linux/kernel/bpf/helpers.c
Daniel Borkmann 0f09abd105 bpf: Enable bpf cgroup hooks to retrieve cgroup v2 and ancestor id
Enable the bpf_get_current_cgroup_id() helper for connect(), sendmsg(),
recvmsg() and bind-related hooks in order to retrieve the cgroup v2
context which can then be used as part of the key for BPF map lookups,
for example. Given these hooks operate in process context 'current' is
always valid and pointing to the app that is performing mentioned
syscalls if it's subject to a v2 cgroup. Also with same motivation of
commit 7723628101aa ("bpf: Introduce bpf_skb_ancestor_cgroup_id helper")
enable retrieval of ancestor from current so the cgroup id can be used
for policy lookups which can then forbid connect() / bind(), for example.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/d2a7ef42530ad299e3cbb245e6c12374b72145ef.1585323121.git.daniel@iogearbox.net
2020-03-27 19:40:39 -07:00

565 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
*/
#include <linux/bpf.h>
#include <linux/rcupdate.h>
#include <linux/random.h>
#include <linux/smp.h>
#include <linux/topology.h>
#include <linux/ktime.h>
#include <linux/sched.h>
#include <linux/uidgid.h>
#include <linux/filter.h>
#include <linux/ctype.h>
#include <linux/jiffies.h>
#include <linux/pid_namespace.h>
#include <linux/proc_ns.h>
#include "../../lib/kstrtox.h"
/* If kernel subsystem is allowing eBPF programs to call this function,
* inside its own verifier_ops->get_func_proto() callback it should return
* bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
*
* Different map implementations will rely on rcu in map methods
* lookup/update/delete, therefore eBPF programs must run under rcu lock
* if program is allowed to access maps, so check rcu_read_lock_held in
* all three functions.
*/
BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
{
WARN_ON_ONCE(!rcu_read_lock_held());
return (unsigned long) map->ops->map_lookup_elem(map, key);
}
const struct bpf_func_proto bpf_map_lookup_elem_proto = {
.func = bpf_map_lookup_elem,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_KEY,
};
BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
void *, value, u64, flags)
{
WARN_ON_ONCE(!rcu_read_lock_held());
return map->ops->map_update_elem(map, key, value, flags);
}
const struct bpf_func_proto bpf_map_update_elem_proto = {
.func = bpf_map_update_elem,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_KEY,
.arg3_type = ARG_PTR_TO_MAP_VALUE,
.arg4_type = ARG_ANYTHING,
};
BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
{
WARN_ON_ONCE(!rcu_read_lock_held());
return map->ops->map_delete_elem(map, key);
}
const struct bpf_func_proto bpf_map_delete_elem_proto = {
.func = bpf_map_delete_elem,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_KEY,
};
BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
{
return map->ops->map_push_elem(map, value, flags);
}
const struct bpf_func_proto bpf_map_push_elem_proto = {
.func = bpf_map_push_elem,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_VALUE,
.arg3_type = ARG_ANYTHING,
};
BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
{
return map->ops->map_pop_elem(map, value);
}
const struct bpf_func_proto bpf_map_pop_elem_proto = {
.func = bpf_map_pop_elem,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
};
BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
{
return map->ops->map_peek_elem(map, value);
}
const struct bpf_func_proto bpf_map_peek_elem_proto = {
.func = bpf_map_pop_elem,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
};
const struct bpf_func_proto bpf_get_prandom_u32_proto = {
.func = bpf_user_rnd_u32,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_get_smp_processor_id)
{
return smp_processor_id();
}
const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
.func = bpf_get_smp_processor_id,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_get_numa_node_id)
{
return numa_node_id();
}
const struct bpf_func_proto bpf_get_numa_node_id_proto = {
.func = bpf_get_numa_node_id,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_ktime_get_ns)
{
/* NMI safe access to clock monotonic */
return ktime_get_mono_fast_ns();
}
const struct bpf_func_proto bpf_ktime_get_ns_proto = {
.func = bpf_ktime_get_ns,
.gpl_only = true,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_get_current_pid_tgid)
{
struct task_struct *task = current;
if (unlikely(!task))
return -EINVAL;
return (u64) task->tgid << 32 | task->pid;
}
const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
.func = bpf_get_current_pid_tgid,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_get_current_uid_gid)
{
struct task_struct *task = current;
kuid_t uid;
kgid_t gid;
if (unlikely(!task))
return -EINVAL;
current_uid_gid(&uid, &gid);
return (u64) from_kgid(&init_user_ns, gid) << 32 |
from_kuid(&init_user_ns, uid);
}
const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
.func = bpf_get_current_uid_gid,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
{
struct task_struct *task = current;
if (unlikely(!task))
goto err_clear;
strncpy(buf, task->comm, size);
/* Verifier guarantees that size > 0. For task->comm exceeding
* size, guarantee that buf is %NUL-terminated. Unconditionally
* done here to save the size test.
