
|
/// type, then use [`stack_try_pin_init!`].
|
|
///
|
|
/// [`stack_try_pin_init!`]: crate::stack_try_pin_init!
|
|
#[macro_export]
|
|
macro_rules! stack_pin_init {
|
|
(let $var:ident $(: $t:ty)? = $val:expr) => {
|
|
let val = $val;
|
|
let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
|
|
let mut $var = match $crate::init::__internal::StackInit::init($var, val) {
|
|
Ok(res) => res,
|
|
Err(x) => {
|
|
let x: ::core::convert::Infallible = x;
|
|
match x {}
|
|
}
|
|
};
|
|
};
|
|
}
|
|
|
|
/// Initialize and pin a type directly on the stack.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```rust
|
|
/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
|
|
/// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
|
|
/// # use macros::pin_data;
|
|
/// # use core::{alloc::AllocError, pin::Pin};
|
|
/// #[pin_data]
|
|
/// struct Foo {
|
|
/// #[pin]
|
|
/// a: Mutex<usize>,
|
|
/// b: Box<Bar>,
|
|
/// }
|
|
///
|
|
/// struct Bar {
|
|
/// x: u32,
|
|
/// }
|
|
///
|
|
/// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo {
|
|
/// a <- new_mutex!(42),
|
|
/// b: Box::try_new(Bar {
|
|
/// x: 64,
|
|
/// })?,
|
|
/// }));
|
|
/// let foo = foo.unwrap();
|
|
/// pr_info!("a: {}", &*foo.a.lock());
|
|
/// ```
|
|
///
|
|
/// ```rust
|
|
/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
|
|
/// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
|
|
/// # use macros::pin_data;
|
|
/// # use core::{alloc::AllocError, pin::Pin};
|
|
/// #[pin_data]
|
|
/// struct Foo {
|
|
/// #[pin]
|
|
/// a: Mutex<usize>,
|
|
/// b: Box<Bar>,
|
|
/// }
|
|
///
|
|
/// struct Bar {
|
|
/// x: u32,
|
|
/// }
|
|
///
|
|
/// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo {
|
|
/// a <- new_mutex!(42),
|
|
/// b: Box::try_new(Bar {
|
|
/// x: 64,
|
|
/// })?,
|
|
/// }));
|
|
/// pr_info!("a: {}", &*foo.a.lock());
|
|
/// # Ok::<_, AllocError>(())
|
|
/// ```
|
|
///
|
|
/// # Syntax
|
|
///
|
|
/// A normal `let` binding with optional type annotation. The expression is expected to implement
|
|
/// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
|
|
/// `=` will propagate this error.
|
|
#[macro_export]
|
|
macro_rules! stack_try_pin_init {
|
|
(let $var:ident $(: $t:ty)? = $val:expr) => {
|
|
let val = $val;
|
|
let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
|
|
let mut $var = $crate::init::__internal::StackInit::init($var, val);
|
|
};
|
|
(let $var:ident $(: $t:ty)? =? $val:expr) => {
|
|
let val = $val;
|
|
let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
|
|
let mut $var = $crate::init::__internal::StackInit::init($var, val)?;
|
|
};
|
|
}
|
|
|
|
/// Construct an in-place, pinned initializer for `struct`s.
|
|
///
|
|
/// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
|
|
/// [`try_pin_init!`].
|
|
///
|
|
/// The syntax is almost identical to that of a normal `struct` initializer:
|
|
///
|
|
/// ```rust
|
|
/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
|
|
/// # use kernel::{init, pin_init, macros::pin_data, init::*};
|
|
/// # use core::pin::Pin;
|
|
/// #[pin_data]
|
|
/// struct Foo {
|
|
/// a: usize,
|
|
/// b: Bar,
|
|
/// }
|
|
///
|
|
/// #[pin_data]
|
|
/// struct Bar {
|
|
/// x: u32,
|
|
/// }
|
|
///
|
|
/// # fn demo() -> impl PinInit<Foo> {
|
|
/// let a = 42;
|
|
///
|
|
/// let initializer = pin_init!(Foo {
|
|
/// a,
|
|
/// b: Bar {
|
|
/// x: 64,
|
|
/// },
|
|
/// });
|
|
/// # initializer }
|
|
/// # Box::pin_init(demo()).unwrap();
|
|
/// ```
|
|
///
|
|
/// Arbitrary Rust expressions can be used to set the value of a variable.
|
|
///
|
|
/// The fields are initialized in the order that they appear in the initializer. So it is possible
|
|
/// to read already initialized fields using raw pointers.
|
|
///
|
|
/// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
|
|
/// initializer.
|
|
///
|
|
/// # Init-functions
|
|
///
|
|
/// When working with this API it is often desired to let others construct your types without
|
|
/// giving access to all fields. This is where you would normally write a plain function `new`
|
|
/// that would return a new instance of your type. With this API that is also possible.
|
|
/// However, there are a few extra things to keep in mind.
