Wenbo reported an issue in [1] where a checking of null
pointer is evaluated as always false. In this particular
case, the program type is tp_btf and the pointer to
compare is a PTR_TO_BTF_ID.
The current verifier considers PTR_TO_BTF_ID always
reprents a non-null pointer, hence all PTR_TO_BTF_ID compares
to 0 will be evaluated as always not-equal, which resulted
in the branch elimination.
For example,
 struct bpf_fentry_test_t {
     struct bpf_fentry_test_t *a;
 };
 int BPF_PROG(test7, struct bpf_fentry_test_t *arg)
 {
     if (arg == 0)
         test7_result = 1;
     return 0;
 }
 int BPF_PROG(test8, struct bpf_fentry_test_t *arg)
 {
     if (arg->a == 0)
         test8_result = 1;
     return 0;
 }
In above bpf programs, both branch arg == 0 and arg->a == 0
are removed. This may not be what developer expected.
The bug is introduced by Commit cac616db39 ("bpf: Verifier
track null pointer branch_taken with JNE and JEQ"),
where PTR_TO_BTF_ID is considered to be non-null when evaluting
pointer vs. scalar comparison. This may be added
considering we have PTR_TO_BTF_ID_OR_NULL in the verifier
as well.
PTR_TO_BTF_ID_OR_NULL is added to explicitly requires
a non-NULL testing in selective cases. The current generic
pointer tracing framework in verifier always
assigns PTR_TO_BTF_ID so users does not need to
check NULL pointer at every pointer level like a->b->c->d.
We may not want to assign every PTR_TO_BTF_ID as
PTR_TO_BTF_ID_OR_NULL as this will require a null test
before pointer dereference which may cause inconvenience
for developers. But we could avoid branch elimination
to preserve original code intention.
This patch simply removed PTR_TO_BTD_ID from reg_type_not_null()
in verifier, which prevented the above branches from being eliminated.
 [1]: https://lore.kernel.org/bpf/79dbb7c0-449d-83eb-5f4f-7af0cc269168@fb.com/T/
Fixes: cac616db39 ("bpf: Verifier track null pointer branch_taken with JNE and JEQ")
Reported-by: Wenbo Zhang <ethercflow@gmail.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200630171240.2523722-1-yhs@fb.com
		
	
		
			
				
	
	
		
			11096 lines
		
	
	
		
			318 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			11096 lines
		
	
	
		
			318 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
 | |
|  * Copyright (c) 2016 Facebook
 | |
|  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
 | |
|  */
 | |
| #include <uapi/linux/btf.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/bpf.h>
 | |
| #include <linux/btf.h>
 | |
| #include <linux/bpf_verifier.h>
 | |
| #include <linux/filter.h>
 | |
| #include <net/netlink.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/stringify.h>
 | |
| #include <linux/bsearch.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/error-injection.h>
 | |
| #include <linux/bpf_lsm.h>
 | |
| 
 | |
| #include "disasm.h"
 | |
| 
 | |
| static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
 | |
| #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
 | |
| 	[_id] = & _name ## _verifier_ops,
 | |
| #define BPF_MAP_TYPE(_id, _ops)
 | |
| #define BPF_LINK_TYPE(_id, _name)
 | |
| #include <linux/bpf_types.h>
 | |
| #undef BPF_PROG_TYPE
 | |
| #undef BPF_MAP_TYPE
 | |
| #undef BPF_LINK_TYPE
 | |
| };
 | |
| 
 | |
| /* bpf_check() is a static code analyzer that walks eBPF program
 | |
|  * instruction by instruction and updates register/stack state.
 | |
|  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 | |
|  *
 | |
|  * The first pass is depth-first-search to check that the program is a DAG.
 | |
|  * It rejects the following programs:
 | |
|  * - larger than BPF_MAXINSNS insns
 | |
|  * - if loop is present (detected via back-edge)
 | |
|  * - unreachable insns exist (shouldn't be a forest. program = one function)
 | |
|  * - out of bounds or malformed jumps
 | |
|  * The second pass is all possible path descent from the 1st insn.
 | |
|  * Since it's analyzing all pathes through the program, the length of the
 | |
|  * analysis is limited to 64k insn, which may be hit even if total number of
 | |
|  * insn is less then 4K, but there are too many branches that change stack/regs.
 | |
|  * Number of 'branches to be analyzed' is limited to 1k
 | |
|  *
 | |
|  * On entry to each instruction, each register has a type, and the instruction
 | |
|  * changes the types of the registers depending on instruction semantics.
 | |
|  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 | |
|  * copied to R1.
 | |
|  *
 | |
|  * All registers are 64-bit.
 | |
|  * R0 - return register
 | |
|  * R1-R5 argument passing registers
 | |
|  * R6-R9 callee saved registers
 | |
|  * R10 - frame pointer read-only
 | |
|  *
 | |
|  * At the start of BPF program the register R1 contains a pointer to bpf_context
 | |
|  * and has type PTR_TO_CTX.
 | |
|  *
 | |
|  * Verifier tracks arithmetic operations on pointers in case:
 | |
|  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 | |
|  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 | |
|  * 1st insn copies R10 (which has FRAME_PTR) type into R1
 | |
|  * and 2nd arithmetic instruction is pattern matched to recognize
 | |
|  * that it wants to construct a pointer to some element within stack.
 | |
|  * So after 2nd insn, the register R1 has type PTR_TO_STACK
 | |
|  * (and -20 constant is saved for further stack bounds checking).
 | |
|  * Meaning that this reg is a pointer to stack plus known immediate constant.
 | |
|  *
 | |
|  * Most of the time the registers have SCALAR_VALUE type, which
 | |
|  * means the register has some value, but it's not a valid pointer.
 | |
|  * (like pointer plus pointer becomes SCALAR_VALUE type)
 | |
|  *
 | |
|  * When verifier sees load or store instructions the type of base register
 | |
|  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
 | |
|  * four pointer types recognized by check_mem_access() function.
 | |
|  *
 | |
|  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 | |
|  * and the range of [ptr, ptr + map's value_size) is accessible.
 | |
|  *
 | |
|  * registers used to pass values to function calls are checked against
 | |
|  * function argument constraints.
 | |
|  *
 | |
|  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 | |
|  * It means that the register type passed to this function must be
 | |
|  * PTR_TO_STACK and it will be used inside the function as
 | |
|  * 'pointer to map element key'
 | |
|  *
 | |
|  * For example the argument constraints for bpf_map_lookup_elem():
 | |
|  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 | |
|  *   .arg1_type = ARG_CONST_MAP_PTR,
 | |
|  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 | |
|  *
 | |
|  * ret_type says that this function returns 'pointer to map elem value or null'
 | |
|  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 | |
|  * 2nd argument should be a pointer to stack, which will be used inside
 | |
|  * the helper function as a pointer to map element key.
 | |
|  *
 | |
|  * On the kernel side the helper function looks like:
 | |
|  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 | |
|  * {
 | |
|  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 | |
|  *    void *key = (void *) (unsigned long) r2;
 | |
|  *    void *value;
 | |
|  *
 | |
|  *    here kernel can access 'key' and 'map' pointers safely, knowing that
 | |
|  *    [key, key + map->key_size) bytes are valid and were initialized on
 | |
|  *    the stack of eBPF program.
 | |
|  * }
 | |
|  *
 | |
|  * Corresponding eBPF program may look like:
 | |
|  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 | |
|  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 | |
|  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 | |
|  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 | |
|  * here verifier looks at prototype of map_lookup_elem() and sees:
 | |
|  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 | |
|  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 | |
|  *
 | |
|  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 | |
|  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 | |
|  * and were initialized prior to this call.
 | |
|  * If it's ok, then verifier allows this BPF_CALL insn and looks at
 | |
|  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 | |
|  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 | |
|  * returns ether pointer to map value or NULL.
 | |
|  *
 | |
|  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 | |
|  * insn, the register holding that pointer in the true branch changes state to
 | |
|  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 | |
|  * branch. See check_cond_jmp_op().
 | |
|  *
 | |
|  * After the call R0 is set to return type of the function and registers R1-R5
 | |
|  * are set to NOT_INIT to indicate that they are no longer readable.
 | |
|  *
 | |
|  * The following reference types represent a potential reference to a kernel
 | |
|  * resource which, after first being allocated, must be checked and freed by
 | |
|  * the BPF program:
 | |
|  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
 | |
|  *
 | |
|  * When the verifier sees a helper call return a reference type, it allocates a
 | |
|  * pointer id for the reference and stores it in the current function state.
 | |
|  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
 | |
|  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
 | |
|  * passes through a NULL-check conditional. For the branch wherein the state is
 | |
|  * changed to CONST_IMM, the verifier releases the reference.
 | |
|  *
 | |
|  * For each helper function that allocates a reference, such as
 | |
|  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
 | |
|  * bpf_sk_release(). When a reference type passes into the release function,
 | |
|  * the verifier also releases the reference. If any unchecked or unreleased
 | |
|  * reference remains at the end of the program, the verifier rejects it.
 | |
|  */
 | |
| 
 | |
| /* verifier_state + insn_idx are pushed to stack when branch is encountered */
 | |
| struct bpf_verifier_stack_elem {
 | |
| 	/* verifer state is 'st'
 | |
| 	 * before processing instruction 'insn_idx'
 | |
| 	 * and after processing instruction 'prev_insn_idx'
 | |
| 	 */
 | |
| 	struct bpf_verifier_state st;
 | |
| 	int insn_idx;
 | |
| 	int prev_insn_idx;
 | |
| 	struct bpf_verifier_stack_elem *next;
 | |
| 	/* length of verifier log at the time this state was pushed on stack */
 | |
| 	u32 log_pos;
 | |
| };
 | |
| 
 | |
| #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
 | |
| #define BPF_COMPLEXITY_LIMIT_STATES	64
 | |
| 
 | |
| #define BPF_MAP_KEY_POISON	(1ULL << 63)
 | |
| #define BPF_MAP_KEY_SEEN	(1ULL << 62)
 | |
| 
 | |
| #define BPF_MAP_PTR_UNPRIV	1UL
 | |
| #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
 | |
| 					  POISON_POINTER_DELTA))
 | |
| #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
 | |
| 
 | |
| static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
 | |
| {
 | |
| 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
 | |
| }
 | |
| 
 | |
| static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
 | |
| {
 | |
| 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
 | |
| }
 | |
| 
 | |
| static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
 | |
| 			      const struct bpf_map *map, bool unpriv)
 | |
| {
 | |
| 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
 | |
| 	unpriv |= bpf_map_ptr_unpriv(aux);
 | |
| 	aux->map_ptr_state = (unsigned long)map |
 | |
| 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
 | |
| }
 | |
| 
 | |
| static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
 | |
| {
 | |
| 	return aux->map_key_state & BPF_MAP_KEY_POISON;
 | |
| }
 | |
| 
 | |
| static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
 | |
| {
 | |
| 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
 | |
| }
 | |
| 
 | |
| static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
 | |
| {
 | |
| 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
 | |
| }
 | |
| 
 | |
| static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
 | |
| {
 | |
| 	bool poisoned = bpf_map_key_poisoned(aux);
 | |
| 
 | |
| 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
 | |
| 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
 | |
| }
 | |
| 
 | |
| struct bpf_call_arg_meta {
 | |
| 	struct bpf_map *map_ptr;
 | |
| 	bool raw_mode;
 | |
| 	bool pkt_access;
 | |
| 	int regno;
 | |
| 	int access_size;
 | |
| 	int mem_size;
 | |
| 	u64 msize_max_value;
 | |
| 	int ref_obj_id;
 | |
| 	int func_id;
 | |
| 	u32 btf_id;
 | |
| };
 | |
| 
 | |
| struct btf *btf_vmlinux;
 | |
| 
 | |
| static DEFINE_MUTEX(bpf_verifier_lock);
 | |
| 
 | |
| static const struct bpf_line_info *
 | |
| find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
 | |
| {
 | |
| 	const struct bpf_line_info *linfo;
 | |
| 	const struct bpf_prog *prog;
 | |
| 	u32 i, nr_linfo;
 | |
| 
 | |
| 	prog = env->prog;
 | |
| 	nr_linfo = prog->aux->nr_linfo;
 | |
| 
 | |
| 	if (!nr_linfo || insn_off >= prog->len)
 | |
| 		return NULL;
 | |
| 
 | |
| 	linfo = prog->aux->linfo;
 | |
| 	for (i = 1; i < nr_linfo; i++)
 | |
| 		if (insn_off < linfo[i].insn_off)
 | |
| 			break;
 | |
| 
 | |
| 	return &linfo[i - 1];
 | |
| }
 | |
| 
 | |
| void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
 | |
| 		       va_list args)
 | |
| {
 | |
| 	unsigned int n;
 | |
| 
 | |
| 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
 | |
| 
 | |
| 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
 | |
| 		  "verifier log line truncated - local buffer too short\n");
 | |
| 
 | |
| 	n = min(log->len_total - log->len_used - 1, n);
 | |
| 	log->kbuf[n] = '\0';
 | |
| 
 | |
| 	if (log->level == BPF_LOG_KERNEL) {
 | |
| 		pr_err("BPF:%s\n", log->kbuf);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
 | |
| 		log->len_used += n;
 | |
| 	else
 | |
| 		log->ubuf = NULL;
 | |
| }
 | |
| 
 | |
| static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
 | |
| {
 | |
| 	char zero = 0;
 | |
| 
 | |
| 	if (!bpf_verifier_log_needed(log))
 | |
| 		return;
 | |
| 
 | |
| 	log->len_used = new_pos;
 | |
| 	if (put_user(zero, log->ubuf + new_pos))
 | |
| 		log->ubuf = NULL;
 | |
| }
 | |
| 
 | |
| /* log_level controls verbosity level of eBPF verifier.
 | |
|  * bpf_verifier_log_write() is used to dump the verification trace to the log,
 | |
|  * so the user can figure out what's wrong with the program
 | |
|  */
 | |
| __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
 | |
| 					   const char *fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 
 | |
| 	if (!bpf_verifier_log_needed(&env->log))
 | |
| 		return;
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	bpf_verifier_vlog(&env->log, fmt, args);
 | |
| 	va_end(args);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
 | |
| 
 | |
| __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
 | |
| {
 | |
| 	struct bpf_verifier_env *env = private_data;
 | |
| 	va_list args;
 | |
| 
 | |
| 	if (!bpf_verifier_log_needed(&env->log))
 | |
| 		return;
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	bpf_verifier_vlog(&env->log, fmt, args);
 | |
| 	va_end(args);
 | |
| }
 | |
| 
 | |
| __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
 | |
| 			    const char *fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 
 | |
| 	if (!bpf_verifier_log_needed(log))
 | |
| 		return;
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	bpf_verifier_vlog(log, fmt, args);
 | |
| 	va_end(args);
 | |
| }
 | |
| 
 | |
| static const char *ltrim(const char *s)
 | |
| {
 | |
| 	while (isspace(*s))
 | |
| 		s++;
 | |
| 
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
 | |
| 					 u32 insn_off,
 | |
| 					 const char *prefix_fmt, ...)
 | |
| {
 | |
| 	const struct bpf_line_info *linfo;
 | |
| 
 | |
| 	if (!bpf_verifier_log_needed(&env->log))
 | |
| 		return;
 | |
| 
 | |
| 	linfo = find_linfo(env, insn_off);
 | |
| 	if (!linfo || linfo == env->prev_linfo)
 | |
| 		return;
 | |
| 
 | |
| 	if (prefix_fmt) {
 | |
| 		va_list args;
 | |
| 
 | |
| 		va_start(args, prefix_fmt);
 | |
| 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
 | |
| 		va_end(args);
 | |
| 	}
 | |
| 
 | |
| 	verbose(env, "%s\n",
 | |
| 		ltrim(btf_name_by_offset(env->prog->aux->btf,
 | |
| 					 linfo->line_off)));
 | |
| 
 | |
| 	env->prev_linfo = linfo;
 | |
| }
 | |
| 
 | |
| static bool type_is_pkt_pointer(enum bpf_reg_type type)
 | |
| {
 | |
| 	return type == PTR_TO_PACKET ||
 | |
| 	       type == PTR_TO_PACKET_META;
 | |
| }
 | |
| 
 | |
| static bool type_is_sk_pointer(enum bpf_reg_type type)
 | |
| {
 | |
| 	return type == PTR_TO_SOCKET ||
 | |
| 		type == PTR_TO_SOCK_COMMON ||
 | |
| 		type == PTR_TO_TCP_SOCK ||
 | |
| 		type == PTR_TO_XDP_SOCK;
 | |
| }
 | |
| 
 | |
| static bool reg_type_not_null(enum bpf_reg_type type)
 | |
| {
 | |
| 	return type == PTR_TO_SOCKET ||
 | |
| 		type == PTR_TO_TCP_SOCK ||
 | |
| 		type == PTR_TO_MAP_VALUE ||
 | |
| 		type == PTR_TO_SOCK_COMMON;
 | |
| }
 | |
| 
 | |
| static bool reg_type_may_be_null(enum bpf_reg_type type)
 | |
| {
 | |
| 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
 | |
| 	       type == PTR_TO_SOCKET_OR_NULL ||
 | |
| 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
 | |
| 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
 | |
| 	       type == PTR_TO_BTF_ID_OR_NULL ||
 | |
| 	       type == PTR_TO_MEM_OR_NULL;
 | |
| }
 | |
| 
 | |
| static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
 | |
| {
 | |
| 	return reg->type == PTR_TO_MAP_VALUE &&
 | |
| 		map_value_has_spin_lock(reg->map_ptr);
 | |
| }
 | |
| 
 | |
| static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
 | |
| {
 | |
| 	return type == PTR_TO_SOCKET ||
 | |
| 		type == PTR_TO_SOCKET_OR_NULL ||
 | |
| 		type == PTR_TO_TCP_SOCK ||
 | |
| 		type == PTR_TO_TCP_SOCK_OR_NULL ||
 | |
| 		type == PTR_TO_MEM ||
 | |
| 		type == PTR_TO_MEM_OR_NULL;
 | |
| }
 | |
| 
 | |
| static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
 | |
| {
 | |
| 	return type == ARG_PTR_TO_SOCK_COMMON;
 | |
| }
 | |
| 
 | |
| /* Determine whether the function releases some resources allocated by another
 | |
|  * function call. The first reference type argument will be assumed to be
 | |
|  * released by release_reference().
