50f02fe333
Now that everything passes a perag, the agno is not needed anymore. Convert all the users to use pag->pag_agno instead and remove the agno from the cursor. This was largely done as an automated search and replace. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
485 lines
13 KiB
C
485 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2017 Oracle. All Rights Reserved.
|
|
* Author: Darrick J. Wong <darrick.wong@oracle.com>
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_rmap.h"
|
|
#include "xfs_refcount.h"
|
|
#include "scrub/scrub.h"
|
|
#include "scrub/common.h"
|
|
#include "scrub/btree.h"
|
|
#include "xfs_ag.h"
|
|
|
|
/*
|
|
* Set us up to scrub reference count btrees.
|
|
*/
|
|
int
|
|
xchk_setup_ag_refcountbt(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
return xchk_setup_ag_btree(sc, false);
|
|
}
|
|
|
|
/* Reference count btree scrubber. */
|
|
|
|
/*
|
|
* Confirming Reference Counts via Reverse Mappings
|
|
*
|
|
* We want to count the reverse mappings overlapping a refcount record
|
|
* (bno, len, refcount), allowing for the possibility that some of the
|
|
* overlap may come from smaller adjoining reverse mappings, while some
|
|
* comes from single extents which overlap the range entirely. The
|
|
* outer loop is as follows:
|
|
*
|
|
* 1. For all reverse mappings overlapping the refcount extent,
|
|
* a. If a given rmap completely overlaps, mark it as seen.
|
|
* b. Otherwise, record the fragment (in agbno order) for later
|
|
* processing.
|
|
*
|
|
* Once we've seen all the rmaps, we know that for all blocks in the
|
|
* refcount record we want to find $refcount owners and we've already
|
|
* visited $seen extents that overlap all the blocks. Therefore, we
|
|
* need to find ($refcount - $seen) owners for every block in the
|
|
* extent; call that quantity $target_nr. Proceed as follows:
|
|
*
|
|
* 2. Pull the first $target_nr fragments from the list; all of them
|
|
* should start at or before the start of the extent.
|
|
* Call this subset of fragments the working set.
|
|
* 3. Until there are no more unprocessed fragments,
|
|
* a. Find the shortest fragments in the set and remove them.
|
|
* b. Note the block number of the end of these fragments.
|
|
* c. Pull the same number of fragments from the list. All of these
|
|
* fragments should start at the block number recorded in the
|
|
* previous step.
|
|
* d. Put those fragments in the set.
|
|
* 4. Check that there are $target_nr fragments remaining in the list,
|
|
* and that they all end at or beyond the end of the refcount extent.
|
|
*
|
|
* If the refcount is correct, all the check conditions in the algorithm
|
|
* should always hold true. If not, the refcount is incorrect.
|
|
*/
|
|
struct xchk_refcnt_frag {
|
|
struct list_head list;
|
|
struct xfs_rmap_irec rm;
|
|
};
|
|
|
|
struct xchk_refcnt_check {
|
|
struct xfs_scrub *sc;
|
|
struct list_head fragments;
|
|
|
|
/* refcount extent we're examining */
|
|
xfs_agblock_t bno;
|
|
xfs_extlen_t len;
|
|
xfs_nlink_t refcount;
|
|
|
|
/* number of owners seen */
|
|
xfs_nlink_t seen;
|
|
};
|
|
|
|
/*
|
|
* Decide if the given rmap is large enough that we can redeem it
|
|
* towards refcount verification now, or if it's a fragment, in
|
|
* which case we'll hang onto it in the hopes that we'll later
|
|
* discover that we've collected exactly the correct number of
|
|
* fragments as the refcountbt says we should have.