|
|
///
|
|
/// To create an initializer function, simply declare it like this:
|
|
///
|
|
/// ```rust
|
|
/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
|
|
/// # use kernel::{init, pin_init, prelude::*, init::*};
|
|
/// # use core::pin::Pin;
|
|
/// # #[pin_data]
|
|
/// # struct Foo {
|
|
/// # a: usize,
|
|
/// # b: Bar,
|
|
/// # }
|
|
/// # #[pin_data]
|
|
/// # struct Bar {
|
|
/// # x: u32,
|
|
/// # }
|
|
/// impl Foo {
|
|
/// fn new() -> impl PinInit<Self> {
|
|
/// pin_init!(Self {
|
|
/// a: 42,
|
|
/// b: Bar {
|
|
/// x: 64,
|
|
/// },
|
|
/// })
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Users of `Foo` can now create it like this:
|
|
///
|
|
/// ```rust
|
|
/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
|
|
/// # use kernel::{init, pin_init, macros::pin_data, init::*};
|
|
/// # use core::pin::Pin;
|
|
/// # #[pin_data]
|
|
/// # struct Foo {
|
|
/// # a: usize,
|
|
/// # b: Bar,
|
|
/// # }
|
|
/// # #[pin_data]
|
|
/// # struct Bar {
|
|
/// # x: u32,
|
|
/// # }
|
|
/// # impl Foo {
|
|
/// # fn new() -> impl PinInit<Self> {
|
|
/// # pin_init!(Self {
|
|
/// # a: 42,
|
|
/// # b: Bar {
|
|
/// # x: 64,
|
|
/// # },
|
|
/// # })
|
|
/// # }
|
|
/// # }
|
|
/// let foo = Box::pin_init(Foo::new());
|
|
/// ```
|
|
///
|
|
/// They can also easily embed it into their own `struct`s:
|
|
///
|
|
/// ```rust
|
|
/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
|
|
/// # use kernel::{init, pin_init, macros::pin_data, init::*};
|
|
/// # use core::pin::Pin;
|
|
/// # #[pin_data]
|
|
/// # struct Foo {
|
|
/// # a: usize,
|
|
/// # b: Bar,
|
|
/// # }
|
|
/// # #[pin_data]
|
|
/// # struct Bar {
|
|
/// # x: u32,
|
|
/// # }
|
|
/// # impl Foo {
|
|
/// # fn new() -> impl PinInit<Self> {
|
|
/// # pin_init!(Self {
|
|
/// # a: 42,
|
|
/// # b: Bar {
|
|
/// # x: 64,
|
|
/// # },
|
|
/// # })
|
|
/// # }
|
|
/// # }
|
|
/// #[pin_data]
|
|
/// struct FooContainer {
|
|
/// #[pin]
|
|
/// foo1: Foo,
|
|
/// #[pin]
|
|
/// foo2: Foo,
|
|
/// other: u32,
|
|
/// }
|
|
///
|
|
/// impl FooContainer {
|
|
/// fn new(other: u32) -> impl PinInit<Self> {
|
|
/// pin_init!(Self {
|
|
/// foo1 <- Foo::new(),
|
|
/// foo2 <- Foo::new(),
|
|
/// other,
|
|
/// })
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
|
|
/// This signifies that the given field is initialized in-place. As with `struct` initializers, just
|
|
/// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
|
|
///
|
|
/// # Syntax
|
|
///
|
|
/// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
|
|
/// the following modifications is expected:
|
|
/// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
|
|
/// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
|
|
/// pointer named `this` inside of the initializer.
|
|
///
|
|
/// For instance:
|
|
///
|
|
/// ```rust
|
|
/// # use kernel::pin_init;
|
|
/// # use macros::pin_data;
|
|
/// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
|
|
/// #[pin_data]
|
|
/// struct Buf {
|
|
/// // `ptr` points into `buf`.
|
|
/// ptr: *mut u8,
|
|
/// buf: [u8; 64],
|
|
/// #[pin]
|
|
/// pin: PhantomPinned,
|
|
/// }
|
|
/// pin_init!(&this in Buf {
|
|
/// buf: [0; 64],
|
|
/// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
|
|
/// pin: PhantomPinned,
|
|
/// });
|
|
/// ```
|
|
///
|
|
/// [`try_pin_init!`]: kernel::try_pin_init
|
|
/// [`NonNull<Self>`]: core::ptr::NonNull
|
|
// For a detailed example of how this macro works, see the module documentation of the hidden
|
|
// module `__internal` inside of `init/__internal.rs`.
|
|
#[macro_export]
|
|
macro_rules! pin_init {
|
|
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
|
|
$($fields:tt)*
|
|
}) => {
|
|
$crate::try_pin_init!(
|
|
@this($($this)?),
|
|
@typ($t $(::<$($generics),*>)?),
|
|
@fields($($fields)*),
|
|
@error(::core::convert::Infallible),
|
|
)
|
|
};
|
|
}
|
|
|
|
/// Construct an in-place, fallible pinned initializer for `struct`s.
|
|
///
|
|
/// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
|
|
///
|
|
/// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
|
|
/// initialization and return the error.
|
|
///
|
|
/// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
|
|
/// initialization fails, the memory can be safely deallocated without any further modifications.
|
|
///
|
|
/// This macro defaults the error to [`Error`].