 | |
|  */
 | |
| static bool is_release_function(enum bpf_func_id func_id)
 | |
| {
 | |
| 	return func_id == BPF_FUNC_sk_release ||
 | |
| 	       func_id == BPF_FUNC_ringbuf_submit ||
 | |
| 	       func_id == BPF_FUNC_ringbuf_discard;
 | |
| }
 | |
| 
 | |
| static bool may_be_acquire_function(enum bpf_func_id func_id)
 | |
| {
 | |
| 	return func_id == BPF_FUNC_sk_lookup_tcp ||
 | |
| 		func_id == BPF_FUNC_sk_lookup_udp ||
 | |
| 		func_id == BPF_FUNC_skc_lookup_tcp ||
 | |
| 		func_id == BPF_FUNC_map_lookup_elem ||
 | |
| 	        func_id == BPF_FUNC_ringbuf_reserve;
 | |
| }
 | |
| 
 | |
| static bool is_acquire_function(enum bpf_func_id func_id,
 | |
| 				const struct bpf_map *map)
 | |
| {
 | |
| 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
 | |
| 
 | |
| 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
 | |
| 	    func_id == BPF_FUNC_sk_lookup_udp ||
 | |
| 	    func_id == BPF_FUNC_skc_lookup_tcp ||
 | |
| 	    func_id == BPF_FUNC_ringbuf_reserve)
 | |
| 		return true;
 | |
| 
 | |
| 	if (func_id == BPF_FUNC_map_lookup_elem &&
 | |
| 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
 | |
| 	     map_type == BPF_MAP_TYPE_SOCKHASH))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool is_ptr_cast_function(enum bpf_func_id func_id)
 | |
| {
 | |
| 	return func_id == BPF_FUNC_tcp_sock ||
 | |
| 		func_id == BPF_FUNC_sk_fullsock;
 | |
| }
 | |
| 
 | |
| /* string representation of 'enum bpf_reg_type' */
 | |
| static const char * const reg_type_str[] = {
 | |
| 	[NOT_INIT]		= "?",
 | |
| 	[SCALAR_VALUE]		= "inv",
 | |
| 	[PTR_TO_CTX]		= "ctx",
 | |
| 	[CONST_PTR_TO_MAP]	= "map_ptr",
 | |
| 	[PTR_TO_MAP_VALUE]	= "map_value",
 | |
| 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
 | |
| 	[PTR_TO_STACK]		= "fp",
 | |
| 	[PTR_TO_PACKET]		= "pkt",
 | |
| 	[PTR_TO_PACKET_META]	= "pkt_meta",
 | |
| 	[PTR_TO_PACKET_END]	= "pkt_end",
 | |
| 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
 | |
| 	[PTR_TO_SOCKET]		= "sock",
 | |
| 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
 | |
| 	[PTR_TO_SOCK_COMMON]	= "sock_common",
 | |
| 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
 | |
| 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
 | |
| 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
 | |
| 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
 | |
| 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
 | |
| 	[PTR_TO_BTF_ID]		= "ptr_",
 | |
| 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
 | |
| 	[PTR_TO_MEM]		= "mem",
 | |
| 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
 | |
| };
 | |
| 
 | |
| static char slot_type_char[] = {
 | |
| 	[STACK_INVALID]	= '?',
 | |
| 	[STACK_SPILL]	= 'r',
 | |
| 	[STACK_MISC]	= 'm',
 | |
| 	[STACK_ZERO]	= '0',
 | |
| };
 | |
| 
 | |
| static void print_liveness(struct bpf_verifier_env *env,
 | |
| 			   enum bpf_reg_liveness live)
 | |
| {
 | |
| 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
 | |
| 	    verbose(env, "_");
 | |
| 	if (live & REG_LIVE_READ)
 | |
| 		verbose(env, "r");
 | |
| 	if (live & REG_LIVE_WRITTEN)
 | |
| 		verbose(env, "w");
 | |
| 	if (live & REG_LIVE_DONE)
 | |
| 		verbose(env, "D");
 | |
| }
 | |
| 
 | |
| static struct bpf_func_state *func(struct bpf_verifier_env *env,
 | |
| 				   const struct bpf_reg_state *reg)
 | |
| {
 | |
| 	struct bpf_verifier_state *cur = env->cur_state;
 | |
| 
 | |
| 	return cur->frame[reg->frameno];
 | |
| }
 | |
| 
 | |
| const char *kernel_type_name(u32 id)
 | |
| {
 | |
| 	return btf_name_by_offset(btf_vmlinux,
 | |
| 				  btf_type_by_id(btf_vmlinux, id)->name_off);
 | |
| }
 | |
| 
 | |
| static void print_verifier_state(struct bpf_verifier_env *env,
 | |
| 				 const struct bpf_func_state *state)
 | |
| {
 | |
| 	const struct bpf_reg_state *reg;
 | |
| 	enum bpf_reg_type t;
 | |
| 	int i;
 | |
| 
 | |
| 	if (state->frameno)
 | |
| 		verbose(env, " frame%d:", state->frameno);
 | |
| 	for (i = 0; i < MAX_BPF_REG; i++) {
 | |
| 		reg = &state->regs[i];
 | |
| 		t = reg->type;
 | |
| 		if (t == NOT_INIT)
 | |
| 			continue;
 | |
| 		verbose(env, " R%d", i);
 | |
| 		print_liveness(env, reg->live);
 | |
| 		verbose(env, "=%s", reg_type_str[t]);
 | |
| 		if (t == SCALAR_VALUE && reg->precise)
 | |
| 			verbose(env, "P");
 | |
| 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
 | |
| 		    tnum_is_const(reg->var_off)) {
 | |
| 			/* reg->off should be 0 for SCALAR_VALUE */
 | |
| 			verbose(env, "%lld", reg->var_off.value + reg->off);
 | |
| 		} else {
 | |
| 			if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL)
 | |
| 				verbose(env, "%s", kernel_type_name(reg->btf_id));
 | |
| 			verbose(env, "(id=%d", reg->id);
 | |
| 			if (reg_type_may_be_refcounted_or_null(t))
 | |
| 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
 | |
| 			if (t != SCALAR_VALUE)
 | |
| 				verbose(env, ",off=%d", reg->off);
 | |
| 			if (type_is_pkt_pointer(t))
 | |
| 				verbose(env, ",r=%d", reg->range);
 | |
| 			else if (t == CONST_PTR_TO_MAP ||
 | |
| 				 t == PTR_TO_MAP_VALUE ||
 | |
| 				 t == PTR_TO_MAP_VALUE_OR_NULL)
 | |
| 				verbose(env, ",ks=%d,vs=%d",
 | |
| 					reg->map_ptr->key_size,
 | |
| 					reg->map_ptr->value_size);
 | |
| 			if (tnum_is_const(reg->var_off)) {
 | |
| 				/* Typically an immediate SCALAR_VALUE, but
 | |
| 				 * could be a pointer whose offset is too big
 | |
| 				 * for reg->off
 | |
| 				 */
 | |
| 				verbose(env, ",imm=%llx", reg->var_off.value);
 | |
| 			} else {
 | |
| 				if (reg->smin_value != reg->umin_value &&
 | |
| 				    reg->smin_value != S64_MIN)
 | |
| 					verbose(env, ",smin_value=%lld",
 | |
| 						(long long)reg->smin_value);
 | |
| 				if (reg->smax_value != reg->umax_value &&
 | |
| 				    reg->smax_value != S64_MAX)
 | |
| 					verbose(env, ",smax_value=%lld",
 | |
| 						(long long)reg->smax_value);
 | |
| 				if (reg->umin_value != 0)
 | |
| 					verbose(env, ",umin_value=%llu",
 | |
| 						(unsigned long long)reg->umin_value);
 | |
| 				if (reg->umax_value != U64_MAX)
 | |
| 					verbose(env, ",umax_value=%llu",
 | |
| 						(unsigned long long)reg->umax_value);
 | |
| 				if (!tnum_is_unknown(reg->var_off)) {
 | |
| 					char tn_buf[48];
 | |
| 
 | |
| 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 | |
| 					verbose(env, ",var_off=%s", tn_buf);
 | |
| 				}
 | |
| 				if (reg->s32_min_value != reg->smin_value &&
 | |
| 				    reg->s32_min_value != S32_MIN)
 | |
| 					verbose(env, ",s32_min_value=%d",
 | |
| 						(int)(reg->s32_min_value));
 | |
| 				if (reg->s32_max_value != reg->smax_value &&
 | |
| 				    reg->s32_max_value != S32_MAX)
 | |
| 					verbose(env, ",s32_max_value=%d",
 | |
| 						(int)(reg->s32_max_value));
 | |
| 				if (reg->u32_min_value != reg->umin_value &&
 | |
| 				    reg->u32_min_value != U32_MIN)
 | |
| 					verbose(env, ",u32_min_value=%d",
 | |
| 						(int)(reg->u32_min_value));
 | |
| 				if (reg->u32_max_value != reg->umax_value &&
 | |
| 				    reg->u32_max_value != U32_MAX)
 | |
| 					verbose(env, ",u32_max_value=%d",
 | |
| 						(int)(reg->u32_max_value));
 | |
| 			}
 | |
| 			verbose(env, ")");
 | |
| 		}
 | |
| 	}
 | |
| 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
 | |
| 		char types_buf[BPF_REG_SIZE + 1];
 | |
| 		bool valid = false;
 | |
| 		int j;
 | |
| 
 | |
| 		for (j = 0; j < BPF_REG_SIZE; j++) {
 | |
| 			if (state->stack[i].slot_type[j] != STACK_INVALID)
 | |
| 				valid = true;
 | |
| 			types_buf[j] = slot_type_char[
 | |
| 					state->stack[i].slot_type[j]];
 | |
| 		}
 | |
| 		types_buf[BPF_REG_SIZE] = 0;
 | |
| 		if (!valid)
 | |
| 			continue;
 | |
| 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
 | |
| 		print_liveness(env, state->stack[i].spilled_ptr.live);
 | |
| 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
 | |
| 			reg = &state->stack[i].spilled_ptr;
 | |
| 			t = reg->type;
 | |
| 			verbose(env, "=%s", reg_type_str[t]);
 | |
| 			if (t == SCALAR_VALUE && reg->precise)
 | |
| 				verbose(env, "P");
 | |
| 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
 | |
| 				verbose(env, "%lld", reg->var_off.value + reg->off);
 | |
| 		} else {
 | |
| 			verbose(env, "=%s", types_buf);
 | |
| 		}
 | |
| 	}
 | |
| 	if (state->acquired_refs && state->refs[0].id) {
 | |
| 		verbose(env, " refs=%d", state->refs[0].id);
 | |
| 		for (i = 1; i < state->acquired_refs; i++)
 | |
| 			if (state->refs[i].id)
 | |
| 				verbose(env, ",%d", state->refs[i].id);
 | |
| 	}
 | |
| 	verbose(env, "\n");
 | |
| }
 | |
| 
 | |
| #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
 | |
| static int copy_##NAME##_state(struct bpf_func_state *dst,		\
 | |
| 			       const struct bpf_func_state *src)	\
 | |
| {									\
 | |
| 	if (!src->FIELD)						\
 | |
| 		return 0;						\
 | |
| 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
 | |
| 		/* internal bug, make state invalid to reject the program */ \
 | |
| 		memset(dst, 0, sizeof(*dst));				\
 | |
| 		return -EFAULT;						\
 | |
| 	}								\
 | |
| 	memcpy(dst->FIELD, src->FIELD,					\
 | |
| 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
 | |
| 	return 0;							\
 | |
| }
 | |
| /* copy_reference_state() */
 | |
| COPY_STATE_FN(reference, acquired_refs, refs, 1)
 | |
| /* copy_stack_state() */
 | |
| COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
 | |
| #undef COPY_STATE_FN
 | |
| 
 | |
| #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
 | |
| static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
 | |
| 				  bool copy_old)			\
 | |
| {									\
 | |
| 	u32 old_size = state->COUNT;					\
 | |
| 	struct bpf_##NAME##_state *new_##FIELD;				\
 | |
| 	int slot = size / SIZE;						\
 | |
| 									\
 | |
| 	if (size <= old_size || !size) {				\
 | |
| 		if (copy_old)						\
 | |
| 			return 0;					\
 | |
| 		state->COUNT = slot * SIZE;				\
 | |
| 		if (!size && old_size) {				\
 | |
| 			kfree(state->FIELD);				\
 | |
| 			state->FIELD = NULL;				\
 | |
| 		}							\
 | |
| 		return 0;						\
 | |
| 	}								\
 | |
| 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
 | |
| 				    GFP_KERNEL);			\
 | |
| 	if (!new_##FIELD)						\
 | |
| 		return -ENOMEM;						\
 | |
| 	if (copy_old) {							\
 | |
| 		if (state->FIELD)					\
 | |
| 			memcpy(new_##FIELD, state->FIELD,		\
 | |
| 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
 | |
| 		memset(new_##FIELD + old_size / SIZE, 0,		\
 | |
| 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
 | |
| 	}								\
 | |
| 	state->COUNT = slot * SIZE;					\
 | |
| 	kfree(state->FIELD);						\
 | |
| 	state->FIELD = new_##FIELD;					\
 | |
| 	return 0;							\
 | |
| }
 | |
| /* realloc_reference_state() */
 | |
| REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
 | |
| /* realloc_stack_state() */
 | |
| REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
 | |
| #undef REALLOC_STATE_FN
 | |
| 
 | |
| /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 | |
|  * make it consume minimal amount of memory. check_stack_write() access from
 | |
|  * the program calls into realloc_func_state() to grow the stack size.
 | |
|  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 | |
|  * which realloc_stack_state() copies over. It points to previous
 | |
|  * bpf_verifier_state which is never reallocated.
 | |
|  */
 | |
| static int realloc_func_state(struct bpf_func_state *state, int stack_size,
 | |
| 			      int refs_size, bool copy_old)
 | |
| {
 | |
| 	int err = realloc_reference_state(state, refs_size, copy_old);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	return realloc_stack_state(state, stack_size, copy_old);
 | |
| }
 | |
| 
 | |
| /* Acquire a pointer id from the env and update the state->refs to include
 | |
|  * this new pointer reference.
 | |
|  * On success, returns a valid pointer id to associate with the register
 | |
|  * On failure, returns a negative errno.