|
|
*/
|
|
STATIC int
|
|
xchk_refcountbt_rmap_check(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_rmap_irec *rec,
|
|
void *priv)
|
|
{
|
|
struct xchk_refcnt_check *refchk = priv;
|
|
struct xchk_refcnt_frag *frag;
|
|
xfs_agblock_t rm_last;
|
|
xfs_agblock_t rc_last;
|
|
int error = 0;
|
|
|
|
if (xchk_should_terminate(refchk->sc, &error))
|
|
return error;
|
|
|
|
rm_last = rec->rm_startblock + rec->rm_blockcount - 1;
|
|
rc_last = refchk->bno + refchk->len - 1;
|
|
|
|
/* Confirm that a single-owner refc extent is a CoW stage. */
|
|
if (refchk->refcount == 1 && rec->rm_owner != XFS_RMAP_OWN_COW) {
|
|
xchk_btree_xref_set_corrupt(refchk->sc, cur, 0);
|
|
return 0;
|
|
}
|
|
|
|
if (rec->rm_startblock <= refchk->bno && rm_last >= rc_last) {
|
|
/*
|
|
* The rmap overlaps the refcount record, so we can confirm
|
|
* one refcount owner seen.
|
|
*/
|
|
refchk->seen++;
|
|
} else {
|
|
/*
|
|
* This rmap covers only part of the refcount record, so
|
|
* save the fragment for later processing. If the rmapbt
|
|
* is healthy each rmap_irec we see will be in agbno order
|
|
* so we don't need insertion sort here.
|
|
*/
|
|
frag = kmem_alloc(sizeof(struct xchk_refcnt_frag),
|
|
KM_MAYFAIL);
|
|
if (!frag)
|
|
return -ENOMEM;
|
|
memcpy(&frag->rm, rec, sizeof(frag->rm));
|
|
list_add_tail(&frag->list, &refchk->fragments);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Given a bunch of rmap fragments, iterate through them, keeping
|
|
* a running tally of the refcount. If this ever deviates from
|
|
* what we expect (which is the refcountbt's refcount minus the
|
|
* number of extents that totally covered the refcountbt extent),
|
|
* we have a refcountbt error.
|
|
*/
|
|
STATIC void
|
|
xchk_refcountbt_process_rmap_fragments(
|
|
struct xchk_refcnt_check *refchk)
|
|
{
|
|
struct list_head worklist;
|
|
struct xchk_refcnt_frag *frag;
|
|
struct xchk_refcnt_frag *n;
|
|
xfs_agblock_t bno;
|
|
xfs_agblock_t rbno;
|
|
xfs_agblock_t next_rbno;
|
|
xfs_nlink_t nr;
|
|
xfs_nlink_t target_nr;
|
|
|
|
target_nr = refchk->refcount - refchk->seen;
|
|
if (target_nr == 0)
|
|
return;
|
|
|
|
/*
|
|
* There are (refchk->rc.rc_refcount - refchk->nr refcount)
|
|
* references we haven't found yet. Pull that many off the
|
|
* fragment list and figure out where the smallest rmap ends
|
|
* (and therefore the next rmap should start). All the rmaps
|
|
* we pull off should start at or before the beginning of the
|
|
* refcount record's range.
|
|
*/
|
|
INIT_LIST_HEAD(&worklist);
|
|
rbno = NULLAGBLOCK;
|
|
|
|
/* Make sure the fragments actually /are/ in agbno order. */
|
|
bno = 0;
|
|
list_for_each_entry(frag, &refchk->fragments, list) {
|
|
if (frag->rm.rm_startblock < bno)
|
|
goto done;
|
|
bno = frag->rm.rm_startblock;
|
|
}
|
|
|
|
/*
|
|
* Find all the rmaps that start at or before the refc extent,
|
|
* and put them on the worklist.
|
|
*/
|
|
nr = 0;
|
|
list_for_each_entry_safe(frag, n, &refchk->fragments, list) {
|
|
if (frag->rm.rm_startblock > refchk->bno || nr > target_nr)
|
|
break;
|
|
bno = frag->rm.rm_startblock + frag->rm.rm_blockcount;
|
|
if (bno < rbno)
|
|
rbno = bno;
|
|
list_move_tail(&frag->list, &worklist);
|
|
nr++;
|
|
}
|
|
|
|
/*
|
|
* We should have found exactly $target_nr rmap fragments starting
|
|
* at or before the refcount extent.