|
|
///
|
|
/// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type`
|
|
/// after the `struct` initializer to specify the error type you want to use.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```rust
|
|
/// # #![feature(new_uninit)]
|
|
/// use kernel::{init::{self, PinInit}, error::Error};
|
|
/// #[pin_data]
|
|
/// struct BigBuf {
|
|
/// big: Box<[u8; 1024 * 1024 * 1024]>,
|
|
/// small: [u8; 1024 * 1024],
|
|
/// ptr: *mut u8,
|
|
/// }
|
|
///
|
|
/// impl BigBuf {
|
|
/// fn new() -> impl PinInit<Self, Error> {
|
|
/// try_pin_init!(Self {
|
|
/// big: Box::init(init::zeroed())?,
|
|
/// small: [0; 1024 * 1024],
|
|
/// ptr: core::ptr::null_mut(),
|
|
/// }? Error)
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
// For a detailed example of how this macro works, see the module documentation of the hidden
|
|
// module `__internal` inside of `init/__internal.rs`.
|
|
#[macro_export]
|
|
macro_rules! try_pin_init {
|
|
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
|
|
$($fields:tt)*
|
|
}) => {
|
|
$crate::try_pin_init!(
|
|
@this($($this)?),
|
|
@typ($t $(::<$($generics),*>)? ),
|
|
@fields($($fields)*),
|
|
@error($crate::error::Error),
|
|
)
|
|
};
|
|
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
|
|
$($fields:tt)*
|
|
}? $err:ty) => {
|
|
$crate::try_pin_init!(
|
|
@this($($this)?),
|
|
@typ($t $(::<$($generics),*>)? ),
|
|
@fields($($fields)*),
|
|
@error($err),
|
|
)
|
|
};
|
|
(
|
|
@this($($this:ident)?),
|
|
@typ($t:ident $(::<$($generics:ty),*>)?),
|
|
@fields($($fields:tt)*),
|
|
@error($err:ty),
|
|
) => {{
|
|
// We do not want to allow arbitrary returns, so we declare this type as the `Ok` return
|
|
// type and shadow it later when we insert the arbitrary user code. That way there will be
|
|
// no possibility of returning without `unsafe`.
|
|
struct __InitOk;
|
|
// Get the pin data from the supplied type.
|
|
let data = unsafe {
|
|
use $crate::init::__internal::HasPinData;
|
|
$t$(::<$($generics),*>)?::__pin_data()
|
|
};
|
|
// Ensure that `data` really is of type `PinData` and help with type inference:
|
|
let init = $crate::init::__internal::PinData::make_closure::<_, __InitOk, $err>(
|
|
data,
|
|
move |slot| {
|
|
{
|
|
// Shadow the structure so it cannot be used to return early.
|
|
struct __InitOk;
|
|
// Create the `this` so it can be referenced by the user inside of the
|
|
// expressions creating the individual fields.
|
|
$(let $this = unsafe { ::core::ptr::NonNull::new_unchecked(slot) };)?
|
|
// Initialize every field.
|
|
$crate::try_pin_init!(init_slot:
|
|
@data(data),
|
|
@slot(slot),
|
|
@munch_fields($($fields)*,),
|
|
);
|
|
// We use unreachable code to ensure that all fields have been mentioned exactly
|
|
// once, this struct initializer will still be type-checked and complain with a
|
|
// very natural error message if a field is forgotten/mentioned more than once.
|
|
#[allow(unreachable_code, clippy::diverging_sub_expression)]
|
|
if false {
|
|
$crate::try_pin_init!(make_initializer:
|
|
@slot(slot),
|
|
@type_name($t),
|
|
@munch_fields($($fields)*,),
|
|
@acc(),
|
|
);
|
|
}
|
|
// Forget all guards, since initialization was a success.
|
|
$crate::try_pin_init!(forget_guards:
|
|
@munch_fields($($fields)*,),
|
|
);
|
|
}
|
|
Ok(__InitOk)
|
|
}
|
|
);
|
|
let init = move |slot| -> ::core::result::Result<(), $err> {
|
|
init(slot).map(|__InitOk| ())
|
|
};
|
|
let init = unsafe { $crate::init::pin_init_from_closure::<_, $err>(init) };
|
|
init
|
|
}};
|
|
(init_slot:
|
|
@data($data:ident),
|
|
@slot($slot:ident),
|
|
@munch_fields($(,)?),
|
|
) => {
|
|
// Endpoint of munching, no fields are left.
|
|
};
|
|
(init_slot:
|
|
@data($data:ident),
|
|
@slot($slot:ident),
|
|
// In-place initialization syntax.
|
|
@munch_fields($field:ident <- $val:expr, $($rest:tt)*),
|
|
) => {
|
|
let $field = $val;
|
|
// Call the initializer.
|
|
//
|
|
// SAFETY: `slot` is valid, because we are inside of an initializer closure, we
|
|
// return when an error/panic occurs.
|
|
// We also use the `data` to require the correct trait (`Init` or `PinInit`) for `$field`.
|
|
unsafe { $data.$field(::core::ptr::addr_of_mut!((*$slot).$field), $field)? };
|
|
// Create the drop guard.
|
|
//
|
|
// We only give access to `&DropGuard`, so it cannot be forgotten via safe code.
|
|
//
|
|
// SAFETY: We forget the guard later when initialization has succeeded.