 | |
|  */
 | |
| static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
 | |
| {
 | |
| 	struct bpf_func_state *state = cur_func(env);
 | |
| 	int new_ofs = state->acquired_refs;
 | |
| 	int id, err;
 | |
| 
 | |
| 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	id = ++env->id_gen;
 | |
| 	state->refs[new_ofs].id = id;
 | |
| 	state->refs[new_ofs].insn_idx = insn_idx;
 | |
| 
 | |
| 	return id;
 | |
| }
 | |
| 
 | |
| /* release function corresponding to acquire_reference_state(). Idempotent. */
 | |
| static int release_reference_state(struct bpf_func_state *state, int ptr_id)
 | |
| {
 | |
| 	int i, last_idx;
 | |
| 
 | |
| 	last_idx = state->acquired_refs - 1;
 | |
| 	for (i = 0; i < state->acquired_refs; i++) {
 | |
| 		if (state->refs[i].id == ptr_id) {
 | |
| 			if (last_idx && i != last_idx)
 | |
| 				memcpy(&state->refs[i], &state->refs[last_idx],
 | |
| 				       sizeof(*state->refs));
 | |
| 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
 | |
| 			state->acquired_refs--;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int transfer_reference_state(struct bpf_func_state *dst,
 | |
| 				    struct bpf_func_state *src)
 | |
| {
 | |
| 	int err = realloc_reference_state(dst, src->acquired_refs, false);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	err = copy_reference_state(dst, src);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void free_func_state(struct bpf_func_state *state)
 | |
| {
 | |
| 	if (!state)
 | |
| 		return;
 | |
| 	kfree(state->refs);
 | |
| 	kfree(state->stack);
 | |
| 	kfree(state);
 | |
| }
 | |
| 
 | |
| static void clear_jmp_history(struct bpf_verifier_state *state)
 | |
| {
 | |
| 	kfree(state->jmp_history);
 | |
| 	state->jmp_history = NULL;
 | |
| 	state->jmp_history_cnt = 0;
 | |
| }
 | |
| 
 | |
| static void free_verifier_state(struct bpf_verifier_state *state,
 | |
| 				bool free_self)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i <= state->curframe; i++) {
 | |
| 		free_func_state(state->frame[i]);
 | |
| 		state->frame[i] = NULL;
 | |
| 	}
 | |
| 	clear_jmp_history(state);
 | |
| 	if (free_self)
 | |
| 		kfree(state);
 | |
| }
 | |
| 
 | |
| /* copy verifier state from src to dst growing dst stack space
 | |
|  * when necessary to accommodate larger src stack
 | |
|  */
 | |
| static int copy_func_state(struct bpf_func_state *dst,
 | |
| 			   const struct bpf_func_state *src)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
 | |
| 				 false);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
 | |
| 	err = copy_reference_state(dst, src);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	return copy_stack_state(dst, src);
 | |
| }
 | |
| 
 | |
| static int copy_verifier_state(struct bpf_verifier_state *dst_state,
 | |
| 			       const struct bpf_verifier_state *src)
 | |
| {
 | |
| 	struct bpf_func_state *dst;
 | |
| 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
 | |
| 	int i, err;
 | |
| 
 | |
| 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
 | |
| 		kfree(dst_state->jmp_history);
 | |
| 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
 | |
| 		if (!dst_state->jmp_history)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
 | |
| 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
 | |
| 
 | |
| 	/* if dst has more stack frames then src frame, free them */
 | |
| 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
 | |
| 		free_func_state(dst_state->frame[i]);
 | |
| 		dst_state->frame[i] = NULL;
 | |
| 	}
 | |
| 	dst_state->speculative = src->speculative;
 | |
| 	dst_state->curframe = src->curframe;
 | |
| 	dst_state->active_spin_lock = src->active_spin_lock;
 | |
| 	dst_state->branches = src->branches;
 | |
| 	dst_state->parent = src->parent;
 | |
| 	dst_state->first_insn_idx = src->first_insn_idx;
 | |
| 	dst_state->last_insn_idx = src->last_insn_idx;
 | |
| 	for (i = 0; i <= src->curframe; i++) {
 | |
| 		dst = dst_state->frame[i];
 | |
| 		if (!dst) {
 | |
| 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
 | |
| 			if (!dst)
 | |
| 				return -ENOMEM;
 | |
| 			dst_state->frame[i] = dst;
 | |
| 		}
 | |
| 		err = copy_func_state(dst, src->frame[i]);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
 | |
| {
 | |
| 	while (st) {
 | |
| 		u32 br = --st->branches;
 | |
| 
 | |
| 		/* WARN_ON(br > 1) technically makes sense here,
 | |
| 		 * but see comment in push_stack(), hence:
 | |
| 		 */
 | |
| 		WARN_ONCE((int)br < 0,
 | |
| 			  "BUG update_branch_counts:branches_to_explore=%d\n",
 | |
| 			  br);
 | |
| 		if (br)
 | |
| 			break;
 | |
| 		st = st->parent;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
 | |
| 		     int *insn_idx, bool pop_log)
 | |
| {
 | |
| 	struct bpf_verifier_state *cur = env->cur_state;
 | |
| 	struct bpf_verifier_stack_elem *elem, *head = env->head;
 | |
| 	int err;
 | |
| 
 | |
| 	if (env->head == NULL)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (cur) {
 | |
| 		err = copy_verifier_state(cur, &head->st);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 	if (pop_log)
 | |
| 		bpf_vlog_reset(&env->log, head->log_pos);
 | |
| 	if (insn_idx)
 | |
| 		*insn_idx = head->insn_idx;
 | |
| 	if (prev_insn_idx)
 | |
| 		*prev_insn_idx = head->prev_insn_idx;
 | |
| 	elem = head->next;
 | |
| 	free_verifier_state(&head->st, false);
 | |
| 	kfree(head);
 | |
| 	env->head = elem;
 | |
| 	env->stack_size--;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
 | |
| 					     int insn_idx, int prev_insn_idx,
 | |
| 					     bool speculative)
 | |
| {
 | |
| 	struct bpf_verifier_state *cur = env->cur_state;
 | |
| 	struct bpf_verifier_stack_elem *elem;
 | |
| 	int err;
 | |
| 
 | |
| 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
 | |
| 	if (!elem)
 | |
| 		goto err;
 | |
| 
 | |
| 	elem->insn_idx = insn_idx;
 | |
| 	elem->prev_insn_idx = prev_insn_idx;
 | |
| 	elem->next = env->head;
 | |
| 	elem->log_pos = env->log.len_used;
 | |
| 	env->head = elem;
 | |
| 	env->stack_size++;
 | |
| 	err = copy_verifier_state(&elem->st, cur);
 | |
| 	if (err)
 | |
| 		goto err;
 | |
| 	elem->st.speculative |= speculative;
 | |
| 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
 | |
| 		verbose(env, "The sequence of %d jumps is too complex.\n",
 | |
| 			env->stack_size);
 | |
| 		goto err;
 | |
| 	}
 | |
| 	if (elem->st.parent) {
 | |
| 		++elem->st.parent->branches;
 | |
| 		/* WARN_ON(branches > 2) technically makes sense here,
 | |
| 		 * but
 | |
| 		 * 1. speculative states will bump 'branches' for non-branch
 | |
| 		 * instructions
 | |
| 		 * 2. is_state_visited() heuristics may decide not to create
 | |
| 		 * a new state for a sequence of branches and all such current
 | |
| 		 * and cloned states will be pointing to a single parent state
 | |
| 		 * which might have large 'branches' count.
 | |
| 		 */
 | |
| 	}
 | |
| 	return &elem->st;
 | |
| err:
 | |
| 	free_verifier_state(env->cur_state, true);
 | |
| 	env->cur_state = NULL;
 | |
| 	/* pop all elements and return */
 | |
| 	while (!pop_stack(env, NULL, NULL, false));
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #define CALLER_SAVED_REGS 6
 | |
| static const int caller_saved[CALLER_SAVED_REGS] = {
 | |
| 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
 | |
| };
 | |
| 
 | |
| static void __mark_reg_not_init(const struct bpf_verifier_env *env,
 | |
| 				struct bpf_reg_state *reg);
 | |
| 
 | |
| /* Mark the unknown part of a register (variable offset or scalar value) as
 | |
|  * known to have the value @imm.
 | |
|  */
 | |
| static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
 | |
| {
 | |
| 	/* Clear id, off, and union(map_ptr, range) */
 | |
| 	memset(((u8 *)reg) + sizeof(reg->type), 0,
 | |
| 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
 | |
| 	reg->var_off = tnum_const(imm);
 | |
| 	reg->smin_value = (s64)imm;
 | |
| 	reg->smax_value = (s64)imm;
 | |
| 	reg->umin_value = imm;
 | |
| 	reg->umax_value = imm;
 | |
| 
 | |
| 	reg->s32_min_value = (s32)imm;
 | |
| 	reg->s32_max_value = (s32)imm;
 | |
| 	reg->u32_min_value = (u32)imm;
 | |
| 	reg->u32_max_value = (u32)imm;
 | |
| }
 | |
| 
 | |
| static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
 | |
| {
 | |
| 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
 | |
| 	reg->s32_min_value = (s32)imm;
 | |
| 	reg->s32_max_value = (s32)imm;
 | |
| 	reg->u32_min_value = (u32)imm;
 | |
| 	reg->u32_max_value = (u32)imm;
 | |
| }
 | |
| 
 | |
| /* Mark the 'variable offset' part of a register as zero.  This should be
 | |
|  * used only on registers holding a pointer type.
 | |
|  */
 | |
| static void __mark_reg_known_zero(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	__mark_reg_known(reg, 0);
 | |
| }
 | |
| 
 | |
| static void __mark_reg_const_zero(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	__mark_reg_known(reg, 0);
 | |
| 	reg->type = SCALAR_VALUE;
 | |
| }
 | |
| 
 | |
| static void mark_reg_known_zero(struct bpf_verifier_env *env,
 | |
| 				struct bpf_reg_state *regs, u32 regno)
 | |
| {
 | |
| 	if (WARN_ON(regno >= MAX_BPF_REG)) {
 | |
| 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
 | |
| 		/* Something bad happened, let's kill all regs */
 | |
| 		for (regno = 0; regno < MAX_BPF_REG; regno++)
 | |
| 			__mark_reg_not_init(env, regs + regno);
 | |
| 		return;
 | |
| 	}
 | |
| 	__mark_reg_known_zero(regs + regno);
 | |
| }
 | |
| 
 | |
| static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
 | |
| {
 | |
| 	return type_is_pkt_pointer(reg->type);
 | |
| }
 | |
| 
 | |
| static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
 | |
| {
 | |
| 	return reg_is_pkt_pointer(reg) ||
 | |
| 	       reg->type == PTR_TO_PACKET_END;
 | |
| }
 | |
| 
 | |
| /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
 | |
| static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
 | |
| 				    enum bpf_reg_type which)
 | |
| {
 | |
| 	/* The register can already have a range from prior markings.
 | |
| 	 * This is fine as long as it hasn't been advanced from its
 | |
| 	 * origin.
 | |
| 	 */
 | |
| 	return reg->type == which &&
 | |
| 	       reg->id == 0 &&
 | |
| 	       reg->off == 0 &&
 | |
| 	       tnum_equals_const(reg->var_off, 0);
 | |
| }
 | |
| 
 | |
| /* Reset the min/max bounds of a register */
 | |
| static void __mark_reg_unbounded(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	reg->smin_value = S64_MIN;
 | |
| 	reg->smax_value = S64_MAX;
 | |
| 	reg->umin_value = 0;
 | |
| 	reg->umax_value = U64_MAX;
 | |
| 
 | |
| 	reg->s32_min_value = S32_MIN;
 | |
| 	reg->s32_max_value = S32_MAX;
 | |
| 	reg->u32_min_value = 0;
 | |
| 	reg->u32_max_value = U32_MAX;
 | |
| }
 | |
| 
 | |
| static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	reg->smin_value = S64_MIN;
 | |
| 	reg->smax_value = S64_MAX;
 | |
| 	reg->umin_value = 0;
 | |
| 	reg->umax_value = U64_MAX;
 | |
| }
 | |
| 
 | |
| static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	reg->s32_min_value = S32_MIN;
 | |
| 	reg->s32_max_value = S32_MAX;
 | |
| 	reg->u32_min_value = 0;
 | |
| 	reg->u32_max_value = U32_MAX;
 | |
| }
 | |
| 
 | |
| static void __update_reg32_bounds(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	struct tnum var32_off = tnum_subreg(reg->var_off);
 | |
| 
 | |
| 	/* min signed is max(sign bit) | min(other bits) */
 | |
| 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
 | |
| 			var32_off.value | (var32_off.mask & S32_MIN));
 | |
| 	/* max signed is min(sign bit) | max(other bits) */
 | |
| 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
 | |
| 			var32_off.value | (var32_off.mask & S32_MAX));
 | |
| 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
 | |
| 	reg->u32_max_value = min(reg->u32_max_value,
 | |
| 				 (u32)(var32_off.value | var32_off.mask));
 | |
| }
 | |
| 
 | |
| static void __update_reg64_bounds(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	/* min signed is max(sign bit) | min(other bits) */
 | |
| 	reg->smin_value = max_t(s64, reg->smin_value,
 | |
| 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
 | |
| 	/* max signed is min(sign bit) | max(other bits) */
 | |
| 	reg->smax_value = min_t(s64, reg->smax_value,
 | |
| 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
 | |
| 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
 | |
| 	reg->umax_value = min(reg->umax_value,
 | |
| 			      reg->var_off.value | reg->var_off.mask);
 | |
| }
 | |
| 
 | |
| static void __update_reg_bounds(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	__update_reg32_bounds(reg);
 | |
| 	__update_reg64_bounds(reg);
 | |
| }
 | |
| 
 | |
| /* Uses signed min/max values to inform unsigned, and vice-versa */
 | |
| static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	/* Learn sign from signed bounds.
 | |
| 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
 | |
| 	 * are the same, so combine.  This works even in the negative case, e.g.
 | |
| 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
 | |
| 	 */
 | |
| 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
 | |
| 		reg->s32_min_value = reg->u32_min_value =
 | |
| 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
 | |
| 		reg->s32_max_value = reg->u32_max_value =
 | |
| 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
 | |
| 	 * boundary, so we must be careful.
 | |
| 	 */
 | |
| 	if ((s32)reg->u32_max_value >= 0) {
 | |
| 		/* Positive.  We can't learn anything from the smin, but smax
 | |
| 		 * is positive, hence safe.
 | |
| 		 */
 | |
| 		reg->s32_min_value = reg->u32_min_value;
 | |
| 		reg->s32_max_value = reg->u32_max_value =
 | |
| 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
 | |
| 	} else if ((s32)reg->u32_min_value < 0) {
 | |
| 		/* Negative.  We can't learn anything from the smax, but smin
 | |
| 		 * is negative, hence safe.
 | |
| 		 */
 | |
| 		reg->s32_min_value = reg->u32_min_value =
 | |
| 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
 | |
| 		reg->s32_max_value = reg->u32_max_value;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	/* Learn sign from signed bounds.
 | |
| 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
 | |
| 	 * are the same, so combine.  This works even in the negative case, e.g.
 | |
| 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
 | |
| 	 */
 | |
| 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
 | |
| 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
 | |
| 							  reg->umin_value);
 | |
| 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
 | |
| 							  reg->umax_value);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
 | |
| 	 * boundary, so we must be careful.
 | |
| 	 */
 | |
| 	if ((s64)reg->umax_value >= 0) {
 | |
| 		/* Positive.  We can't learn anything from the smin, but smax
 | |
| 		 * is positive, hence safe.
 | |
| 		 */
 | |
| 		reg->smin_value = reg->umin_value;
 | |
| 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
 | |
| 							  reg->umax_value);
 | |
| 	} else if ((s64)reg->umin_value < 0) {
 | |
| 		/* Negative.  We can't learn anything from the smax, but smin
 | |
| 		 * is negative, hence safe.
 | |
| 		 */
 | |
| 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
 | |
| 							  reg->umin_value);
 | |
| 		reg->smax_value = reg->umax_value;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __reg_deduce_bounds(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	__reg32_deduce_bounds(reg);
 | |
| 	__reg64_deduce_bounds(reg);
 | |
| }
 | |
| 
 | |
| /* Attempts to improve var_off based on unsigned min/max information */
 | |
| static void __reg_bound_offset(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	struct tnum var64_off = tnum_intersect(reg->var_off,
 | |
| 					       tnum_range(reg->umin_value,
 | |
| 							  reg->umax_value));
 | |
| 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
 | |
| 						tnum_range(reg->u32_min_value,
 | |
| 							   reg->u32_max_value));
 | |
| 
 | |
| 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
 | |
| }
 | |
| 
 | |
| static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	reg->umin_value = reg->u32_min_value;
 | |
| 	reg->umax_value = reg->u32_max_value;
 | |
| 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
 | |
| 	 * but must be positive otherwise set to worse case bounds
 | |
| 	 * and refine later from tnum.
 | |
| 	 */
 | |
| 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
 | |
| 		reg->smax_value = reg->s32_max_value;
 | |
| 	else
 | |
| 		reg->smax_value = U32_MAX;
 | |
| 	if (reg->s32_min_value >= 0)
 | |
| 		reg->smin_value = reg->s32_min_value;
 | |
| 	else
 | |
| 		reg->smin_value = 0;
 | |
| }
 | |
| 
 | |
| static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	/* special case when 64-bit register has upper 32-bit register
 | |
| 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
 | |
| 	 * allowing us to use 32-bit bounds directly,
 | |
| 	 */
 | |
| 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
 | |
| 		__reg_assign_32_into_64(reg);
 | |
| 	} else {
 | |
| 		/* Otherwise the best we can do is push lower 32bit known and
 | |
| 		 * unknown bits into register (var_off set from jmp logic)
 | |
| 		 * then learn as much as possible from the 64-bit tnum
 | |
| 		 * known and unknown bits. The previous smin/smax bounds are
 | |
| 		 * invalid here because of jmp32 compare so mark them unknown
 | |
| 		 * so they do not impact tnum bounds calculation.