*/
buf[size - 1] = 0;
return 0;
err_clear:
memset(buf, 0, size);
return -EINVAL;
}
const struct bpf_func_proto bpf_get_current_comm_proto = {
.func = bpf_get_current_comm,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE,
};
#if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
{
arch_spinlock_t *l = (void *)lock;
union {
__u32 val;
arch_spinlock_t lock;
} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
arch_spin_lock(l);
}
static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
{
arch_spinlock_t *l = (void *)lock;
arch_spin_unlock(l);
}
#else
static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
{
atomic_t *l = (void *)lock;
BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
do {
atomic_cond_read_relaxed(l, !VAL);
} while (atomic_xchg(l, 1));
}
static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
{
atomic_t *l = (void *)lock;
atomic_set_release(l, 0);
}
#endif
static DEFINE_PER_CPU(unsigned long, irqsave_flags);
notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
{
unsigned long flags;
local_irq_save(flags);
__bpf_spin_lock(lock);
__this_cpu_write(irqsave_flags, flags);
return 0;
}
const struct bpf_func_proto bpf_spin_lock_proto = {
.func = bpf_spin_lock,
.gpl_only = false,
.ret_type = RET_VOID,
.arg1_type = ARG_PTR_TO_SPIN_LOCK,
};
notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
{
unsigned long flags;
flags = __this_cpu_read(irqsave_flags);
__bpf_spin_unlock(lock);
local_irq_restore(flags);
return 0;
}
const struct bpf_func_proto bpf_spin_unlock_proto = {
.func = bpf_spin_unlock,
.gpl_only = false,
.ret_type = RET_VOID,
.arg1_type = ARG_PTR_TO_SPIN_LOCK,
};
void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
bool lock_src)
{
struct bpf_spin_lock *lock;
if (lock_src)
lock = src + map->spin_lock_off;
else
lock = dst + map->spin_lock_off;
preempt_disable();
____bpf_spin_lock(lock);
copy_map_value(map, dst, src);
____bpf_spin_unlock(lock);
preempt_enable();
}
BPF_CALL_0(bpf_jiffies64)
{
return get_jiffies_64();
}
const struct bpf_func_proto bpf_jiffies64_proto = {
.func = bpf_jiffies64,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
#ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)
{
struct cgroup *cgrp = task_dfl_cgroup(current);
return cgroup_id(cgrp);
}
const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
.func = bpf_get_current_cgroup_id,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
{
struct cgroup *cgrp = task_dfl_cgroup(current);
struct cgroup *ancestor;
ancestor = cgroup_ancestor(cgrp, ancestor_level);
if (!ancestor)
return 0;
return cgroup_id(ancestor);
}
const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
.func = bpf_get_current_ancestor_cgroup_id,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_ANYTHING,
};
#ifdef CONFIG_CGROUP_BPF
DECLARE_PER_CPU(struct bpf_cgroup_storage*,
bpf_cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]);
BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
{
/* flags argument is not used now,
* but provides an ability to extend the API.
* verifier checks that its value is correct.