|
|
let $field = &unsafe {
|
|
$crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
|
|
};
|
|
|
|
$crate::try_pin_init!(init_slot:
|
|
@data($data),
|
|
@slot($slot),
|
|
@munch_fields($($rest)*),
|
|
);
|
|
};
|
|
(init_slot:
|
|
@data($data:ident),
|
|
@slot($slot:ident),
|
|
// Direct value init, this is safe for every field.
|
|
@munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
|
|
) => {
|
|
$(let $field = $val;)?
|
|
// Initialize the field.
|
|
//
|
|
// SAFETY: The memory at `slot` is uninitialized.
|
|
unsafe { ::core::ptr::write(::core::ptr::addr_of_mut!((*$slot).$field), $field) };
|
|
// Create the drop guard:
|
|
//
|
|
// We only give access to `&DropGuard`, so it cannot be accidentally forgotten.
|
|
//
|
|
// SAFETY: We forget the guard later when initialization has succeeded.
|
|
let $field = &unsafe {
|
|
$crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
|
|
};
|
|
|
|
$crate::try_pin_init!(init_slot:
|
|
@data($data),
|
|
@slot($slot),
|
|
@munch_fields($($rest)*),
|
|
);
|
|
};
|
|
(make_initializer:
|
|
@slot($slot:ident),
|
|
@type_name($t:ident),
|
|
@munch_fields($(,)?),
|
|
@acc($($acc:tt)*),
|
|
) => {
|
|
// Endpoint, nothing more to munch, create the initializer.
|
|
// Since we are in the `if false` branch, this will never get executed. We abuse `slot` to
|
|
// get the correct type inference here:
|
|
unsafe {
|
|
::core::ptr::write($slot, $t {
|
|
$($acc)*
|
|
});
|
|
}
|
|
};
|
|
(make_initializer:
|
|
@slot($slot:ident),
|
|
@type_name($t:ident),
|
|
@munch_fields($field:ident <- $val:expr, $($rest:tt)*),
|
|
@acc($($acc:tt)*),
|
|
) => {
|
|
$crate::try_pin_init!(make_initializer:
|
|
@slot($slot),
|
|
@type_name($t),
|
|
@munch_fields($($rest)*),
|
|
@acc($($acc)* $field: ::core::panic!(),),
|
|
);
|
|
};
|
|
(make_initializer:
|
|
@slot($slot:ident),
|
|
@type_name($t:ident),
|
|
@munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
|
|
@acc($($acc:tt)*),
|
|
) => {
|
|
$crate::try_pin_init!(make_initializer:
|
|
@slot($slot),
|
|
@type_name($t),
|
|
@munch_fields($($rest)*),
|
|
@acc($($acc)* $field: ::core::panic!(),),
|
|
);
|
|
};
|
|
(forget_guards:
|
|
@munch_fields($(,)?),
|
|
) => {
|
|
// Munching finished.
|
|
};
|
|
(forget_guards:
|
|
@munch_fields($field:ident <- $val:expr, $($rest:tt)*),
|
|
) => {
|
|
unsafe { $crate::init::__internal::DropGuard::forget($field) };
|
|
|
|
$crate::try_pin_init!(forget_guards:
|
|
@munch_fields($($rest)*),
|
|
);
|
|
};
|
|
(forget_guards:
|
|
@munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
|
|
) => {
|
|
unsafe { $crate::init::__internal::DropGuard::forget($field) };
|
|
|
|
$crate::try_pin_init!(forget_guards:
|
|
@munch_fields($($rest)*),
|
|
);
|
|
};
|
|
}
|
|
|
|
/// Construct an in-place initializer for `struct`s.
|
|
///
|
|
/// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
|
|
/// [`try_init!`].
|
|
///
|
|
/// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
|
|
/// - `unsafe` code must guarantee either full initialization or return an error and allow
|
|
/// deallocation of the memory.
|
|
/// - the fields are initialized in the order given in the initializer.
|
|
/// - no references to fields are allowed to be created inside of the initializer.
|
|
///
|
|
/// This initializer is for initializing data in-place that might later be moved. If you want to
|
|
/// pin-initialize, use [`pin_init!`].
|
|
///
|
|
/// [`try_init!`]: crate::try_init!
|
|
// For a detailed example of how this macro works, see the module documentation of the hidden
|
|
// module `__internal` inside of `init/__internal.rs`.
|
|
#[macro_export]
|
|
macro_rules! init {
|
|
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
|
|
$($fields:tt)*
|
|
}) => {
|
|
$crate::try_init!(
|
|
@this($($this)?),
|
|
@typ($t $(::<$($generics),*>)?),
|
|
@fields($($fields)*),
|
|
@error(::core::convert::Infallible),
|
|
)
|
|
}
|
|
}
|
|
|
|
/// Construct an in-place fallible initializer for `struct`s.
|
|
///
|
|
/// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use
|
|
/// [`init!`].
|
|
///
|
|
/// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error,
|
|
/// append `? $type` after the `struct` initializer.
|
|
/// The safety caveats from [`try_pin_init!`] also apply:
|
|
/// - `unsafe` code must guarantee either full initialization or return an error and allow
|
|
/// deallocation of the memory.
|
|
/// - the fields are initialized in the order given in the initializer.