 | |
| 		 */
 | |
| 		__mark_reg64_unbounded(reg);
 | |
| 		__update_reg_bounds(reg);
 | |
| 	}
 | |
| 
 | |
| 	/* Intersecting with the old var_off might have improved our bounds
 | |
| 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
 | |
| 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
 | |
| 	 */
 | |
| 	__reg_deduce_bounds(reg);
 | |
| 	__reg_bound_offset(reg);
 | |
| 	__update_reg_bounds(reg);
 | |
| }
 | |
| 
 | |
| static bool __reg64_bound_s32(s64 a)
 | |
| {
 | |
| 	if (a > S32_MIN && a < S32_MAX)
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool __reg64_bound_u32(u64 a)
 | |
| {
 | |
| 	if (a > U32_MIN && a < U32_MAX)
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	__mark_reg32_unbounded(reg);
 | |
| 
 | |
| 	if (__reg64_bound_s32(reg->smin_value))
 | |
| 		reg->s32_min_value = (s32)reg->smin_value;
 | |
| 	if (__reg64_bound_s32(reg->smax_value))
 | |
| 		reg->s32_max_value = (s32)reg->smax_value;
 | |
| 	if (__reg64_bound_u32(reg->umin_value))
 | |
| 		reg->u32_min_value = (u32)reg->umin_value;
 | |
| 	if (__reg64_bound_u32(reg->umax_value))
 | |
| 		reg->u32_max_value = (u32)reg->umax_value;
 | |
| 
 | |
| 	/* Intersecting with the old var_off might have improved our bounds
 | |
| 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
 | |
| 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
 | |
| 	 */
 | |
| 	__reg_deduce_bounds(reg);
 | |
| 	__reg_bound_offset(reg);
 | |
| 	__update_reg_bounds(reg);
 | |
| }
 | |
| 
 | |
| /* Mark a register as having a completely unknown (scalar) value. */
 | |
| static void __mark_reg_unknown(const struct bpf_verifier_env *env,
 | |
| 			       struct bpf_reg_state *reg)
 | |
| {
 | |
| 	/*
 | |
| 	 * Clear type, id, off, and union(map_ptr, range) and
 | |
| 	 * padding between 'type' and union
 | |
| 	 */
 | |
| 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
 | |
| 	reg->type = SCALAR_VALUE;
 | |
| 	reg->var_off = tnum_unknown;
 | |
| 	reg->frameno = 0;
 | |
| 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
 | |
| 	__mark_reg_unbounded(reg);
 | |
| }
 | |
| 
 | |
| static void mark_reg_unknown(struct bpf_verifier_env *env,
 | |
| 			     struct bpf_reg_state *regs, u32 regno)
 | |
| {
 | |
| 	if (WARN_ON(regno >= MAX_BPF_REG)) {
 | |
| 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
 | |
| 		/* Something bad happened, let's kill all regs except FP */
 | |
| 		for (regno = 0; regno < BPF_REG_FP; regno++)
 | |
| 			__mark_reg_not_init(env, regs + regno);
 | |
| 		return;
 | |
| 	}
 | |
| 	__mark_reg_unknown(env, regs + regno);
 | |
| }
 | |
| 
 | |
| static void __mark_reg_not_init(const struct bpf_verifier_env *env,
 | |
| 				struct bpf_reg_state *reg)
 | |
| {
 | |
| 	__mark_reg_unknown(env, reg);
 | |
| 	reg->type = NOT_INIT;
 | |
| }
 | |
| 
 | |
| static void mark_reg_not_init(struct bpf_verifier_env *env,
 | |
| 			      struct bpf_reg_state *regs, u32 regno)
 | |
| {
 | |
| 	if (WARN_ON(regno >= MAX_BPF_REG)) {
 | |
| 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
 | |
| 		/* Something bad happened, let's kill all regs except FP */
 | |
| 		for (regno = 0; regno < BPF_REG_FP; regno++)
 | |
| 			__mark_reg_not_init(env, regs + regno);
 | |
| 		return;
 | |
| 	}
 | |
| 	__mark_reg_not_init(env, regs + regno);
 | |
| }
 | |
| 
 | |
| #define DEF_NOT_SUBREG	(0)
 | |
| static void init_reg_state(struct bpf_verifier_env *env,
 | |
| 			   struct bpf_func_state *state)
 | |
| {
 | |
| 	struct bpf_reg_state *regs = state->regs;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_BPF_REG; i++) {
 | |
| 		mark_reg_not_init(env, regs, i);
 | |
| 		regs[i].live = REG_LIVE_NONE;
 | |
| 		regs[i].parent = NULL;
 | |
| 		regs[i].subreg_def = DEF_NOT_SUBREG;
 | |
| 	}
 | |
| 
 | |
| 	/* frame pointer */
 | |
| 	regs[BPF_REG_FP].type = PTR_TO_STACK;
 | |
| 	mark_reg_known_zero(env, regs, BPF_REG_FP);
 | |
| 	regs[BPF_REG_FP].frameno = state->frameno;
 | |
| }
 | |
| 
 | |
| #define BPF_MAIN_FUNC (-1)
 | |
| static void init_func_state(struct bpf_verifier_env *env,
 | |
| 			    struct bpf_func_state *state,
 | |
| 			    int callsite, int frameno, int subprogno)
 | |
| {
 | |
| 	state->callsite = callsite;
 | |
| 	state->frameno = frameno;
 | |
| 	state->subprogno = subprogno;
 | |
| 	init_reg_state(env, state);
 | |
| }
 | |
| 
 | |
| enum reg_arg_type {
 | |
| 	SRC_OP,		/* register is used as source operand */
 | |
| 	DST_OP,		/* register is used as destination operand */
 | |
| 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
 | |
| };
 | |
| 
 | |
| static int cmp_subprogs(const void *a, const void *b)
 | |
| {
 | |
| 	return ((struct bpf_subprog_info *)a)->start -
 | |
| 	       ((struct bpf_subprog_info *)b)->start;
 | |
| }
 | |
| 
 | |
| static int find_subprog(struct bpf_verifier_env *env, int off)
 | |
| {
 | |
| 	struct bpf_subprog_info *p;
 | |
| 
 | |
| 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
 | |
| 		    sizeof(env->subprog_info[0]), cmp_subprogs);
 | |
| 	if (!p)
 | |
| 		return -ENOENT;
 | |
| 	return p - env->subprog_info;
 | |
| 
 | |
| }
 | |
| 
 | |
| static int add_subprog(struct bpf_verifier_env *env, int off)
 | |
| {
 | |
| 	int insn_cnt = env->prog->len;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (off >= insn_cnt || off < 0) {
 | |
| 		verbose(env, "call to invalid destination\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	ret = find_subprog(env, off);
 | |
| 	if (ret >= 0)
 | |
| 		return 0;
 | |
| 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
 | |
| 		verbose(env, "too many subprograms\n");
 | |
| 		return -E2BIG;
 | |
| 	}
 | |
| 	env->subprog_info[env->subprog_cnt++].start = off;
 | |
| 	sort(env->subprog_info, env->subprog_cnt,
 | |
| 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_subprogs(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
 | |
| 	struct bpf_subprog_info *subprog = env->subprog_info;
 | |
| 	struct bpf_insn *insn = env->prog->insnsi;
 | |
| 	int insn_cnt = env->prog->len;
 | |
| 
 | |
| 	/* Add entry function. */
 | |
| 	ret = add_subprog(env, 0);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* determine subprog starts. The end is one before the next starts */
 | |
| 	for (i = 0; i < insn_cnt; i++) {
 | |
| 		if (insn[i].code != (BPF_JMP | BPF_CALL))
 | |
| 			continue;
 | |
| 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
 | |
| 			continue;
 | |
| 		if (!env->bpf_capable) {
 | |
| 			verbose(env,
 | |
| 				"function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
 | |
| 			return -EPERM;
 | |
| 		}
 | |
| 		ret = add_subprog(env, i + insn[i].imm + 1);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Add a fake 'exit' subprog which could simplify subprog iteration
 | |
| 	 * logic. 'subprog_cnt' should not be increased.
 | |
| 	 */
 | |
| 	subprog[env->subprog_cnt].start = insn_cnt;
 | |
| 
 | |
| 	if (env->log.level & BPF_LOG_LEVEL2)
 | |
| 		for (i = 0; i < env->subprog_cnt; i++)
 | |
| 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
 | |
| 
 | |
| 	/* now check that all jumps are within the same subprog */
 | |
| 	subprog_start = subprog[cur_subprog].start;
 | |
| 	subprog_end = subprog[cur_subprog + 1].start;
 | |
| 	for (i = 0; i < insn_cnt; i++) {
 | |
| 		u8 code = insn[i].code;
 | |
| 
 | |
| 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
 | |
| 			goto next;
 | |
| 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
 | |
| 			goto next;
 | |
| 		off = i + insn[i].off + 1;
 | |
| 		if (off < subprog_start || off >= subprog_end) {
 | |
| 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| next:
 | |
| 		if (i == subprog_end - 1) {
 | |
| 			/* to avoid fall-through from one subprog into another
 | |
| 			 * the last insn of the subprog should be either exit
 | |
| 			 * or unconditional jump back
 | |
| 			 */
 | |
| 			if (code != (BPF_JMP | BPF_EXIT) &&
 | |
| 			    code != (BPF_JMP | BPF_JA)) {
 | |
| 				verbose(env, "last insn is not an exit or jmp\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			subprog_start = subprog_end;
 | |
| 			cur_subprog++;
 | |
| 			if (cur_subprog < env->subprog_cnt)
 | |
| 				subprog_end = subprog[cur_subprog + 1].start;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Parentage chain of this register (or stack slot) should take care of all
 | |
|  * issues like callee-saved registers, stack slot allocation time, etc.
 | |
|  */
 | |
| static int mark_reg_read(struct bpf_verifier_env *env,
 | |
| 			 const struct bpf_reg_state *state,
 | |
| 			 struct bpf_reg_state *parent, u8 flag)
 | |
| {
 | |
| 	bool writes = parent == state->parent; /* Observe write marks */
 | |
| 	int cnt = 0;
 | |
| 
 | |
| 	while (parent) {
 | |
| 		/* if read wasn't screened by an earlier write ... */
 | |
| 		if (writes && state->live & REG_LIVE_WRITTEN)
 | |
| 			break;
 | |
| 		if (parent->live & REG_LIVE_DONE) {
 | |
| 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
 | |
| 				reg_type_str[parent->type],
 | |
| 				parent->var_off.value, parent->off);
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		/* The first condition is more likely to be true than the
 | |
| 		 * second, checked it first.
 | |
| 		 */
 | |
| 		if ((parent->live & REG_LIVE_READ) == flag ||
 | |
| 		    parent->live & REG_LIVE_READ64)
 | |
| 			/* The parentage chain never changes and
 | |
| 			 * this parent was already marked as LIVE_READ.
 | |
| 			 * There is no need to keep walking the chain again and
 | |
| 			 * keep re-marking all parents as LIVE_READ.
 | |
| 			 * This case happens when the same register is read
 | |
| 			 * multiple times without writes into it in-between.
 | |
| 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
 | |
| 			 * then no need to set the weak REG_LIVE_READ32.
 | |
| 			 */
 | |
| 			break;
 | |
| 		/* ... then we depend on parent's value */
 | |
| 		parent->live |= flag;
 | |
| 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
 | |
| 		if (flag == REG_LIVE_READ64)
 | |
| 			parent->live &= ~REG_LIVE_READ32;
 | |
| 		state = parent;
 | |
| 		parent = state->parent;
 | |
| 		writes = true;
 | |
| 		cnt++;
 | |
| 	}
 | |
| 
 | |
| 	if (env->longest_mark_read_walk < cnt)
 | |
| 		env->longest_mark_read_walk = cnt;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This function is supposed to be used by the following 32-bit optimization
 | |
|  * code only. It returns TRUE if the source or destination register operates
 | |
|  * on 64-bit, otherwise return FALSE.
 | |
|  */
 | |
| static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
 | |
| 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
 | |
| {
 | |
| 	u8 code, class, op;
 | |
| 
 | |
| 	code = insn->code;
 | |
| 	class = BPF_CLASS(code);
 | |
| 	op = BPF_OP(code);
 | |
| 	if (class == BPF_JMP) {
 | |
| 		/* BPF_EXIT for "main" will reach here. Return TRUE
 | |
| 		 * conservatively.
 | |
| 		 */
 | |
| 		if (op == BPF_EXIT)
 | |
| 			return true;
 | |
| 		if (op == BPF_CALL) {
 | |
| 			/* BPF to BPF call will reach here because of marking
 | |
| 			 * caller saved clobber with DST_OP_NO_MARK for which we
 | |
| 			 * don't care the register def because they are anyway
 | |
| 			 * marked as NOT_INIT already.
 | |
| 			 */
 | |
| 			if (insn->src_reg == BPF_PSEUDO_CALL)
 | |
| 				return false;
 | |
| 			/* Helper call will reach here because of arg type
 | |
| 			 * check, conservatively return TRUE.
 | |
| 			 */
 | |
| 			if (t == SRC_OP)
 | |
| 				return true;
 | |
| 
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (class == BPF_ALU64 || class == BPF_JMP ||
 | |
| 	    /* BPF_END always use BPF_ALU class. */
 | |
| 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
 | |
| 		return true;
 | |
| 
 | |
| 	if (class == BPF_ALU || class == BPF_JMP32)
 | |
| 		return false;
 | |
| 
 | |
| 	if (class == BPF_LDX) {
 | |
| 		if (t != SRC_OP)
 | |
| 			return BPF_SIZE(code) == BPF_DW;
 | |
| 		/* LDX source must be ptr. */
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (class == BPF_STX) {
 | |
| 		if (reg->type != SCALAR_VALUE)
 | |
| 			return true;
 | |
| 		return BPF_SIZE(code) == BPF_DW;
 | |
| 	}
 | |
| 
 | |
| 	if (class == BPF_LD) {
 | |
| 		u8 mode = BPF_MODE(code);
 | |
| 
 | |
| 		/* LD_IMM64 */
 | |
| 		if (mode == BPF_IMM)
 | |
| 			return true;
 | |
| 
 | |
| 		/* Both LD_IND and LD_ABS return 32-bit data. */
 | |
| 		if (t != SRC_OP)
 | |
| 			return  false;
 | |
| 
 | |
| 		/* Implicit ctx ptr. */
 | |
| 		if (regno == BPF_REG_6)
 | |
| 			return true;
 | |
| 
 | |
| 		/* Explicit source could be any width. */
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (class == BPF_ST)
 | |
| 		/* The only source register for BPF_ST is a ptr. */
 | |
| 		return true;
 | |
| 
 | |
| 	/* Conservatively return true at default. */
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Return TRUE if INSN doesn't have explicit value define. */
 | |
| static bool insn_no_def(struct bpf_insn *insn)
 | |
| {
 | |
| 	u8 class = BPF_CLASS(insn->code);
 | |
| 
 | |
| 	return (class == BPF_JMP || class == BPF_JMP32 ||
 | |
| 		class == BPF_STX || class == BPF_ST);
 | |
| }
 | |
| 
 | |
| /* Return TRUE if INSN has defined any 32-bit value explicitly. */
 | |
| static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
 | |
| {
 | |
| 	if (insn_no_def(insn))
 | |
| 		return false;
 | |
| 
 | |
| 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
 | |
| }
 | |
| 
 | |
| static void mark_insn_zext(struct bpf_verifier_env *env,
 | |
| 			   struct bpf_reg_state *reg)
 | |
| {
 | |
| 	s32 def_idx = reg->subreg_def;
 | |
| 
 | |
| 	if (def_idx == DEF_NOT_SUBREG)
 | |
| 		return;
 | |
| 
 | |
| 	env->insn_aux_data[def_idx - 1].zext_dst = true;
 | |
| 	/* The dst will be zero extended, so won't be sub-register anymore. */
 | |
| 	reg->subreg_def = DEF_NOT_SUBREG;
 | |
| }
 | |
| 
 | |
| static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
 | |
| 			 enum reg_arg_type t)
 | |
| {
 | |
| 	struct bpf_verifier_state *vstate = env->cur_state;
 | |
| 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
 | |
| 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
 | |
| 	struct bpf_reg_state *reg, *regs = state->regs;
 | |
| 	bool rw64;
 | |
| 
 | |
| 	if (regno >= MAX_BPF_REG) {
 | |
| 		verbose(env, "R%d is invalid\n", regno);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	reg = ®s[regno];
 | |
| 	rw64 = is_reg64(env, insn, regno, reg, t);
 | |
| 	if (t == SRC_OP) {
 | |
| 		/* check whether register used as source operand can be read */
 | |
| 		if (reg->type == NOT_INIT) {
 | |
| 			verbose(env, "R%d !read_ok\n", regno);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		/* We don't need to worry about FP liveness because it's read-only */
 | |
| 		if (regno == BPF_REG_FP)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (rw64)
 | |
| 			mark_insn_zext(env, reg);
 | |
| 
 | |
| 		return mark_reg_read(env, reg, reg->parent,
 | |
| 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
 | |
| 	} else {
 | |
| 		/* check whether register used as dest operand can be written to */
 | |
| 		if (regno == BPF_REG_FP) {
 | |
| 			verbose(env, "frame pointer is read only\n");
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		reg->live |= REG_LIVE_WRITTEN;
 | |
| 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
 | |
| 		if (t == DST_OP)
 | |
| 			mark_reg_unknown(env, regs, regno);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* for any branch, call, exit record the history of jmps in the given state */
 | |
| static int push_jmp_history(struct bpf_verifier_env *env,
 | |
| 			    struct bpf_verifier_state *cur)
 | |
| {
 | |
| 	u32 cnt = cur->jmp_history_cnt;
 | |
| 	struct bpf_idx_pair *p;
 | |
| 
 | |
| 	cnt++;
 | |
| 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
 | |
| 	if (!p)
 | |
| 		return -ENOMEM;
 | |
| 	p[cnt - 1].idx = env->insn_idx;
 | |
| 	p[cnt - 1].prev_idx = env->prev_insn_idx;
 | |
| 	cur->jmp_history = p;
 | |
| 	cur->jmp_history_cnt = cnt;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Backtrack one insn at a time. If idx is not at the top of recorded
 | |
|  * history then previous instruction came from straight line execution.
 | |
|  */
 | |
| static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
 | |
| 			     u32 *history)
 | |
| {
 | |
| 	u32 cnt = *history;
 | |
| 
 | |
| 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
 | |
| 		i = st->jmp_history[cnt - 1].prev_idx;
 | |
| 		(*history)--;
 | |
| 	} else {
 | |
| 		i--;
 | |
| 	}
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /* For given verifier state backtrack_insn() is called from the last insn to
 | |
|  * the first insn. Its purpose is to compute a bitmask of registers and
 | |
|  * stack slots that needs precision in the parent verifier state.