|
|
*/
|
|
if (nr != target_nr)
|
|
goto done;
|
|
|
|
while (!list_empty(&refchk->fragments)) {
|
|
/* Discard any fragments ending at rbno from the worklist. */
|
|
nr = 0;
|
|
next_rbno = NULLAGBLOCK;
|
|
list_for_each_entry_safe(frag, n, &worklist, list) {
|
|
bno = frag->rm.rm_startblock + frag->rm.rm_blockcount;
|
|
if (bno != rbno) {
|
|
if (bno < next_rbno)
|
|
next_rbno = bno;
|
|
continue;
|
|
}
|
|
list_del(&frag->list);
|
|
kmem_free(frag);
|
|
nr++;
|
|
}
|
|
|
|
/* Try to add nr rmaps starting at rbno to the worklist. */
|
|
list_for_each_entry_safe(frag, n, &refchk->fragments, list) {
|
|
bno = frag->rm.rm_startblock + frag->rm.rm_blockcount;
|
|
if (frag->rm.rm_startblock != rbno)
|
|
goto done;
|
|
list_move_tail(&frag->list, &worklist);
|
|
if (next_rbno > bno)
|
|
next_rbno = bno;
|
|
nr--;
|
|
if (nr == 0)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we get here and nr > 0, this means that we added fewer
|
|
* items to the worklist than we discarded because the fragment
|
|
* list ran out of items. Therefore, we cannot maintain the
|
|
* required refcount. Something is wrong, so we're done.
|
|
*/
|
|
if (nr)
|
|
goto done;
|
|
|
|
rbno = next_rbno;
|
|
}
|
|
|
|
/*
|
|
* Make sure the last extent we processed ends at or beyond
|
|
* the end of the refcount extent.
|
|
*/
|
|
if (rbno < refchk->bno + refchk->len)
|
|
goto done;
|
|
|
|
/* Actually record us having seen the remaining refcount. */
|
|
refchk->seen = refchk->refcount;
|
|
done:
|
|
/* Delete fragments and work list. */
|
|
list_for_each_entry_safe(frag, n, &worklist, list) {
|
|
list_del(&frag->list);
|
|
kmem_free(frag);
|
|
}
|
|
list_for_each_entry_safe(frag, n, &refchk->fragments, list) {
|
|
list_del(&frag->list);
|
|
kmem_free(frag);
|
|
}
|
|
}
|
|
|
|
/* Use the rmap entries covering this extent to verify the refcount. */
|
|
STATIC void
|
|
xchk_refcountbt_xref_rmap(
|
|
struct xfs_scrub *sc,
|
|
xfs_agblock_t bno,
|
|
xfs_extlen_t len,
|
|
xfs_nlink_t refcount)
|
|
{
|
|
struct xchk_refcnt_check refchk = {
|
|
.sc = sc,
|
|
.bno = bno,
|
|
.len = len,
|
|
.refcount = refcount,
|
|
.seen = 0,
|
|
};
|
|
struct xfs_rmap_irec low;
|
|
struct xfs_rmap_irec high;
|
|
struct xchk_refcnt_frag *frag;
|
|
struct xchk_refcnt_frag *n;
|
|
int error;
|
|
|
|
if (!sc->sa.rmap_cur || xchk_skip_xref(sc->sm))
|
|
return;
|
|
|
|
/* Cross-reference with the rmapbt to confirm the refcount. */
|
|
memset(&low, 0, sizeof(low));
|
|
low.rm_startblock = bno;
|
|
memset(&high, 0xFF, sizeof(high));
|
|
high.rm_startblock = bno + len - 1;
|
|
|
|
INIT_LIST_HEAD(&refchk.fragments);
|
|
error = xfs_rmap_query_range(sc->sa.rmap_cur, &low, &high,
|
|
&xchk_refcountbt_rmap_check, &refchk);
|
|