|
|
/// - no references to fields are allowed to be created inside of the initializer.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```rust
|
|
/// use kernel::{init::PinInit, error::Error, InPlaceInit};
|
|
/// struct BigBuf {
|
|
/// big: Box<[u8; 1024 * 1024 * 1024]>,
|
|
/// small: [u8; 1024 * 1024],
|
|
/// }
|
|
///
|
|
/// impl BigBuf {
|
|
/// fn new() -> impl Init<Self, Error> {
|
|
/// try_init!(Self {
|
|
/// big: Box::init(zeroed())?,
|
|
/// small: [0; 1024 * 1024],
|
|
/// }? Error)
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
// For a detailed example of how this macro works, see the module documentation of the hidden
|
|
// module `__internal` inside of `init/__internal.rs`.
|
|
#[macro_export]
|
|
macro_rules! try_init {
|
|
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
|
|
$($fields:tt)*
|
|
}) => {
|
|
$crate::try_init!(
|
|
@this($($this)?),
|
|
@typ($t $(::<$($generics),*>)?),
|
|
@fields($($fields)*),
|
|
@error($crate::error::Error),
|
|
)
|
|
};
|
|
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
|
|
$($fields:tt)*
|
|
}? $err:ty) => {
|
|
$crate::try_init!(
|
|
@this($($this)?),
|
|
@typ($t $(::<$($generics),*>)?),
|
|
@fields($($fields)*),
|
|
@error($err),
|
|
)
|
|
};
|
|
(
|
|
@this($($this:ident)?),
|
|
@typ($t:ident $(::<$($generics:ty),*>)?),
|
|
@fields($($fields:tt)*),
|
|
@error($err:ty),
|
|
) => {{
|
|
// We do not want to allow arbitrary returns, so we declare this type as the `Ok` return
|
|
// type and shadow it later when we insert the arbitrary user code. That way there will be
|
|
// no possibility of returning without `unsafe`.
|
|
struct __InitOk;
|
|
// Get the init data from the supplied type.
|
|
let data = unsafe {
|
|
use $crate::init::__internal::HasInitData;
|
|
$t$(::<$($generics),*>)?::__init_data()
|
|
};
|
|
// Ensure that `data` really is of type `InitData` and help with type inference:
|
|
let init = $crate::init::__internal::InitData::make_closure::<_, __InitOk, $err>(
|
|
data,
|
|
move |slot| {
|
|
{
|
|
// Shadow the structure so it cannot be used to return early.
|
|
struct __InitOk;
|
|
// Create the `this` so it can be referenced by the user inside of the
|
|
// expressions creating the individual fields.
|
|
$(let $this = unsafe { ::core::ptr::NonNull::new_unchecked(slot) };)?
|
|
// Initialize every field.
|
|
$crate::try_init!(init_slot:
|
|
@slot(slot),
|
|
@munch_fields($($fields)*,),
|
|
);
|
|
// We use unreachable code to ensure that all fields have been mentioned exactly
|
|
// once, this struct initializer will still be type-checked and complain with a
|
|
// very natural error message if a field is forgotten/mentioned more than once.
|
|
#[allow(unreachable_code, clippy::diverging_sub_expression)]
|
|
if false {
|
|
$crate::try_init!(make_initializer:
|
|
@slot(slot),
|
|
@type_name($t),
|
|
@munch_fields($($fields)*,),
|
|
@acc(),
|
|
);
|
|
}
|
|
// Forget all guards, since initialization was a success.
|
|
$crate::try_init!(forget_guards:
|
|
@munch_fields($($fields)*,),
|
|
);
|
|
}
|
|
Ok(__InitOk)
|
|
}
|
|
);
|
|
let init = move |slot| -> ::core::result::Result<(), $err> {
|
|
init(slot).map(|__InitOk| ())
|
|
};
|
|
let init = unsafe { $crate::init::init_from_closure::<_, $err>(init) };
|
|
init
|
|
}};
|
|
(init_slot:
|
|
@slot($slot:ident),
|
|
@munch_fields( $(,)?),
|
|
) => {
|
|
// Endpoint of munching, no fields are left.
|
|
};
|
|
(init_slot:
|
|
@slot($slot:ident),
|
|
@munch_fields($field:ident <- $val:expr, $($rest:tt)*),
|
|
) => {
|
|
let $field = $val;
|
|
// Call the initializer.
|
|
//
|
|
// SAFETY: `slot` is valid, because we are inside of an initializer closure, we
|
|
// return when an error/panic occurs.
|
|
unsafe {
|
|
$crate::init::Init::__init($field, ::core::ptr::addr_of_mut!((*$slot).$field))?;
|
|
}
|
|
// Create the drop guard.
|
|
//
|
|
// We only give access to `&DropGuard`, so it cannot be accidentally forgotten.
|
|
//
|
|
// SAFETY: We forget the guard later when initialization has succeeded.
|
|
let $field = &unsafe {
|
|
$crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
|
|
};
|
|
|
|
$crate::try_init!(init_slot:
|
|
@slot($slot),
|
|
@munch_fields($($rest)*),
|
|
);
|
|
};
|
|
(init_slot:
|
|
@slot($slot:ident),
|
|
// Direct value init.
|
|
@munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
|
|
) => {
|
|
$(let $field = $val;)?