 | |
|  */
 | |
| static int backtrack_insn(struct bpf_verifier_env *env, int idx,
 | |
| 			  u32 *reg_mask, u64 *stack_mask)
 | |
| {
 | |
| 	const struct bpf_insn_cbs cbs = {
 | |
| 		.cb_print	= verbose,
 | |
| 		.private_data	= env,
 | |
| 	};
 | |
| 	struct bpf_insn *insn = env->prog->insnsi + idx;
 | |
| 	u8 class = BPF_CLASS(insn->code);
 | |
| 	u8 opcode = BPF_OP(insn->code);
 | |
| 	u8 mode = BPF_MODE(insn->code);
 | |
| 	u32 dreg = 1u << insn->dst_reg;
 | |
| 	u32 sreg = 1u << insn->src_reg;
 | |
| 	u32 spi;
 | |
| 
 | |
| 	if (insn->code == 0)
 | |
| 		return 0;
 | |
| 	if (env->log.level & BPF_LOG_LEVEL) {
 | |
| 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
 | |
| 		verbose(env, "%d: ", idx);
 | |
| 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
 | |
| 	}
 | |
| 
 | |
| 	if (class == BPF_ALU || class == BPF_ALU64) {
 | |
| 		if (!(*reg_mask & dreg))
 | |
| 			return 0;
 | |
| 		if (opcode == BPF_MOV) {
 | |
| 			if (BPF_SRC(insn->code) == BPF_X) {
 | |
| 				/* dreg = sreg
 | |
| 				 * dreg needs precision after this insn
 | |
| 				 * sreg needs precision before this insn
 | |
| 				 */
 | |
| 				*reg_mask &= ~dreg;
 | |
| 				*reg_mask |= sreg;
 | |
| 			} else {
 | |
| 				/* dreg = K
 | |
| 				 * dreg needs precision after this insn.
 | |
| 				 * Corresponding register is already marked
 | |
| 				 * as precise=true in this verifier state.
 | |
| 				 * No further markings in parent are necessary
 | |
| 				 */
 | |
| 				*reg_mask &= ~dreg;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (BPF_SRC(insn->code) == BPF_X) {
 | |
| 				/* dreg += sreg
 | |
| 				 * both dreg and sreg need precision
 | |
| 				 * before this insn
 | |
| 				 */
 | |
| 				*reg_mask |= sreg;
 | |
| 			} /* else dreg += K
 | |
| 			   * dreg still needs precision before this insn
 | |
| 			   */
 | |
| 		}
 | |
| 	} else if (class == BPF_LDX) {
 | |
| 		if (!(*reg_mask & dreg))
 | |
| 			return 0;
 | |
| 		*reg_mask &= ~dreg;
 | |
| 
 | |
| 		/* scalars can only be spilled into stack w/o losing precision.
 | |
| 		 * Load from any other memory can be zero extended.
 | |
| 		 * The desire to keep that precision is already indicated
 | |
| 		 * by 'precise' mark in corresponding register of this state.
 | |
| 		 * No further tracking necessary.
 | |
| 		 */
 | |
| 		if (insn->src_reg != BPF_REG_FP)
 | |
| 			return 0;
 | |
| 		if (BPF_SIZE(insn->code) != BPF_DW)
 | |
| 			return 0;
 | |
| 
 | |
| 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
 | |
| 		 * that [fp - off] slot contains scalar that needs to be
 | |
| 		 * tracked with precision
 | |
| 		 */
 | |
| 		spi = (-insn->off - 1) / BPF_REG_SIZE;
 | |
| 		if (spi >= 64) {
 | |
| 			verbose(env, "BUG spi %d\n", spi);
 | |
| 			WARN_ONCE(1, "verifier backtracking bug");
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		*stack_mask |= 1ull << spi;
 | |
| 	} else if (class == BPF_STX || class == BPF_ST) {
 | |
| 		if (*reg_mask & dreg)
 | |
| 			/* stx & st shouldn't be using _scalar_ dst_reg
 | |
| 			 * to access memory. It means backtracking
 | |
| 			 * encountered a case of pointer subtraction.
 | |
| 			 */
 | |
| 			return -ENOTSUPP;
 | |
| 		/* scalars can only be spilled into stack */
 | |
| 		if (insn->dst_reg != BPF_REG_FP)
 | |
| 			return 0;
 | |
| 		if (BPF_SIZE(insn->code) != BPF_DW)
 | |
| 			return 0;
 | |
| 		spi = (-insn->off - 1) / BPF_REG_SIZE;
 | |
| 		if (spi >= 64) {
 | |
| 			verbose(env, "BUG spi %d\n", spi);
 | |
| 			WARN_ONCE(1, "verifier backtracking bug");
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		if (!(*stack_mask & (1ull << spi)))
 | |
| 			return 0;
 | |
| 		*stack_mask &= ~(1ull << spi);
 | |
| 		if (class == BPF_STX)
 | |
| 			*reg_mask |= sreg;
 | |
| 	} else if (class == BPF_JMP || class == BPF_JMP32) {
 | |
| 		if (opcode == BPF_CALL) {
 | |
| 			if (insn->src_reg == BPF_PSEUDO_CALL)
 | |
| 				return -ENOTSUPP;
 | |
| 			/* regular helper call sets R0 */
 | |
| 			*reg_mask &= ~1;
 | |
| 			if (*reg_mask & 0x3f) {
 | |
| 				/* if backtracing was looking for registers R1-R5
 | |
| 				 * they should have been found already.
 | |
| 				 */
 | |
| 				verbose(env, "BUG regs %x\n", *reg_mask);
 | |
| 				WARN_ONCE(1, "verifier backtracking bug");
 | |
| 				return -EFAULT;
 | |
| 			}
 | |
| 		} else if (opcode == BPF_EXIT) {
 | |
| 			return -ENOTSUPP;
 | |
| 		}
 | |
| 	} else if (class == BPF_LD) {
 | |
| 		if (!(*reg_mask & dreg))
 | |
| 			return 0;
 | |
| 		*reg_mask &= ~dreg;
 | |
| 		/* It's ld_imm64 or ld_abs or ld_ind.
 | |
| 		 * For ld_imm64 no further tracking of precision
 | |
| 		 * into parent is necessary
 | |
| 		 */
 | |
| 		if (mode == BPF_IND || mode == BPF_ABS)
 | |
| 			/* to be analyzed */
 | |
| 			return -ENOTSUPP;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* the scalar precision tracking algorithm:
 | |
|  * . at the start all registers have precise=false.
 | |
|  * . scalar ranges are tracked as normal through alu and jmp insns.
 | |
|  * . once precise value of the scalar register is used in:
 | |
|  *   .  ptr + scalar alu
 | |
|  *   . if (scalar cond K|scalar)
 | |
|  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
 | |
|  *   backtrack through the verifier states and mark all registers and
 | |
|  *   stack slots with spilled constants that these scalar regisers
 | |
|  *   should be precise.
 | |
|  * . during state pruning two registers (or spilled stack slots)
 | |
|  *   are equivalent if both are not precise.
 | |
|  *
 | |
|  * Note the verifier cannot simply walk register parentage chain,
 | |
|  * since many different registers and stack slots could have been
 | |
|  * used to compute single precise scalar.
 | |
|  *
 | |
|  * The approach of starting with precise=true for all registers and then
 | |
|  * backtrack to mark a register as not precise when the verifier detects
 | |
|  * that program doesn't care about specific value (e.g., when helper
 | |
|  * takes register as ARG_ANYTHING parameter) is not safe.
 | |
|  *
 | |
|  * It's ok to walk single parentage chain of the verifier states.
 | |
|  * It's possible that this backtracking will go all the way till 1st insn.
 | |
|  * All other branches will be explored for needing precision later.
 | |
|  *
 | |
|  * The backtracking needs to deal with cases like:
 | |
|  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
 | |
|  * r9 -= r8
 | |
|  * r5 = r9
 | |
|  * if r5 > 0x79f goto pc+7
 | |
|  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
 | |
|  * r5 += 1
 | |
|  * ...
 | |
|  * call bpf_perf_event_output#25
 | |
|  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
 | |
|  *
 | |
|  * and this case:
 | |
|  * r6 = 1
 | |
|  * call foo // uses callee's r6 inside to compute r0
 | |
|  * r0 += r6
 | |
|  * if r0 == 0 goto
 | |
|  *
 | |
|  * to track above reg_mask/stack_mask needs to be independent for each frame.
 | |
|  *
 | |
|  * Also if parent's curframe > frame where backtracking started,
 | |
|  * the verifier need to mark registers in both frames, otherwise callees
 | |
|  * may incorrectly prune callers. This is similar to
 | |
|  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
 | |
|  *
 | |
|  * For now backtracking falls back into conservative marking.
 | |
|  */
 | |
| static void mark_all_scalars_precise(struct bpf_verifier_env *env,
 | |
| 				     struct bpf_verifier_state *st)
 | |
| {
 | |
| 	struct bpf_func_state *func;
 | |
| 	struct bpf_reg_state *reg;
 | |
| 	int i, j;
 | |
| 
 | |
| 	/* big hammer: mark all scalars precise in this path.
 | |
| 	 * pop_stack may still get !precise scalars.
 | |
| 	 */
 | |
| 	for (; st; st = st->parent)
 | |
| 		for (i = 0; i <= st->curframe; i++) {
 | |
| 			func = st->frame[i];
 | |
| 			for (j = 0; j < BPF_REG_FP; j++) {
 | |
| 				reg = &func->regs[j];
 | |
| 				if (reg->type != SCALAR_VALUE)
 | |
| 					continue;
 | |
| 				reg->precise = true;
 | |
| 			}
 | |
| 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
 | |
| 				if (func->stack[j].slot_type[0] != STACK_SPILL)
 | |
| 					continue;
 | |
| 				reg = &func->stack[j].spilled_ptr;
 | |
| 				if (reg->type != SCALAR_VALUE)
 | |
| 					continue;
 | |
| 				reg->precise = true;
 | |
| 			}
 | |
| 		}
 | |
| }
 | |
| 
 | |
| static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
 | |
| 				  int spi)
 | |
| {
 | |
| 	struct bpf_verifier_state *st = env->cur_state;
 | |
| 	int first_idx = st->first_insn_idx;
 | |
| 	int last_idx = env->insn_idx;
 | |
| 	struct bpf_func_state *func;
 | |
| 	struct bpf_reg_state *reg;
 | |
| 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
 | |
| 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
 | |
| 	bool skip_first = true;
 | |
| 	bool new_marks = false;
 | |
| 	int i, err;
 | |
| 
 | |
| 	if (!env->bpf_capable)
 | |
| 		return 0;
 | |
| 
 | |
| 	func = st->frame[st->curframe];
 | |
| 	if (regno >= 0) {
 | |
| 		reg = &func->regs[regno];
 | |
| 		if (reg->type != SCALAR_VALUE) {
 | |
| 			WARN_ONCE(1, "backtracing misuse");
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		if (!reg->precise)
 | |
| 			new_marks = true;
 | |
| 		else
 | |
| 			reg_mask = 0;
 | |
| 		reg->precise = true;
 | |
| 	}
 | |
| 
 | |
| 	while (spi >= 0) {
 | |
| 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
 | |
| 			stack_mask = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		reg = &func->stack[spi].spilled_ptr;
 | |
| 		if (reg->type != SCALAR_VALUE) {
 | |
| 			stack_mask = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (!reg->precise)
 | |
| 			new_marks = true;
 | |
| 		else
 | |
| 			stack_mask = 0;
 | |
| 		reg->precise = true;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (!new_marks)
 | |
| 		return 0;
 | |
| 	if (!reg_mask && !stack_mask)
 | |
| 		return 0;
 | |
| 	for (;;) {
 | |
| 		DECLARE_BITMAP(mask, 64);
 | |
| 		u32 history = st->jmp_history_cnt;
 | |
| 
 | |
| 		if (env->log.level & BPF_LOG_LEVEL)
 | |
| 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
 | |
| 		for (i = last_idx;;) {
 | |
| 			if (skip_first) {
 | |
| 				err = 0;
 | |
| 				skip_first = false;
 | |
| 			} else {
 | |
| 				err = backtrack_insn(env, i, ®_mask, &stack_mask);
 | |
| 			}
 | |
| 			if (err == -ENOTSUPP) {
 | |
| 				mark_all_scalars_precise(env, st);
 | |
| 				return 0;
 | |
| 			} else if (err) {
 | |
| 				return err;
 | |
| 			}
 | |
| 			if (!reg_mask && !stack_mask)
 | |
| 				/* Found assignment(s) into tracked register in this state.
 | |
| 				 * Since this state is already marked, just return.
 | |
| 				 * Nothing to be tracked further in the parent state.
 | |
| 				 */
 | |
| 				return 0;
 | |
| 			if (i == first_idx)
 | |
| 				break;
 | |
| 			i = get_prev_insn_idx(st, i, &history);
 | |
| 			if (i >= env->prog->len) {
 | |
| 				/* This can happen if backtracking reached insn 0
 | |
| 				 * and there are still reg_mask or stack_mask
 | |
| 				 * to backtrack.
 | |
| 				 * It means the backtracking missed the spot where
 | |
| 				 * particular register was initialized with a constant.
 | |
| 				 */
 | |
| 				verbose(env, "BUG backtracking idx %d\n", i);
 | |
| 				WARN_ONCE(1, "verifier backtracking bug");
 | |
| 				return -EFAULT;
 | |
| 			}
 | |
| 		}
 | |
| 		st = st->parent;
 | |
| 		if (!st)
 | |
| 			break;
 | |
| 
 | |
| 		new_marks = false;
 | |
| 		func = st->frame[st->curframe];
 | |
| 		bitmap_from_u64(mask, reg_mask);
 | |
| 		for_each_set_bit(i, mask, 32) {
 | |
| 			reg = &func->regs[i];
 | |
| 			if (reg->type != SCALAR_VALUE) {
 | |
| 				reg_mask &= ~(1u << i);
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (!reg->precise)
 | |
| 				new_marks = true;
 | |
| 			reg->precise = true;
 | |
| 		}
 | |
| 
 | |
| 		bitmap_from_u64(mask, stack_mask);
 | |
| 		for_each_set_bit(i, mask, 64) {
 | |
| 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
 | |
| 				/* the sequence of instructions:
 | |
| 				 * 2: (bf) r3 = r10
 | |
| 				 * 3: (7b) *(u64 *)(r3 -8) = r0
 | |
| 				 * 4: (79) r4 = *(u64 *)(r10 -8)
 | |
| 				 * doesn't contain jmps. It's backtracked
 | |
| 				 * as a single block.
 | |
| 				 * During backtracking insn 3 is not recognized as
 | |
| 				 * stack access, so at the end of backtracking
 | |
| 				 * stack slot fp-8 is still marked in stack_mask.
 | |
| 				 * However the parent state may not have accessed
 | |
| 				 * fp-8 and it's "unallocated" stack space.
 | |
| 				 * In such case fallback to conservative.