if (!xchk_should_check_xref(sc, &error, &sc->sa.rmap_cur))
|
|
goto out_free;
|
|
|
|
xchk_refcountbt_process_rmap_fragments(&refchk);
|
|
if (refcount != refchk.seen)
|
|
xchk_btree_xref_set_corrupt(sc, sc->sa.rmap_cur, 0);
|
|
|
|
out_free:
|
|
list_for_each_entry_safe(frag, n, &refchk.fragments, list) {
|
|
list_del(&frag->list);
|
|
kmem_free(frag);
|
|
}
|
|
}
|
|
|
|
/* Cross-reference with the other btrees. */
|
|
STATIC void
|
|
xchk_refcountbt_xref(
|
|
struct xfs_scrub *sc,
|
|
xfs_agblock_t agbno,
|
|
xfs_extlen_t len,
|
|
xfs_nlink_t refcount)
|
|
{
|
|
if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
|
|
return;
|
|
|
|
xchk_xref_is_used_space(sc, agbno, len);
|
|
xchk_xref_is_not_inode_chunk(sc, agbno, len);
|
|
xchk_refcountbt_xref_rmap(sc, agbno, len, refcount);
|
|
}
|
|
|
|
/* Scrub a refcountbt record. */
|
|
STATIC int
|
|
xchk_refcountbt_rec(
|
|
struct xchk_btree *bs,
|
|
union xfs_btree_rec *rec)
|
|
{
|
|
struct xfs_mount *mp = bs->cur->bc_mp;
|
|
xfs_agblock_t *cow_blocks = bs->private;
|
|
xfs_agnumber_t agno = bs->cur->bc_ag.pag->pag_agno;
|
|
xfs_agblock_t bno;
|
|
xfs_extlen_t len;
|
|
xfs_nlink_t refcount;
|
|
bool has_cowflag;
|
|
|
|
bno = be32_to_cpu(rec->refc.rc_startblock);
|
|
len = be32_to_cpu(rec->refc.rc_blockcount);
|
|
refcount = be32_to_cpu(rec->refc.rc_refcount);
|
|
|
|
/* Only CoW records can have refcount == 1. */
|
|
has_cowflag = (bno & XFS_REFC_COW_START);
|
|
if ((refcount == 1 && !has_cowflag) || (refcount != 1 && has_cowflag))
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
if (has_cowflag)
|
|
(*cow_blocks) += len;
|
|
|
|
/* Check the extent. */
|
|
bno &= ~XFS_REFC_COW_START;
|
|
if (bno + len <= bno ||
|
|
!xfs_verify_agbno(mp, agno, bno) ||
|
|
!xfs_verify_agbno(mp, agno, bno + len - 1))
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
|
|
if (refcount == 0)
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
|
|
xchk_refcountbt_xref(bs->sc, bno, len, refcount);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Make sure we have as many refc blocks as the rmap says. */
|
|
STATIC void
|
|
xchk_refcount_xref_rmap(
|
|
struct xfs_scrub *sc,
|
|
xfs_filblks_t cow_blocks)
|
|
{
|
|
xfs_extlen_t refcbt_blocks = 0;
|
|
xfs_filblks_t blocks;
|
|
int error;
|
|
|
|
if (!sc->sa.rmap_cur || xchk_skip_xref(sc->sm))
|
|
return;
|
|
|
|
/* Check that we saw as many refcbt blocks as the rmap knows about. */
|
|
error = xfs_btree_count_blocks(sc->sa.refc_cur, &refcbt_blocks);
|
|
if (!xchk_btree_process_error(sc, sc->sa.refc_cur, 0, &error))
|
|
return;
|
|
error = xchk_count_rmap_ownedby_ag(sc, sc->sa.rmap_cur,
|
|
&XFS_RMAP_OINFO_REFC, &blocks);
|
|
if (!xchk_should_check_xref(sc, &error, &sc->sa.rmap_cur))
|
|