|
|
// Call the initializer.
|
|
//
|
|
// SAFETY: The memory at `slot` is uninitialized.
|
|
unsafe { ::core::ptr::write(::core::ptr::addr_of_mut!((*$slot).$field), $field) };
|
|
// Create the drop guard.
|
|
//
|
|
// We only give access to `&DropGuard`, so it cannot be accidentally forgotten.
|
|
//
|
|
// SAFETY: We forget the guard later when initialization has succeeded.
|
|
let $field = &unsafe {
|
|
$crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
|
|
};
|
|
|
|
$crate::try_init!(init_slot:
|
|
@slot($slot),
|
|
@munch_fields($($rest)*),
|
|
);
|
|
};
|
|
(make_initializer:
|
|
@slot($slot:ident),
|
|
@type_name($t:ident),
|
|
@munch_fields( $(,)?),
|
|
@acc($($acc:tt)*),
|
|
) => {
|
|
// Endpoint, nothing more to munch, create the initializer.
|
|
// Since we are in the `if false` branch, this will never get executed. We abuse `slot` to
|
|
// get the correct type inference here:
|
|
unsafe {
|
|
::core::ptr::write($slot, $t {
|
|
$($acc)*
|
|
});
|
|
}
|
|
};
|
|
(make_initializer:
|
|
@slot($slot:ident),
|
|
@type_name($t:ident),
|
|
@munch_fields($field:ident <- $val:expr, $($rest:tt)*),
|
|
@acc($($acc:tt)*),
|
|
) => {
|
|
$crate::try_init!(make_initializer:
|
|
@slot($slot),
|
|
@type_name($t),
|
|
@munch_fields($($rest)*),
|
|
@acc($($acc)*$field: ::core::panic!(),),
|
|
);
|
|
};
|
|
(make_initializer:
|
|
@slot($slot:ident),
|
|
@type_name($t:ident),
|
|
@munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
|
|
@acc($($acc:tt)*),
|
|
) => {
|
|
$crate::try_init!(make_initializer:
|
|
@slot($slot),
|
|
@type_name($t),
|
|
@munch_fields($($rest)*),
|
|
@acc($($acc)*$field: ::core::panic!(),),
|
|
);
|
|
};
|
|
(forget_guards:
|
|
@munch_fields($(,)?),
|
|
) => {
|
|
// Munching finished.
|
|
};
|
|
(forget_guards:
|
|
@munch_fields($field:ident <- $val:expr, $($rest:tt)*),
|
|
) => {
|
|
unsafe { $crate::init::__internal::DropGuard::forget($field) };
|
|
|
|
$crate::try_init!(forget_guards:
|
|
@munch_fields($($rest)*),
|
|
);
|
|
};
|
|
(forget_guards:
|
|
@munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
|
|
) => {
|
|
unsafe { $crate::init::__internal::DropGuard::forget($field) };
|
|
|
|
$crate::try_init!(forget_guards:
|
|
@munch_fields($($rest)*),
|
|
);
|
|
};
|
|
}
|
|
|
|
/// A pin-initializer for the type `T`.
|
|
///
|
|
/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
|
|
/// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
|
|
/// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this.
|
|
///
|
|
/// Also see the [module description](self).
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// When implementing this type you will need to take great care. Also there are probably very few
|
|
/// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
|
|
///
|
|
/// The [`PinInit::__pinned_init`] function
|
|
/// - returns `Ok(())` if it initialized every field of `slot`,
|
|
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
|
|
/// - `slot` can be deallocated without UB occurring,
|
|
/// - `slot` does not need to be dropped,
|
|
/// - `slot` is not partially initialized.
|
|
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
|
|
///
|
|
/// [`Arc<T>`]: crate::sync::Arc
|
|
/// [`Arc::pin_init`]: crate::sync::Arc::pin_init
|
|
#[must_use = "An initializer must be used in order to create its value."]
|
|
pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
|
|
/// Initializes `slot`.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// - `slot` is a valid pointer to uninitialized memory.
|
|
/// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
|
|
/// deallocate.
|
|
/// - `slot` will not move until it is dropped, i.e. it will be pinned.
|
|
unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
|
|
}
|
|
|
|
/// An initializer for `T`.
|
|
///
|
|
/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
|
|
/// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
|
|
/// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because
|
|
/// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
|
|
///
|
|
/// Also see the [module description](self).
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// When implementing this type you will need to take great care. Also there are probably very few
|
|
/// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
|
|
///
|
|
/// The [`Init::__init`] function
|
|
/// - returns `Ok(())` if it initialized every field of `slot`,
|
|
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
|
|
/// - `slot` can be deallocated without UB occurring,
|
|
/// - `slot` does not need to be dropped,
|
|
/// - `slot` is not partially initialized.
|
|
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
|
|
///
|
|
/// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
|
|
/// code as `__init`.
|
|
///
|
|
/// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
|
|
/// move the pointee after initialization.
|
|
///
|
|
/// [`Arc<T>`]: crate::sync::Arc
|
|
#[must_use = "An initializer must be used in order to create its value."]
|
|
pub unsafe trait Init<T: ?Sized, E = Infallible>: Sized {
|
|
/// Initializes `slot`.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// - `slot` is a valid pointer to uninitialized memory.