 | |
| 				 */
 | |
| 				mark_all_scalars_precise(env, st);
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
 | |
| 				stack_mask &= ~(1ull << i);
 | |
| 				continue;
 | |
| 			}
 | |
| 			reg = &func->stack[i].spilled_ptr;
 | |
| 			if (reg->type != SCALAR_VALUE) {
 | |
| 				stack_mask &= ~(1ull << i);
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (!reg->precise)
 | |
| 				new_marks = true;
 | |
| 			reg->precise = true;
 | |
| 		}
 | |
| 		if (env->log.level & BPF_LOG_LEVEL) {
 | |
| 			print_verifier_state(env, func);
 | |
| 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
 | |
| 				new_marks ? "didn't have" : "already had",
 | |
| 				reg_mask, stack_mask);
 | |
| 		}
 | |
| 
 | |
| 		if (!reg_mask && !stack_mask)
 | |
| 			break;
 | |
| 		if (!new_marks)
 | |
| 			break;
 | |
| 
 | |
| 		last_idx = st->last_insn_idx;
 | |
| 		first_idx = st->first_insn_idx;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
 | |
| {
 | |
| 	return __mark_chain_precision(env, regno, -1);
 | |
| }
 | |
| 
 | |
| static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
 | |
| {
 | |
| 	return __mark_chain_precision(env, -1, spi);
 | |
| }
 | |
| 
 | |
| static bool is_spillable_regtype(enum bpf_reg_type type)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case PTR_TO_MAP_VALUE:
 | |
| 	case PTR_TO_MAP_VALUE_OR_NULL:
 | |
| 	case PTR_TO_STACK:
 | |
| 	case PTR_TO_CTX:
 | |
| 	case PTR_TO_PACKET:
 | |
| 	case PTR_TO_PACKET_META:
 | |
| 	case PTR_TO_PACKET_END:
 | |
| 	case PTR_TO_FLOW_KEYS:
 | |
| 	case CONST_PTR_TO_MAP:
 | |
| 	case PTR_TO_SOCKET:
 | |
| 	case PTR_TO_SOCKET_OR_NULL:
 | |
| 	case PTR_TO_SOCK_COMMON:
 | |
| 	case PTR_TO_SOCK_COMMON_OR_NULL:
 | |
| 	case PTR_TO_TCP_SOCK:
 | |
| 	case PTR_TO_TCP_SOCK_OR_NULL:
 | |
| 	case PTR_TO_XDP_SOCK:
 | |
| 	case PTR_TO_BTF_ID:
 | |
| 	case PTR_TO_BTF_ID_OR_NULL:
 | |
| 		return true;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Does this register contain a constant zero? */
 | |
| static bool register_is_null(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
 | |
| }
 | |
| 
 | |
| static bool register_is_const(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
 | |
| }
 | |
| 
 | |
| static bool __is_pointer_value(bool allow_ptr_leaks,
 | |
| 			       const struct bpf_reg_state *reg)
 | |
| {
 | |
| 	if (allow_ptr_leaks)
 | |
| 		return false;
 | |
| 
 | |
| 	return reg->type != SCALAR_VALUE;
 | |
| }
 | |
| 
 | |
| static void save_register_state(struct bpf_func_state *state,
 | |
| 				int spi, struct bpf_reg_state *reg)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	state->stack[spi].spilled_ptr = *reg;
 | |
| 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
 | |
| 
 | |
| 	for (i = 0; i < BPF_REG_SIZE; i++)
 | |
| 		state->stack[spi].slot_type[i] = STACK_SPILL;
 | |
| }
 | |
| 
 | |
| /* check_stack_read/write functions track spill/fill of registers,
 | |
|  * stack boundary and alignment are checked in check_mem_access()
 | |
|  */
 | |
| static int check_stack_write(struct bpf_verifier_env *env,
 | |
| 			     struct bpf_func_state *state, /* func where register points to */
 | |
| 			     int off, int size, int value_regno, int insn_idx)
 | |
| {
 | |
| 	struct bpf_func_state *cur; /* state of the current function */
 | |
| 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
 | |
| 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
 | |
| 	struct bpf_reg_state *reg = NULL;
 | |
| 
 | |
| 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
 | |
| 				 state->acquired_refs, true);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
 | |
| 	 * so it's aligned access and [off, off + size) are within stack limits
 | |
| 	 */
 | |
| 	if (!env->allow_ptr_leaks &&
 | |
| 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
 | |
| 	    size != BPF_REG_SIZE) {
 | |
| 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	cur = env->cur_state->frame[env->cur_state->curframe];
 | |
| 	if (value_regno >= 0)
 | |
| 		reg = &cur->regs[value_regno];
 | |
| 
 | |
| 	if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
 | |
| 	    !register_is_null(reg) && env->bpf_capable) {
 | |
| 		if (dst_reg != BPF_REG_FP) {
 | |
| 			/* The backtracking logic can only recognize explicit
 | |
| 			 * stack slot address like [fp - 8]. Other spill of
 | |
| 			 * scalar via different register has to be conervative.
 | |
| 			 * Backtrack from here and mark all registers as precise
 | |
| 			 * that contributed into 'reg' being a constant.
 | |
| 			 */
 | |
| 			err = mark_chain_precision(env, value_regno);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 		save_register_state(state, spi, reg);
 | |
| 	} else if (reg && is_spillable_regtype(reg->type)) {
 | |
| 		/* register containing pointer is being spilled into stack */
 | |
| 		if (size != BPF_REG_SIZE) {
 | |
| 			verbose_linfo(env, insn_idx, "; ");
 | |
| 			verbose(env, "invalid size of register spill\n");
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 
 | |
| 		if (state != cur && reg->type == PTR_TO_STACK) {
 | |
| 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (!env->bypass_spec_v4) {
 | |
| 			bool sanitize = false;
 | |
| 
 | |
| 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
 | |
| 			    register_is_const(&state->stack[spi].spilled_ptr))
 | |
| 				sanitize = true;
 | |
| 			for (i = 0; i < BPF_REG_SIZE; i++)
 | |
| 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
 | |
| 					sanitize = true;
 | |
| 					break;
 | |
| 				}
 | |
| 			if (sanitize) {
 | |
| 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
 | |
| 				int soff = (-spi - 1) * BPF_REG_SIZE;
 | |
| 
 | |
| 				/* detected reuse of integer stack slot with a pointer
 | |
| 				 * which means either llvm is reusing stack slot or
 | |
| 				 * an attacker is trying to exploit CVE-2018-3639
 | |
| 				 * (speculative store bypass)
 | |
| 				 * Have to sanitize that slot with preemptive
 | |
| 				 * store of zero.
 | |
| 				 */
 | |
| 				if (*poff && *poff != soff) {
 | |
| 					/* disallow programs where single insn stores
 | |
| 					 * into two different stack slots, since verifier
 | |
| 					 * cannot sanitize them
 | |
| 					 */
 | |
| 					verbose(env,
 | |
| 						"insn %d cannot access two stack slots fp%d and fp%d",
 | |
| 						insn_idx, *poff, soff);
 | |
| 					return -EINVAL;
 | |
| 				}
 | |
| 				*poff = soff;
 | |
| 			}
 | |
| 		}
 | |
| 		save_register_state(state, spi, reg);
 | |
| 	} else {
 | |
| 		u8 type = STACK_MISC;
 | |
| 
 | |
| 		/* regular write of data into stack destroys any spilled ptr */
 | |
| 		state->stack[spi].spilled_ptr.type = NOT_INIT;
 | |
| 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
 | |
| 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
 | |
| 			for (i = 0; i < BPF_REG_SIZE; i++)
 | |
| 				state->stack[spi].slot_type[i] = STACK_MISC;
 | |
| 
 | |
| 		/* only mark the slot as written if all 8 bytes were written
 | |
| 		 * otherwise read propagation may incorrectly stop too soon
 | |
| 		 * when stack slots are partially written.
 | |
| 		 * This heuristic means that read propagation will be
 | |
| 		 * conservative, since it will add reg_live_read marks
 | |
| 		 * to stack slots all the way to first state when programs
 | |
| 		 * writes+reads less than 8 bytes
 | |
| 		 */
 | |
| 		if (size == BPF_REG_SIZE)
 | |
| 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
 | |
| 
 | |
| 		/* when we zero initialize stack slots mark them as such */
 | |
| 		if (reg && register_is_null(reg)) {
 | |
| 			/* backtracking doesn't work for STACK_ZERO yet. */
 | |
| 			err = mark_chain_precision(env, value_regno);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			type = STACK_ZERO;
 | |
| 		}
 | |
| 
 | |
| 		/* Mark slots affected by this stack write. */
 | |
| 		for (i = 0; i < size; i++)
 | |
| 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
 | |
| 				type;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_stack_read(struct bpf_verifier_env *env,
 | |
| 			    struct bpf_func_state *reg_state /* func where register points to */,
 | |
| 			    int off, int size, int value_regno)
 | |
| {
 | |
| 	struct bpf_verifier_state *vstate = env->cur_state;
 | |
| 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
 | |
| 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
 | |
| 	struct bpf_reg_state *reg;
 | |
| 	u8 *stype;
 | |
| 
 | |
| 	if (reg_state->allocated_stack <= slot) {
 | |
| 		verbose(env, "invalid read from stack off %d+0 size %d\n",
 | |
| 			off, size);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 	stype = reg_state->stack[spi].slot_type;
 | |
| 	reg = ®_state->stack[spi].spilled_ptr;
 | |
| 
 | |
| 	if (stype[0] == STACK_SPILL) {
 | |
| 		if (size != BPF_REG_SIZE) {
 | |
| 			if (reg->type != SCALAR_VALUE) {
 | |
| 				verbose_linfo(env, env->insn_idx, "; ");
 | |
| 				verbose(env, "invalid size of register fill\n");
 | |
| 				return -EACCES;
 | |
| 			}
 | |
| 			if (value_regno >= 0) {
 | |
| 				mark_reg_unknown(env, state->regs, value_regno);
 | |
| 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
 | |
| 			}
 | |
| 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		for (i = 1; i < BPF_REG_SIZE; i++) {
 | |
| 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
 | |
| 				verbose(env, "corrupted spill memory\n");
 | |
| 				return -EACCES;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (value_regno >= 0) {
 | |
| 			/* restore register state from stack */
 | |
| 			state->regs[value_regno] = *reg;
 | |
| 			/* mark reg as written since spilled pointer state likely
 | |
| 			 * has its liveness marks cleared by is_state_visited()
 | |
| 			 * which resets stack/reg liveness for state transitions
 | |
| 			 */
 | |
| 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
 | |
| 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
 | |
| 			/* If value_regno==-1, the caller is asking us whether
 | |
| 			 * it is acceptable to use this value as a SCALAR_VALUE
 | |
| 			 * (e.g. for XADD).
 | |
| 			 * We must not allow unprivileged callers to do that
 | |
| 			 * with spilled pointers.
 | |
| 			 */
 | |
| 			verbose(env, "leaking pointer from stack off %d\n",
 | |
| 				off);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
 | |
| 	} else {
 | |
| 		int zeros = 0;
 | |
| 
 | |
| 		for (i = 0; i < size; i++) {
 | |
| 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
 | |
| 				continue;
 | |
| 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
 | |
| 				zeros++;
 | |
| 				continue;
 | |
| 			}
 | |
| 			verbose(env, "invalid read from stack off %d+%d size %d\n",
 | |
| 				off, i, size);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
 | |
| 		if (value_regno >= 0) {
 | |
| 			if (zeros == size) {
 | |
| 				/* any size read into register is zero extended,
 | |
| 				 * so the whole register == const_zero
 | |
| 				 */
 | |
| 				__mark_reg_const_zero(&state->regs[value_regno]);
 | |
| 				/* backtracking doesn't support STACK_ZERO yet,
 | |
| 				 * so mark it precise here, so that later
 | |
| 				 * backtracking can stop here.
 | |
| 				 * Backtracking may not need this if this register
 | |
| 				 * doesn't participate in pointer adjustment.
 | |
| 				 * Forward propagation of precise flag is not
 | |
| 				 * necessary either. This mark is only to stop
 | |
| 				 * backtracking. Any register that contributed
 | |
| 				 * to const 0 was marked precise before spill.
 | |
| 				 */
 | |
| 				state->regs[value_regno].precise = true;
 | |
| 			} else {
 | |
| 				/* have read misc data from the stack */
 | |
| 				mark_reg_unknown(env, state->regs, value_regno);
 | |
| 			}
 | |
| 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_stack_access(struct bpf_verifier_env *env,
 | |
| 			      const struct bpf_reg_state *reg,
 | |
| 			      int off, int size)
 | |
| {
 | |
| 	/* Stack accesses must be at a fixed offset, so that we
 | |
| 	 * can determine what type of data were returned. See
 | |
| 	 * check_stack_read().
 | |
| 	 */
 | |
| 	if (!tnum_is_const(reg->var_off)) {
 | |
| 		char tn_buf[48];
 | |
| 
 | |
| 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 | |
| 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
 | |
| 			tn_buf, off, size);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	if (off >= 0 || off < -MAX_BPF_STACK) {
 | |
| 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
 | |
| 				 int off, int size, enum bpf_access_type type)
 | |
| {
 | |
| 	struct bpf_reg_state *regs = cur_regs(env);
 | |
| 	struct bpf_map *map = regs[regno].map_ptr;
 | |
| 	u32 cap = bpf_map_flags_to_cap(map);
 | |
| 
 | |
| 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
 | |
| 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
 | |
| 			map->value_size, off, size);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
 | |
| 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
 | |
| 			map->value_size, off, size);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
 | |
| static int __check_mem_access(struct bpf_verifier_env *env, int regno,
 | |
| 			      int off, int size, u32 mem_size,
 | |
| 			      bool zero_size_allowed)
 | |
| {
 | |
| 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
 | |
| 	struct bpf_reg_state *reg;
 | |
| 
 | |
| 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
 | |
| 		return 0;
 | |
| 
 | |
| 	reg = &cur_regs(env)[regno];
 | |
| 	switch (reg->type) {
 | |
| 	case PTR_TO_MAP_VALUE:
 | |
| 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
 | |
| 			mem_size, off, size);
 | |
| 		break;
 | |
| 	case PTR_TO_PACKET:
 | |
| 	case PTR_TO_PACKET_META:
 | |
| 	case PTR_TO_PACKET_END:
 | |
| 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
 | |
| 			off, size, regno, reg->id, off, mem_size);
 | |
| 		break;
 | |
| 	case PTR_TO_MEM:
 | |
| 	default:
 | |
| 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
 | |
| 			mem_size, off, size);
 | |
| 	}
 | |
| 
 | |
| 	return -EACCES;
 | |
| }
 | |
| 
 | |
| /* check read/write into a memory region with possible variable offset */
 | |
| static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
 | |
| 				   int off, int size, u32 mem_size,
 | |
| 				   bool zero_size_allowed)
 | |
| {
 | |
| 	struct bpf_verifier_state *vstate = env->cur_state;
 | |
| 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
 | |
| 	struct bpf_reg_state *reg = &state->regs[regno];
 | |
| 	int err;
 | |
| 
 | |
| 	/* We may have adjusted the register pointing to memory region, so we
 | |
| 	 * need to try adding each of min_value and max_value to off
 | |
| 	 * to make sure our theoretical access will be safe.
 | |
| 	 */
 | |
| 	if (env->log.level & BPF_LOG_LEVEL)
 | |
| 		print_verifier_state(env, state);
 | |
| 
 | |
| 	/* The minimum value is only important with signed
 | |
| 	 * comparisons where we can't assume the floor of a
 | |
| 	 * value is 0.  If we are using signed variables for our
 | |
| 	 * index'es we need to make sure that whatever we use
 | |
| 	 * will have a set floor within our range.
 | |
| 	 */
 | |
| 	if (reg->smin_value < 0 &&
 | |
| 	    (reg->smin_value == S64_MIN ||
 | |
| 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
 | |
| 	      reg->smin_value + off < 0)) {
 | |
| 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
 | |
| 			regno);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
 | |
| 				 mem_size, zero_size_allowed);
 | |
| 	if (err) {
 | |
| 		verbose(env, "R%d min value is outside of the allowed memory range\n",
 | |
| 			regno);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* If we haven't set a max value then we need to bail since we can't be
 | |
| 	 * sure we won't do bad things.
 | |
| 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
 | |
| 	 */
 | |
| 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
 | |
| 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
 | |
| 			regno);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
 | |
| 				 mem_size, zero_size_allowed);
 | |
| 	if (err) {
 | |
| 		verbose(env, "R%d max value is outside of the allowed memory range\n",
 | |
| 			regno);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* check read/write into a map element with possible variable offset */
 | |
| static int check_map_access(struct bpf_verifier_env *env, u32 regno,
 | |
| 			    int off, int size, bool zero_size_allowed)
 | |
| {
 | |
| 	struct bpf_verifier_state *vstate = env->cur_state;
 | |
| 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
 | |
| 	struct bpf_reg_state *reg = &state->regs[regno];
 | |
| 	struct bpf_map *map = reg->map_ptr;
 | |
| 	int err;
 | |
| 
 | |
| 	err = check_mem_region_access(env, regno, off, size, map->value_size,
 | |
| 				      zero_size_allowed);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (map_value_has_spin_lock(map)) {
 | |
| 		u32 lock = map->spin_lock_off;
 | |
| 
 | |
| 		/* if any part of struct bpf_spin_lock can be touched by
 | |
| 		 * load/store reject this program.
 | |
| 		 * To check that [x1, x2) overlaps with [y1, y2)
 | |
| 		 * it is sufficient to check x1 < y2 && y1 < x2.
 | |
| 		 */
 | |
| 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
 | |
| 		     lock < reg->umax_value + off + size) {
 | |
| 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #define MAX_PACKET_OFF 0xffff
 | |
| 
 | |
| static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
 | |
| 				       const struct bpf_call_arg_meta *meta,
 | |
| 				       enum bpf_access_type t)
 | |
| {
 | |
| 	switch (env->prog->type) {
 | |
| 	/* Program types only with direct read access go here! */
 | |
| 	case BPF_PROG_TYPE_LWT_IN:
 | |
| 	case BPF_PROG_TYPE_LWT_OUT:
 | |
| 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
 | |
| 	case BPF_PROG_TYPE_SK_REUSEPORT:
 | |
| 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
 | |
| 	case BPF_PROG_TYPE_CGROUP_SKB:
 | |
| 		if (t == BPF_WRITE)
 | |
| 			return false;
 | |
| 		/* fallthrough */
 | |
| 
 | |
| 	/* Program types with direct read + write access go here! */
 | |
| 	case BPF_PROG_TYPE_SCHED_CLS:
 | |
| 	case BPF_PROG_TYPE_SCHED_ACT:
 | |
| 	case BPF_PROG_TYPE_XDP:
 | |
| 	case BPF_PROG_TYPE_LWT_XMIT:
 | |
| 	case BPF_PROG_TYPE_SK_SKB:
 | |
| 	case BPF_PROG_TYPE_SK_MSG:
 | |
| 		if (meta)
 | |
| 			return meta->pkt_access;
 | |
| 
 | |
| 		env->seen_direct_write = true;
 | |
| 		return true;
 | |
| 
 | |
| 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
 | |
| 		if (t == BPF_WRITE)
 | |
| 			env->seen_direct_write = true;
 | |
| 
 | |
| 		return true;
 | |
| 
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
 | |
| 			       int size, bool zero_size_allowed)
 | |
| {
 | |
| 	struct bpf_reg_state *regs = cur_regs(env);
 | |
| 	struct bpf_reg_state *reg = ®s[regno];
 | |
| 	int err;
 | |
| 
 | |
| 	/* We may have added a variable offset to the packet pointer; but any
 | |
| 	 * reg->range we have comes after that.  We are only checking the fixed
 | |
| 	 * offset.