*/
enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
struct bpf_cgroup_storage *storage;
void *ptr;
storage = this_cpu_read(bpf_cgroup_storage[stype]);
if (stype == BPF_CGROUP_STORAGE_SHARED)
ptr = &READ_ONCE(storage->buf)->data[0];
else
ptr = this_cpu_ptr(storage->percpu_buf);
return (unsigned long)ptr;
}
const struct bpf_func_proto bpf_get_local_storage_proto = {
.func = bpf_get_local_storage,
.gpl_only = false,
.ret_type = RET_PTR_TO_MAP_VALUE,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_ANYTHING,
};
#endif
#define BPF_STRTOX_BASE_MASK 0x1F
static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
unsigned long long *res, bool *is_negative)
{
unsigned int base = flags & BPF_STRTOX_BASE_MASK;
const char *cur_buf = buf;
size_t cur_len = buf_len;
unsigned int consumed;
size_t val_len;
char str[64];
if (!buf || !buf_len || !res || !is_negative)
return -EINVAL;
if (base != 0 && base != 8 && base != 10 && base != 16)
return -EINVAL;
if (flags & ~BPF_STRTOX_BASE_MASK)
return -EINVAL;
while (cur_buf < buf + buf_len && isspace(*cur_buf))
++cur_buf;
*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
if (*is_negative)
++cur_buf;
consumed = cur_buf - buf;
cur_len -= consumed;
if (!cur_len)
return -EINVAL;
cur_len = min(cur_len, sizeof(str) - 1);
memcpy(str, cur_buf, cur_len);
str[cur_len] = '\0';
cur_buf = str;
cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
val_len = _parse_integer(cur_buf, base, res);
if (val_len & KSTRTOX_OVERFLOW)
return -ERANGE;
if (val_len == 0)
return -EINVAL;
cur_buf += val_len;
consumed += cur_buf - str;
return consumed;
}
static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
long long *res)
{
unsigned long long _res;
bool is_negative;
int err;
err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
if (err < 0)
return err;
if (is_negative) {
if ((long long)-_res > 0)
return -ERANGE;
*res = -_res;
} else {
if ((long long)_res < 0)
return -ERANGE;
*res = _res;
}
return err;
}
BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
long *, res)
{
long long _res;
int err;
err = __bpf_strtoll(buf, buf_len, flags, &_res);
if (err < 0)
return err;
if (_res != (long)_res)
return -ERANGE;
*res = _res;
return err;
}
const struct bpf_func_proto bpf_strtol_proto = {
.func = bpf_strtol,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_MEM,
.arg2_type = ARG_CONST_SIZE,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_LONG,
};
BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
unsigned long *, res)
{
unsigned long long _res;
bool is_negative;
int err;
err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
if (err < 0)
return err;
if (is_negative)
return -EINVAL;
if (_res != (unsigned long)_res)
return -ERANGE;
*res = _res;
return err;
}
const struct bpf_func_proto bpf_strtoul_proto = {
.func = bpf_strtoul,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_MEM,
.arg2_type = ARG_CONST_SIZE,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_LONG,
};
#endif
BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
struct bpf_pidns_info *, nsdata, u32, size)
{
struct task_struct *task = current;
struct pid_namespace *pidns;
int err = -EINVAL;
if (unlikely(size != sizeof(struct bpf_pidns_info)))
goto clear;
if (unlikely((u64)(dev_t)dev != dev))
goto clear;
if (unlikely(!task))
goto clear;
pidns = task_active_pid_ns(task);
if (unlikely(!pidns)) {
err = -ENOENT;
goto clear;
}
if (!ns_match(&pidns->ns, (dev_t)dev, ino))
goto clear;
nsdata->pid = task_pid_nr_ns(task, pidns);
nsdata->tgid = task_tgid_nr_ns(task, pidns);
return 0;
clear:
memset((void *)nsdata, 0, (size_t) size);
return err;
}
const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
.func = bpf_get_ns_current_pid_tgid,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_ANYTHING,
.arg2_type = ARG_ANYTHING,
.arg3_type = ARG_PTR_TO_UNINIT_MEM,
.arg4_type = ARG_CONST_SIZE,
};