|
|
/// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
|
|
/// deallocate.
|
|
unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
|
|
}
|
|
|
|
// SAFETY: Every in-place initializer can also be used as a pin-initializer.
|
|
unsafe impl<T: ?Sized, E, I> PinInit<T, E> for I
|
|
where
|
|
I: Init<T, E>,
|
|
{
|
|
unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
|
|
// SAFETY: `__init` meets the same requirements as `__pinned_init`, except that it does not
|
|
// require `slot` to not move after init.
|
|
unsafe { self.__init(slot) }
|
|
}
|
|
}
|
|
|
|
/// Creates a new [`PinInit<T, E>`] from the given closure.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The closure:
|
|
/// - returns `Ok(())` if it initialized every field of `slot`,
|
|
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
|
|
/// - `slot` can be deallocated without UB occurring,
|
|
/// - `slot` does not need to be dropped,
|
|
/// - `slot` is not partially initialized.
|
|
/// - may assume that the `slot` does not move if `T: !Unpin`,
|
|
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
|
|
#[inline]
|
|
pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
|
|
f: impl FnOnce(*mut T) -> Result<(), E>,
|
|
) -> impl PinInit<T, E> {
|
|
__internal::InitClosure(f, PhantomData)
|
|
}
|
|
|
|
/// Creates a new [`Init<T, E>`] from the given closure.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The closure:
|
|
/// - returns `Ok(())` if it initialized every field of `slot`,
|
|
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
|
|
/// - `slot` can be deallocated without UB occurring,
|
|
/// - `slot` does not need to be dropped,
|
|
/// - `slot` is not partially initialized.
|
|
/// - the `slot` may move after initialization.
|
|
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
|
|
#[inline]
|
|
pub const unsafe fn init_from_closure<T: ?Sized, E>(
|
|
f: impl FnOnce(*mut T) -> Result<(), E>,
|
|
) -> impl Init<T, E> {
|
|
__internal::InitClosure(f, PhantomData)
|
|
}
|
|
|
|
/// An initializer that leaves the memory uninitialized.
|
|
///
|
|
/// The initializer is a no-op. The `slot` memory is not changed.
|
|
#[inline]
|
|
pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
|
|
// SAFETY: The memory is allowed to be uninitialized.
|
|
unsafe { init_from_closure(|_| Ok(())) }
|
|
}
|
|
|
|
// SAFETY: Every type can be initialized by-value.
|
|
unsafe impl<T, E> Init<T, E> for T {
|
|
unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
|
|
unsafe { slot.write(self) };
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Smart pointer that can initialize memory in-place.
|
|
pub trait InPlaceInit<T>: Sized {
|
|
/// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
|
|
/// type.
|
|
///
|
|
/// If `T: !Unpin` it will not be able to move afterwards.
|
|
fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
|
|
where
|
|
E: From<AllocError>;
|
|
|
|
/// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
|
|
/// type.
|
|
///
|
|
/// If `T: !Unpin` it will not be able to move afterwards.
|
|
fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Pin<Self>>
|
|
where
|
|
Error: From<E>,
|
|
{
|
|
// SAFETY: We delegate to `init` and only change the error type.
|
|
let init = unsafe {
|
|
pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
|
|
};
|
|
Self::try_pin_init(init)
|
|
}
|
|
|
|
/// Use the given initializer to in-place initialize a `T`.
|
|
fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
|
|
where
|
|
E: From<AllocError>;
|
|
|
|
/// Use the given initializer to in-place initialize a `T`.
|
|
fn init<E>(init: impl Init<T, E>) -> error::Result<Self>
|
|
where
|
|
Error: From<E>,
|
|
{
|
|
// SAFETY: We delegate to `init` and only change the error type.
|
|
let init = unsafe {
|
|
init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
|
|
};
|
|
Self::try_init(init)
|
|
}
|
|
}
|
|
|
|
impl<T> InPlaceInit<T> for Box<T> {
|
|
#[inline]
|
|
fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
|
|
where
|
|
E: From<AllocError>,
|
|
{
|
|
let mut this = Box::try_new_uninit()?;
|
|
let slot = this.as_mut_ptr();
|
|
// SAFETY: When init errors/panics, slot will get deallocated but not dropped,
|
|
// slot is valid and will not be moved, because we pin it later.
|
|
unsafe { init.__pinned_init(slot)? };
|
|
// SAFETY: All fields have been initialized.
|
|
Ok(unsafe { this.assume_init() }.into())
|
|
}
|
|
|
|
#[inline]
|
|
fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
|
|
where
|
|
E: From<AllocError>,
|
|
{
|
|
let mut this = Box::try_new_uninit()?;
|
|
let slot = this.as_mut_ptr();
|
|
// SAFETY: When init errors/panics, slot will get deallocated but not dropped,
|
|
// slot is valid.
|
|
unsafe { init.__init(slot)? };
|
|
// SAFETY: All fields have been initialized.
|
|
Ok(unsafe { this.assume_init() })
|
|
}
|
|
}
|
|
|
|
impl<T> InPlaceInit<T> for UniqueArc<T> {
|
|
#[inline]
|
|
fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
|
|
where
|
|
E: From<AllocError>,
|
|
{
|
|
let mut this = UniqueArc::try_new_uninit()?;
|
|
let slot = this.as_mut_ptr();
|
|
// SAFETY: When init errors/panics, slot will get deallocated but not dropped,
|
|
// slot is valid and will not be moved, because we pin it later.