 | |
| 	 */
 | |
| 
 | |
| 	/* We don't allow negative numbers, because we aren't tracking enough
 | |
| 	 * detail to prove they're safe.
 | |
| 	 */
 | |
| 	if (reg->smin_value < 0) {
 | |
| 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
 | |
| 			regno);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 	err = __check_mem_access(env, regno, off, size, reg->range,
 | |
| 				 zero_size_allowed);
 | |
| 	if (err) {
 | |
| 		verbose(env, "R%d offset is outside of the packet\n", regno);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* __check_mem_access has made sure "off + size - 1" is within u16.
 | |
| 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
 | |
| 	 * otherwise find_good_pkt_pointers would have refused to set range info
 | |
| 	 * that __check_mem_access would have rejected this pkt access.
 | |
| 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
 | |
| 	 */
 | |
| 	env->prog->aux->max_pkt_offset =
 | |
| 		max_t(u32, env->prog->aux->max_pkt_offset,
 | |
| 		      off + reg->umax_value + size - 1);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
 | |
| static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
 | |
| 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
 | |
| 			    u32 *btf_id)
 | |
| {
 | |
| 	struct bpf_insn_access_aux info = {
 | |
| 		.reg_type = *reg_type,
 | |
| 		.log = &env->log,
 | |
| 	};
 | |
| 
 | |
| 	if (env->ops->is_valid_access &&
 | |
| 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
 | |
| 		/* A non zero info.ctx_field_size indicates that this field is a
 | |
| 		 * candidate for later verifier transformation to load the whole
 | |
| 		 * field and then apply a mask when accessed with a narrower
 | |
| 		 * access than actual ctx access size. A zero info.ctx_field_size
 | |
| 		 * will only allow for whole field access and rejects any other
 | |
| 		 * type of narrower access.
 | |
| 		 */
 | |
| 		*reg_type = info.reg_type;
 | |
| 
 | |
| 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL)
 | |
| 			*btf_id = info.btf_id;
 | |
| 		else
 | |
| 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
 | |
| 		/* remember the offset of last byte accessed in ctx */
 | |
| 		if (env->prog->aux->max_ctx_offset < off + size)
 | |
| 			env->prog->aux->max_ctx_offset = off + size;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
 | |
| 	return -EACCES;
 | |
| }
 | |
| 
 | |
| static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
 | |
| 				  int size)
 | |
| {
 | |
| 	if (size < 0 || off < 0 ||
 | |
| 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
 | |
| 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
 | |
| 			off, size);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
 | |
| 			     u32 regno, int off, int size,
 | |
| 			     enum bpf_access_type t)
 | |
| {
 | |
| 	struct bpf_reg_state *regs = cur_regs(env);
 | |
| 	struct bpf_reg_state *reg = ®s[regno];
 | |
| 	struct bpf_insn_access_aux info = {};
 | |
| 	bool valid;
 | |
| 
 | |
| 	if (reg->smin_value < 0) {
 | |
| 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
 | |
| 			regno);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	switch (reg->type) {
 | |
| 	case PTR_TO_SOCK_COMMON:
 | |
| 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
 | |
| 		break;
 | |
| 	case PTR_TO_SOCKET:
 | |
| 		valid = bpf_sock_is_valid_access(off, size, t, &info);
 | |
| 		break;
 | |
| 	case PTR_TO_TCP_SOCK:
 | |
| 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
 | |
| 		break;
 | |
| 	case PTR_TO_XDP_SOCK:
 | |
| 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
 | |
| 		break;
 | |
| 	default:
 | |
| 		valid = false;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	if (valid) {
 | |
| 		env->insn_aux_data[insn_idx].ctx_field_size =
 | |
| 			info.ctx_field_size;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
 | |
| 		regno, reg_type_str[reg->type], off, size);
 | |
| 
 | |
| 	return -EACCES;
 | |
| }
 | |
| 
 | |
| static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
 | |
| {
 | |
| 	return cur_regs(env) + regno;
 | |
| }
 | |
| 
 | |
| static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
 | |
| {
 | |
| 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
 | |
| }
 | |
| 
 | |
| static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
 | |
| {
 | |
| 	const struct bpf_reg_state *reg = reg_state(env, regno);
 | |
| 
 | |
| 	return reg->type == PTR_TO_CTX;
 | |
| }
 | |
| 
 | |
| static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
 | |
| {
 | |
| 	const struct bpf_reg_state *reg = reg_state(env, regno);
 | |
| 
 | |
| 	return type_is_sk_pointer(reg->type);
 | |
| }
 | |
| 
 | |
| static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
 | |
| {
 | |
| 	const struct bpf_reg_state *reg = reg_state(env, regno);
 | |
| 
 | |
| 	return type_is_pkt_pointer(reg->type);
 | |
| }
 | |
| 
 | |
| static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
 | |
| {
 | |
| 	const struct bpf_reg_state *reg = reg_state(env, regno);
 | |
| 
 | |
| 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
 | |
| 	return reg->type == PTR_TO_FLOW_KEYS;
 | |
| }
 | |
| 
 | |
| static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
 | |
| 				   const struct bpf_reg_state *reg,
 | |
| 				   int off, int size, bool strict)
 | |
| {
 | |
| 	struct tnum reg_off;
 | |
| 	int ip_align;
 | |
| 
 | |
| 	/* Byte size accesses are always allowed. */
 | |
| 	if (!strict || size == 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* For platforms that do not have a Kconfig enabling
 | |
| 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
 | |
| 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
 | |
| 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
 | |
| 	 * to this code only in strict mode where we want to emulate
 | |
| 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
 | |
| 	 * unconditional IP align value of '2'.
 | |
| 	 */
 | |
| 	ip_align = 2;
 | |
| 
 | |
| 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
 | |
| 	if (!tnum_is_aligned(reg_off, size)) {
 | |
| 		char tn_buf[48];
 | |
| 
 | |
| 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 | |
| 		verbose(env,
 | |
| 			"misaligned packet access off %d+%s+%d+%d size %d\n",
 | |
| 			ip_align, tn_buf, reg->off, off, size);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
 | |
| 				       const struct bpf_reg_state *reg,
 | |
| 				       const char *pointer_desc,
 | |
| 				       int off, int size, bool strict)
 | |
| {
 | |
| 	struct tnum reg_off;
 | |
| 
 | |
| 	/* Byte size accesses are always allowed. */
 | |
| 	if (!strict || size == 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
 | |
| 	if (!tnum_is_aligned(reg_off, size)) {
 | |
| 		char tn_buf[48];
 | |
| 
 | |
| 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 | |
| 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
 | |
| 			pointer_desc, tn_buf, reg->off, off, size);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_ptr_alignment(struct bpf_verifier_env *env,
 | |
| 			       const struct bpf_reg_state *reg, int off,
 | |
| 			       int size, bool strict_alignment_once)
 | |
| {
 | |
| 	bool strict = env->strict_alignment || strict_alignment_once;
 | |
| 	const char *pointer_desc = "";
 | |
| 
 | |
| 	switch (reg->type) {
 | |
| 	case PTR_TO_PACKET:
 | |
| 	case PTR_TO_PACKET_META:
 | |
| 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
 | |
| 		 * right in front, treat it the very same way.
 | |
| 		 */
 | |
| 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
 | |
| 	case PTR_TO_FLOW_KEYS:
 | |
| 		pointer_desc = "flow keys ";
 | |
| 		break;
 | |
| 	case PTR_TO_MAP_VALUE:
 | |
| 		pointer_desc = "value ";
 | |
| 		break;
 | |
| 	case PTR_TO_CTX:
 | |
| 		pointer_desc = "context ";
 | |
| 		break;
 | |
| 	case PTR_TO_STACK:
 | |
| 		pointer_desc = "stack ";
 | |
| 		/* The stack spill tracking logic in check_stack_write()
 | |
| 		 * and check_stack_read() relies on stack accesses being
 | |
| 		 * aligned.
 | |
| 		 */
 | |
| 		strict = true;
 | |
| 		break;
 | |
| 	case PTR_TO_SOCKET:
 | |
| 		pointer_desc = "sock ";
 | |
| 		break;
 | |
| 	case PTR_TO_SOCK_COMMON:
 | |
| 		pointer_desc = "sock_common ";
 | |
| 		break;
 | |
| 	case PTR_TO_TCP_SOCK:
 | |
| 		pointer_desc = "tcp_sock ";
 | |
| 		break;
 | |
| 	case PTR_TO_XDP_SOCK:
 | |
| 		pointer_desc = "xdp_sock ";
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
 | |
| 					   strict);
 | |
| }
 | |
| 
 | |
| static int update_stack_depth(struct bpf_verifier_env *env,
 | |
| 			      const struct bpf_func_state *func,
 | |
| 			      int off)
 | |
| {
 | |
| 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
 | |
| 
 | |
| 	if (stack >= -off)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* update known max for given subprogram */
 | |
| 	env->subprog_info[func->subprogno].stack_depth = -off;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* starting from main bpf function walk all instructions of the function
 | |
|  * and recursively walk all callees that given function can call.
 | |
|  * Ignore jump and exit insns.
 | |
|  * Since recursion is prevented by check_cfg() this algorithm
 | |
|  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
 | |
|  */
 | |
| static int check_max_stack_depth(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
 | |
| 	struct bpf_subprog_info *subprog = env->subprog_info;
 | |
| 	struct bpf_insn *insn = env->prog->insnsi;
 | |
| 	int ret_insn[MAX_CALL_FRAMES];
 | |
| 	int ret_prog[MAX_CALL_FRAMES];
 | |
| 
 | |
| process_func:
 | |
| 	/* round up to 32-bytes, since this is granularity
 | |
| 	 * of interpreter stack size
 | |
| 	 */
 | |
| 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
 | |
| 	if (depth > MAX_BPF_STACK) {
 | |
| 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
 | |
| 			frame + 1, depth);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| continue_func:
 | |
| 	subprog_end = subprog[idx + 1].start;
 | |
| 	for (; i < subprog_end; i++) {
 | |
| 		if (insn[i].code != (BPF_JMP | BPF_CALL))
 | |
| 			continue;
 | |
| 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
 | |
| 			continue;
 | |
| 		/* remember insn and function to return to */
 | |
| 		ret_insn[frame] = i + 1;
 | |
| 		ret_prog[frame] = idx;
 | |
| 
 | |
| 		/* find the callee */
 | |
| 		i = i + insn[i].imm + 1;
 | |
| 		idx = find_subprog(env, i);
 | |
| 		if (idx < 0) {
 | |
| 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
 | |
| 				  i);
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		frame++;
 | |
| 		if (frame >= MAX_CALL_FRAMES) {
 | |
| 			verbose(env, "the call stack of %d frames is too deep !\n",
 | |
| 				frame);
 | |
| 			return -E2BIG;
 | |
| 		}
 | |
| 		goto process_func;
 | |
| 	}
 | |
| 	/* end of for() loop means the last insn of the 'subprog'
 | |
| 	 * was reached. Doesn't matter whether it was JA or EXIT
 | |
| 	 */
 | |
| 	if (frame == 0)
 | |
| 		return 0;
 | |
| 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
 | |
| 	frame--;
 | |
| 	i = ret_insn[frame];
 | |
| 	idx = ret_prog[frame];
 | |
| 	goto continue_func;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_BPF_JIT_ALWAYS_ON
 | |
| static int get_callee_stack_depth(struct bpf_verifier_env *env,
 | |
| 				  const struct bpf_insn *insn, int idx)
 | |
| {
 | |
| 	int start = idx + insn->imm + 1, subprog;
 | |
| 
 | |
| 	subprog = find_subprog(env, start);
 | |
| 	if (subprog < 0) {
 | |
| 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
 | |
| 			  start);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 	return env->subprog_info[subprog].stack_depth;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int check_ctx_reg(struct bpf_verifier_env *env,
 | |
| 		  const struct bpf_reg_state *reg, int regno)
 | |
| {
 | |
| 	/* Access to ctx or passing it to a helper is only allowed in
 | |
| 	 * its original, unmodified form.
 | |
| 	 */
 | |
| 
 | |
| 	if (reg->off) {
 | |
| 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
 | |
| 			regno, reg->off);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
 | |
| 		char tn_buf[48];
 | |
| 
 | |
| 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 | |
| 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_tp_buffer_access(struct bpf_verifier_env *env,
 | |
| 				  const struct bpf_reg_state *reg,
 | |
| 				  int regno, int off, int size)
 | |
| {
 | |
| 	if (off < 0) {
 | |
| 		verbose(env,
 | |
| 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
 | |
| 			regno, off, size);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
 | |
| 		char tn_buf[48];
 | |
| 
 | |
| 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 | |
| 		verbose(env,
 | |
| 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
 | |
| 			regno, off, tn_buf);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 	if (off + size > env->prog->aux->max_tp_access)
 | |
| 		env->prog->aux->max_tp_access = off + size;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* BPF architecture zero extends alu32 ops into 64-bit registesr */
 | |
| static void zext_32_to_64(struct bpf_reg_state *reg)
 | |
| {
 | |
| 	reg->var_off = tnum_subreg(reg->var_off);
 | |
| 	__reg_assign_32_into_64(reg);
 | |
| }
 | |
| 
 | |
| /* truncate register to smaller size (in bytes)
 | |
|  * must be called with size < BPF_REG_SIZE
 | |
|  */
 | |
| static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
 | |
| {
 | |
| 	u64 mask;
 | |
| 
 | |
| 	/* clear high bits in bit representation */
 | |
| 	reg->var_off = tnum_cast(reg->var_off, size);
 | |
| 
 | |
| 	/* fix arithmetic bounds */
 | |
| 	mask = ((u64)1 << (size * 8)) - 1;
 | |
| 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
 | |
| 		reg->umin_value &= mask;
 | |
| 		reg->umax_value &= mask;
 | |
| 	} else {
 | |
| 		reg->umin_value = 0;
 | |
| 		reg->umax_value = mask;
 | |
| 	}
 | |
| 	reg->smin_value = reg->umin_value;
 | |
| 	reg->smax_value = reg->umax_value;
 | |
| 
 | |
| 	/* If size is smaller than 32bit register the 32bit register
 | |
| 	 * values are also truncated so we push 64-bit bounds into
 | |
| 	 * 32-bit bounds. Above were truncated < 32-bits already.