return;
|
|
if (blocks != refcbt_blocks)
|
|
xchk_btree_xref_set_corrupt(sc, sc->sa.rmap_cur, 0);
|
|
|
|
/* Check that we saw as many cow blocks as the rmap knows about. */
|
|
error = xchk_count_rmap_ownedby_ag(sc, sc->sa.rmap_cur,
|
|
&XFS_RMAP_OINFO_COW, &blocks);
|
|
if (!xchk_should_check_xref(sc, &error, &sc->sa.rmap_cur))
|
|
return;
|
|
if (blocks != cow_blocks)
|
|
xchk_btree_xref_set_corrupt(sc, sc->sa.rmap_cur, 0);
|
|
}
|
|
|
|
/* Scrub the refcount btree for some AG. */
|
|
int
|
|
xchk_refcountbt(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
xfs_agblock_t cow_blocks = 0;
|
|
int error;
|
|
|
|
error = xchk_btree(sc, sc->sa.refc_cur, xchk_refcountbt_rec,
|
|
&XFS_RMAP_OINFO_REFC, &cow_blocks);
|
|
if (error)
|
|
return error;
|
|
|
|
xchk_refcount_xref_rmap(sc, cow_blocks);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* xref check that a cow staging extent is marked in the refcountbt. */
|
|
void
|
|
xchk_xref_is_cow_staging(
|
|
struct xfs_scrub *sc,
|
|
xfs_agblock_t agbno,
|
|
xfs_extlen_t len)
|
|
{
|
|
struct xfs_refcount_irec rc;
|
|
bool has_cowflag;
|
|
int has_refcount;
|
|
int error;
|
|
|
|
if (!sc->sa.refc_cur || xchk_skip_xref(sc->sm))
|
|
return;
|
|
|
|
/* Find the CoW staging extent. */
|
|
error = xfs_refcount_lookup_le(sc->sa.refc_cur,
|
|
agbno + XFS_REFC_COW_START, &has_refcount);
|
|
if (!xchk_should_check_xref(sc, &error, &sc->sa.refc_cur))
|
|
return;
|
|
if (!has_refcount) {
|
|
xchk_btree_xref_set_corrupt(sc, sc->sa.refc_cur, 0);
|
|
return;
|
|
}
|
|
|
|
error = xfs_refcount_get_rec(sc->sa.refc_cur, &rc, &has_refcount);
|
|
if (!xchk_should_check_xref(sc, &error, &sc->sa.refc_cur))
|
|
return;
|
|
if (!has_refcount) {
|
|
xchk_btree_xref_set_corrupt(sc, sc->sa.refc_cur, 0);
|
|
return;
|
|
}
|
|
|
|
/* CoW flag must be set, refcount must be 1. */
|
|
has_cowflag = (rc.rc_startblock & XFS_REFC_COW_START);
|
|
if (!has_cowflag || rc.rc_refcount != 1)
|
|
xchk_btree_xref_set_corrupt(sc, sc->sa.refc_cur, 0);
|
|
|
|
/* Must be at least as long as what was passed in */
|
|
if (rc.rc_blockcount < len)
|
|
xchk_btree_xref_set_corrupt(sc, sc->sa.refc_cur, 0);
|
|
}
|
|
|
|
/*
|
|
* xref check that the extent is not shared. Only file data blocks
|
|
* can have multiple owners.
|
|
*/
|
|
void
|
|
xchk_xref_is_not_shared(
|
|
struct xfs_scrub *sc,
|
|
xfs_agblock_t agbno,
|
|
xfs_extlen_t len)
|
|
{
|
|
bool shared;
|
|
int error;
|
|
|
|
if (!sc->sa.refc_cur || xchk_skip_xref(sc->sm))
|
|
return;
|
|
|
|
error = xfs_refcount_has_record(sc->sa.refc_cur, agbno, len, &shared);
|
|
if (!xchk_should_check_xref(sc, &error, &sc->sa.refc_cur))
|
|
return;
|
|
if (shared)
|
|
xchk_btree_xref_set_corrupt(sc, sc->sa.refc_cur, 0);
|
|
}
|