|
|
unsafe { init.__pinned_init(slot)? };
|
|
// SAFETY: All fields have been initialized.
|
|
Ok(unsafe { this.assume_init() }.into())
|
|
}
|
|
|
|
#[inline]
|
|
fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
|
|
where
|
|
E: From<AllocError>,
|
|
{
|
|
let mut this = UniqueArc::try_new_uninit()?;
|
|
let slot = this.as_mut_ptr();
|
|
// SAFETY: When init errors/panics, slot will get deallocated but not dropped,
|
|
// slot is valid.
|
|
unsafe { init.__init(slot)? };
|
|
// SAFETY: All fields have been initialized.
|
|
Ok(unsafe { this.assume_init() })
|
|
}
|
|
}
|
|
|
|
/// Trait facilitating pinned destruction.
|
|
///
|
|
/// Use [`pinned_drop`] to implement this trait safely:
|
|
///
|
|
/// ```rust
|
|
/// # use kernel::sync::Mutex;
|
|
/// use kernel::macros::pinned_drop;
|
|
/// use core::pin::Pin;
|
|
/// #[pin_data(PinnedDrop)]
|
|
/// struct Foo {
|
|
/// #[pin]
|
|
/// mtx: Mutex<usize>,
|
|
/// }
|
|
///
|
|
/// #[pinned_drop]
|
|
/// impl PinnedDrop for Foo {
|
|
/// fn drop(self: Pin<&mut Self>) {
|
|
/// pr_info!("Foo is being dropped!");
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
|
|
///
|
|
/// [`pinned_drop`]: kernel::macros::pinned_drop
|
|
pub unsafe trait PinnedDrop: __internal::HasPinData {
|
|
/// Executes the pinned destructor of this type.
|
|
///
|
|
/// While this function is marked safe, it is actually unsafe to call it manually. For this
|
|
/// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
|
|
/// and thus prevents this function from being called where it should not.
|
|
///
|
|
/// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
|
|
/// automatically.
|
|
fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
|
|
}
|
|
|
|
/// Marker trait for types that can be initialized by writing just zeroes.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
|
|
/// this is not UB:
|
|
///
|
|
/// ```rust,ignore
|
|
/// let val: Self = unsafe { core::mem::zeroed() };
|
|
/// ```
|
|
pub unsafe trait Zeroable {}
|
|
|
|
/// Create a new zeroed T.
|
|
///
|
|
/// The returned initializer will write `0x00` to every byte of the given `slot`.
|
|
#[inline]
|
|
pub fn zeroed<T: Zeroable>() -> impl Init<T> {
|
|
// SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
|
|
// and because we write all zeroes, the memory is initialized.
|
|
unsafe {
|
|
init_from_closure(|slot: *mut T| {
|
|
slot.write_bytes(0, 1);
|
|
Ok(())
|
|
})
|
|
}
|
|
}
|
|
|
|
macro_rules! impl_zeroable {
|
|
($($({$($generics:tt)*})? $t:ty, )*) => {
|
|
$(unsafe impl$($($generics)*)? Zeroable for $t {})*
|
|
};
|
|
}
|
|
|
|
impl_zeroable! {
|
|
// SAFETY: All primitives that are allowed to be zero.
|
|
bool,
|
|
char,
|
|
u8, u16, u32, u64, u128, usize,
|
|
i8, i16, i32, i64, i128, isize,
|
|
f32, f64,
|
|
|
|
// SAFETY: These are ZSTs, there is nothing to zero.
|
|
{<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, Infallible, (),
|
|
|
|
// SAFETY: Type is allowed to take any value, including all zeros.
|
|
{<T>} MaybeUninit<T>,
|
|
|
|
// SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
|
|
Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
|
|
Option<NonZeroU128>, Option<NonZeroUsize>,
|
|
Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
|
|
Option<NonZeroI128>, Option<NonZeroIsize>,
|
|
|
|
// SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
|
|
//
|
|
// In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant.
|
|
{<T: ?Sized>} Option<NonNull<T>>,
|
|
{<T: ?Sized>} Option<Box<T>>,
|
|
|
|
// SAFETY: `null` pointer is valid.
|
|
//
|
|
// We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
|
|
// null.
|
|
//
|
|
// When `Pointee` gets stabilized, we could use
|
|
// `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
|
|
{<T>} *mut T, {<T>} *const T,
|
|
|
|
// SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
|
|
// zero.
|
|
{<T>} *mut [T], {<T>} *const [T], *mut str, *const str,
|
|
|
|
// SAFETY: `T` is `Zeroable`.
|
|
{<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
|
|
}
|
|
|
|
macro_rules! impl_tuple_zeroable {
|
|
($(,)?) => {};
|
|
($first:ident, $($t:ident),* $(,)?) => {
|
|
// SAFETY: All elements are zeroable and padding can be zero.
|
|
unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
|
|
impl_tuple_zeroable!($($t),* ,);
|
|
}
|
|
}
|
|
|
|
impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);
|