 | |
| 	 */
 | |
| 	if (size >= 4)
 | |
| 		return;
 | |
| 	__reg_combine_64_into_32(reg);
 | |
| }
 | |
| 
 | |
| static bool bpf_map_is_rdonly(const struct bpf_map *map)
 | |
| {
 | |
| 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
 | |
| }
 | |
| 
 | |
| static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
 | |
| {
 | |
| 	void *ptr;
 | |
| 	u64 addr;
 | |
| 	int err;
 | |
| 
 | |
| 	err = map->ops->map_direct_value_addr(map, &addr, off);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	ptr = (void *)(long)addr + off;
 | |
| 
 | |
| 	switch (size) {
 | |
| 	case sizeof(u8):
 | |
| 		*val = (u64)*(u8 *)ptr;
 | |
| 		break;
 | |
| 	case sizeof(u16):
 | |
| 		*val = (u64)*(u16 *)ptr;
 | |
| 		break;
 | |
| 	case sizeof(u32):
 | |
| 		*val = (u64)*(u32 *)ptr;
 | |
| 		break;
 | |
| 	case sizeof(u64):
 | |
| 		*val = *(u64 *)ptr;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
 | |
| 				   struct bpf_reg_state *regs,
 | |
| 				   int regno, int off, int size,
 | |
| 				   enum bpf_access_type atype,
 | |
| 				   int value_regno)
 | |
| {
 | |
| 	struct bpf_reg_state *reg = regs + regno;
 | |
| 	const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
 | |
| 	const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
 | |
| 	u32 btf_id;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (off < 0) {
 | |
| 		verbose(env,
 | |
| 			"R%d is ptr_%s invalid negative access: off=%d\n",
 | |
| 			regno, tname, off);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
 | |
| 		char tn_buf[48];
 | |
| 
 | |
| 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 | |
| 		verbose(env,
 | |
| 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
 | |
| 			regno, tname, off, tn_buf);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	if (env->ops->btf_struct_access) {
 | |
| 		ret = env->ops->btf_struct_access(&env->log, t, off, size,
 | |
| 						  atype, &btf_id);
 | |
| 	} else {
 | |
| 		if (atype != BPF_READ) {
 | |
| 			verbose(env, "only read is supported\n");
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 
 | |
| 		ret = btf_struct_access(&env->log, t, off, size, atype,
 | |
| 					&btf_id);
 | |
| 	}
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (atype == BPF_READ && value_regno >= 0) {
 | |
| 		if (ret == SCALAR_VALUE) {
 | |
| 			mark_reg_unknown(env, regs, value_regno);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		mark_reg_known_zero(env, regs, value_regno);
 | |
| 		regs[value_regno].type = PTR_TO_BTF_ID;
 | |
| 		regs[value_regno].btf_id = btf_id;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* check whether memory at (regno + off) is accessible for t = (read | write)
 | |
|  * if t==write, value_regno is a register which value is stored into memory
 | |
|  * if t==read, value_regno is a register which will receive the value from memory
 | |
|  * if t==write && value_regno==-1, some unknown value is stored into memory
 | |
|  * if t==read && value_regno==-1, don't care what we read from memory
 | |
|  */
 | |
| static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
 | |
| 			    int off, int bpf_size, enum bpf_access_type t,
 | |
| 			    int value_regno, bool strict_alignment_once)
 | |
| {
 | |
| 	struct bpf_reg_state *regs = cur_regs(env);
 | |
| 	struct bpf_reg_state *reg = regs + regno;
 | |
| 	struct bpf_func_state *state;
 | |
| 	int size, err = 0;
 | |
| 
 | |
| 	size = bpf_size_to_bytes(bpf_size);
 | |
| 	if (size < 0)
 | |
| 		return size;
 | |
| 
 | |
| 	/* alignment checks will add in reg->off themselves */
 | |
| 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* for access checks, reg->off is just part of off */
 | |
| 	off += reg->off;
 | |
| 
 | |
| 	if (reg->type == PTR_TO_MAP_VALUE) {
 | |
| 		if (t == BPF_WRITE && value_regno >= 0 &&
 | |
| 		    is_pointer_value(env, value_regno)) {
 | |
| 			verbose(env, "R%d leaks addr into map\n", value_regno);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		err = check_map_access_type(env, regno, off, size, t);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		err = check_map_access(env, regno, off, size, false);
 | |
| 		if (!err && t == BPF_READ && value_regno >= 0) {
 | |
| 			struct bpf_map *map = reg->map_ptr;
 | |
| 
 | |
| 			/* if map is read-only, track its contents as scalars */
 | |
| 			if (tnum_is_const(reg->var_off) &&
 | |
| 			    bpf_map_is_rdonly(map) &&
 | |
| 			    map->ops->map_direct_value_addr) {
 | |
| 				int map_off = off + reg->var_off.value;
 | |
| 				u64 val = 0;
 | |
| 
 | |
| 				err = bpf_map_direct_read(map, map_off, size,
 | |
| 							  &val);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 
 | |
| 				regs[value_regno].type = SCALAR_VALUE;
 | |
| 				__mark_reg_known(®s[value_regno], val);
 | |
| 			} else {
 | |
| 				mark_reg_unknown(env, regs, value_regno);
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (reg->type == PTR_TO_MEM) {
 | |
| 		if (t == BPF_WRITE && value_regno >= 0 &&
 | |
| 		    is_pointer_value(env, value_regno)) {
 | |
| 			verbose(env, "R%d leaks addr into mem\n", value_regno);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		err = check_mem_region_access(env, regno, off, size,
 | |
| 					      reg->mem_size, false);
 | |
| 		if (!err && t == BPF_READ && value_regno >= 0)
 | |
| 			mark_reg_unknown(env, regs, value_regno);
 | |
| 	} else if (reg->type == PTR_TO_CTX) {
 | |
| 		enum bpf_reg_type reg_type = SCALAR_VALUE;
 | |
| 		u32 btf_id = 0;
 | |
| 
 | |
| 		if (t == BPF_WRITE && value_regno >= 0 &&
 | |
| 		    is_pointer_value(env, value_regno)) {
 | |
| 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 
 | |
| 		err = check_ctx_reg(env, reg, regno);
 | |
| 		if (err < 0)
 | |
| 			return err;
 | |
| 
 | |
| 		err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id);
 | |
| 		if (err)
 | |
| 			verbose_linfo(env, insn_idx, "; ");
 | |
| 		if (!err && t == BPF_READ && value_regno >= 0) {
 | |
| 			/* ctx access returns either a scalar, or a
 | |
| 			 * PTR_TO_PACKET[_META,_END]. In the latter
 | |
| 			 * case, we know the offset is zero.
 | |
| 			 */
 | |
| 			if (reg_type == SCALAR_VALUE) {
 | |
| 				mark_reg_unknown(env, regs, value_regno);
 | |
| 			} else {
 | |
| 				mark_reg_known_zero(env, regs,
 | |
| 						    value_regno);
 | |
| 				if (reg_type_may_be_null(reg_type))
 | |
| 					regs[value_regno].id = ++env->id_gen;
 | |
| 				/* A load of ctx field could have different
 | |
| 				 * actual load size with the one encoded in the
 | |
| 				 * insn. When the dst is PTR, it is for sure not
 | |
| 				 * a sub-register.
 | |
| 				 */
 | |
| 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
 | |
| 				if (reg_type == PTR_TO_BTF_ID ||
 | |
| 				    reg_type == PTR_TO_BTF_ID_OR_NULL)
 | |
| 					regs[value_regno].btf_id = btf_id;
 | |
| 			}
 | |
| 			regs[value_regno].type = reg_type;
 | |
| 		}
 | |
| 
 | |
| 	} else if (reg->type == PTR_TO_STACK) {
 | |
| 		off += reg->var_off.value;
 | |
| 		err = check_stack_access(env, reg, off, size);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		state = func(env, reg);
 | |
| 		err = update_stack_depth(env, state, off);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		if (t == BPF_WRITE)
 | |
| 			err = check_stack_write(env, state, off, size,
 | |
| 						value_regno, insn_idx);
 | |
| 		else
 | |
| 			err = check_stack_read(env, state, off, size,
 | |
| 					       value_regno);
 | |
| 	} else if (reg_is_pkt_pointer(reg)) {
 | |
| 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
 | |
| 			verbose(env, "cannot write into packet\n");
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		if (t == BPF_WRITE && value_regno >= 0 &&
 | |
| 		    is_pointer_value(env, value_regno)) {
 | |
| 			verbose(env, "R%d leaks addr into packet\n",
 | |
| 				value_regno);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		err = check_packet_access(env, regno, off, size, false);
 | |
| 		if (!err && t == BPF_READ && value_regno >= 0)
 | |
| 			mark_reg_unknown(env, regs, value_regno);
 | |
| 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
 | |
| 		if (t == BPF_WRITE && value_regno >= 0 &&
 | |
| 		    is_pointer_value(env, value_regno)) {
 | |
| 			verbose(env, "R%d leaks addr into flow keys\n",
 | |
| 				value_regno);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 
 | |
| 		err = check_flow_keys_access(env, off, size);
 | |
| 		if (!err && t == BPF_READ && value_regno >= 0)
 | |
| 			mark_reg_unknown(env, regs, value_regno);
 | |
| 	} else if (type_is_sk_pointer(reg->type)) {
 | |
| 		if (t == BPF_WRITE) {
 | |
| 			verbose(env, "R%d cannot write into %s\n",
 | |
| 				regno, reg_type_str[reg->type]);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		err = check_sock_access(env, insn_idx, regno, off, size, t);
 | |
| 		if (!err && value_regno >= 0)
 | |
| 			mark_reg_unknown(env, regs, value_regno);
 | |
| 	} else if (reg->type == PTR_TO_TP_BUFFER) {
 | |
| 		err = check_tp_buffer_access(env, reg, regno, off, size);
 | |
| 		if (!err && t == BPF_READ && value_regno >= 0)
 | |
| 			mark_reg_unknown(env, regs, value_regno);
 | |
| 	} else if (reg->type == PTR_TO_BTF_ID) {
 | |
| 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
 | |
| 					      value_regno);
 | |
| 	} else {
 | |
| 		verbose(env, "R%d invalid mem access '%s'\n", regno,
 | |
| 			reg_type_str[reg->type]);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
 | |
| 	    regs[value_regno].type == SCALAR_VALUE) {
 | |
| 		/* b/h/w load zero-extends, mark upper bits as known 0 */
 | |
| 		coerce_reg_to_size(®s[value_regno], size);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
 | |
| 	    insn->imm != 0) {
 | |
| 		verbose(env, "BPF_XADD uses reserved fields\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* check src1 operand */
 | |
| 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* check src2 operand */
 | |
| 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (is_pointer_value(env, insn->src_reg)) {
 | |
| 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	if (is_ctx_reg(env, insn->dst_reg) ||
 | |
| 	    is_pkt_reg(env, insn->dst_reg) ||
 | |
| 	    is_flow_key_reg(env, insn->dst_reg) ||
 | |
| 	    is_sk_reg(env, insn->dst_reg)) {
 | |
| 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
 | |
| 			insn->dst_reg,
 | |
| 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	/* check whether atomic_add can read the memory */
 | |
| 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
 | |
| 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* check whether atomic_add can write into the same memory */
 | |
| 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
 | |
| 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
 | |
| }
 | |
| 
 | |
| static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
 | |
| 				  int off, int access_size,
 | |
| 				  bool zero_size_allowed)
 | |
| {
 | |
| 	struct bpf_reg_state *reg = reg_state(env, regno);
 | |
| 
 | |
| 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
 | |
| 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
 | |
| 		if (tnum_is_const(reg->var_off)) {
 | |
| 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
 | |
| 				regno, off, access_size);
 | |
| 		} else {
 | |
| 			char tn_buf[48];
 | |
| 
 | |
| 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 | |
| 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
 | |
| 				regno, tn_buf, access_size);
 | |
| 		}
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* when register 'regno' is passed into function that will read 'access_size'
 | |
|  * bytes from that pointer, make sure that it's within stack boundary
 | |
|  * and all elements of stack are initialized.
 | |
|  * Unlike most pointer bounds-checking functions, this one doesn't take an
 | |
|  * 'off' argument, so it has to add in reg->off itself.
 | |
|  */
 | |
| static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
 | |
| 				int access_size, bool zero_size_allowed,
 | |
| 				struct bpf_call_arg_meta *meta)
 | |
| {
 | |
| 	struct bpf_reg_state *reg = reg_state(env, regno);
 | |
| 	struct bpf_func_state *state = func(env, reg);
 | |
| 	int err, min_off, max_off, i, j, slot, spi;
 | |
| 
 | |
| 	if (reg->type != PTR_TO_STACK) {
 | |
| 		/* Allow zero-byte read from NULL, regardless of pointer type */
 | |
| 		if (zero_size_allowed && access_size == 0 &&
 | |
| 		    register_is_null(reg))
 | |
| 			return 0;
 | |
| 
 | |
| 		verbose(env, "R%d type=%s expected=%s\n", regno,
 | |
| 			reg_type_str[reg->type],
 | |
| 			reg_type_str[PTR_TO_STACK]);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	if (tnum_is_const(reg->var_off)) {
 | |
| 		min_off = max_off = reg->var_off.value + reg->off;
 | |
| 		err = __check_stack_boundary(env, regno, min_off, access_size,
 | |
| 					     zero_size_allowed);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	} else {
 | |
| 		/* Variable offset is prohibited for unprivileged mode for
 | |
| 		 * simplicity since it requires corresponding support in
 | |
| 		 * Spectre masking for stack ALU.
 | |
| 		 * See also retrieve_ptr_limit().
 | |
| 		 */
 | |
| 		if (!env->bypass_spec_v1) {
 | |
| 			char tn_buf[48];
 | |
| 
 | |
| 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 | |
| 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
 | |
| 				regno, tn_buf);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		/* Only initialized buffer on stack is allowed to be accessed
 | |
| 		 * with variable offset. With uninitialized buffer it's hard to
 | |
| 		 * guarantee that whole memory is marked as initialized on
 | |
| 		 * helper return since specific bounds are unknown what may
 | |
| 		 * cause uninitialized stack leaking.
 | |
| 		 */
 | |
| 		if (meta && meta->raw_mode)
 | |
| 			meta = NULL;
 | |
| 
 | |
| 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
 | |
| 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
 | |
| 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
 | |
| 				regno);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		min_off = reg->smin_value + reg->off;
 | |
| 		max_off = reg->smax_value + reg->off;
 | |
| 		err = __check_stack_boundary(env, regno, min_off, access_size,
 | |
| 					     zero_size_allowed);
 | |
| 		if (err) {
 | |
| 			verbose(env, "R%d min value is outside of stack bound\n",
 | |
| 				regno);
 | |
| 			return err;
 | |
| 		}
 | |
| 		err = __check_stack_boundary(env, regno, max_off, access_size,
 | |
| 					     zero_size_allowed);
 | |
| 		if (err) {
 | |
| 			verbose(env, "R%d max value is outside of stack bound\n",
 | |
| 				regno);
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (meta && meta->raw_mode) {
 | |
| 		meta->access_size = access_size;
 | |
| 		meta->regno = regno;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	for (i = min_off; i < max_off + access_size; i++) {
 | |
| 		u8 *stype;
 | |
| 
 | |
| 		slot = -i - 1;
 | |
| 		spi = slot / BPF_REG_SIZE;
 | |
| 		if (state->allocated_stack <= slot)
 | |
| 			goto err;
 | |
| 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
 | |
| 		if (*stype == STACK_MISC)
 | |
| 			goto mark;
 | |
| 		if (*stype == STACK_ZERO) {
 | |
| 			/* helper can write anything into the stack */
 | |
| 			*stype = STACK_MISC;
 | |
| 			goto mark;
 | |
| 		}
 | |
| 
 | |
| 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
 | |
| 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
 | |
| 			goto mark;
 | |
| 
 | |
| 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
 | |
| 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
 | |
| 			__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
 | |
| 			for (j = 0; j < BPF_REG_SIZE; j++)
 | |
| 				state->stack[spi].slot_type[j] = STACK_MISC;
 | |
| 			goto mark;
 | |
| 		}
 | |
| 
 | |
| err:
 | |
| 		if (tnum_is_const(reg->var_off)) {
 | |
| 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
 | |
| 				min_off, i - min_off, access_size);
 | |
| 		} else {
 | |
| 			char tn_buf[48];
 | |
| 
 | |
| 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 | |
| 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
 | |
| 				tn_buf, i - min_off, access_size);
 | |
| 		}
 | |
| 		return -EACCES;
 | |
| mark:
 | |
| 		/* reading any byte out of 8-byte 'spill_slot' will cause
 | |
| 		 * the whole slot to be marked as 'read'
 | |
| 		 */
 | |
| 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
 | |
| 			      state->stack[spi].spilled_ptr.parent,
 | |
| 			      REG_LIVE_READ64);
 | |
| 	}
 | |
| 	return update_stack_depth(env, state, min_off);
 | |
| }
 | |
| 
 | |
| static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
 | |
| 				   int access_size, bool zero_size_allowed,
 | |
| 				   struct bpf_call_arg_meta *meta)
 | |
| {
 | |
| 	struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
 | |
| 
 | |
| 	switch (reg->type) {
 | |
| 	case PTR_TO_PACKET:
 | |
| 	case PTR_TO_PACKET_META:
 | |
| 		return check_packet_access(env, regno, reg->off, access_size,
 | |
| 					   zero_size_allowed);
 | |
| 	case PTR_TO_MAP_VALUE:
 | |
| 		if (check_map_access_type(env, regno, reg->off, access_size,
 | |
| 					  meta && meta->raw_mode ? BPF_WRITE :
 | |
| 					  BPF_READ))
 | |
| 			return -EACCES;
 | |
| 		return check_map_access(env, regno, reg->off, access_size,
 | |
| 					zero_size_allowed);
 | |
| 	case PTR_TO_MEM:
 | |
| 		return check_mem_region_access(env, regno, reg->off,
 | |
| 					       access_size, reg->mem_size,
 | |
| 					       zero_size_allowed);
 | |
| 	default: /* scalar_value|ptr_to_stack or invalid ptr */
 | |
| 		return check_stack_boundary(env, regno, access_size,
 | |
| 					    zero_size_allowed, meta);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Implementation details:
 | |
|  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
 | |
|  * Two bpf_map_lookups (even with the same key) will have different reg->id.
 | |
|  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
 | |
|  * value_or_null->value transition, since the verifier only cares about
 | |
|  * the range of access to valid map value pointer and doesn't care about actual
 | |
|  * address of the map element.
 | |
|  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
 | |
|  * reg->id > 0 after value_or_null->value transition. By doing so
 | |
|  * two bpf_map_lookups will be considered two different pointers that
 | |
|  * point to different bpf_spin_locks.
 | |
|  * The verifier allows taking only one bpf_spin_lock at a time to avoid
 | |
|  * dead-locks.
 | |
|  * Since only one bpf_spin_lock is allowed the checks are simpler than
 | |
|  * reg_is_refcounted() logic. The verifier needs to remember only
 | |
|  * one spin_lock instead of array of acquired_refs.
 | |
|  * cur_state->active_spin_lock remembers which map value element got locked
 | |
|  * and clears it after bpf_spin_unlock.
 | |
|  */
 | |
| static int process_spin_lock(struct bpf_verifier_env *env, int regno,
 | |
| 			     bool is_lock)
 | |
| {
 | |
| 	struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
 | |
| 	struct bpf_verifier_state *cur = env->cur_state;
 | |
| 	bool is_const = tnum_is_const(reg->var_off);
 | |
| 	struct bpf_map *map = reg->map_ptr;
 | |
| 	u64 val = reg->var_off.value;
 | |
| 
 | |
| 	if (reg->type != PTR_TO_MAP_VALUE) {
 | |
| 		verbose(env, "R%d is not a pointer to map_value\n", regno);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (!is_const) {
 | |
| 		verbose(env,
 | |
| 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
 | |
| 			regno);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (!map->btf) {
 | |
| 		verbose(env,
 | |
| 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
 | |
| 			map->name);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (!map_value_has_spin_lock(map)) {
 | |
| 		if (map->spin_lock_off == -E2BIG)
 | |
| 			verbose(env,
 | |
| 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
 | |
| 				map->name);
 | |
| 		else if (map->spin_lock_off == -ENOENT)
 | |
| 			verbose(env,
 | |
| 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
 | |
| 				map->name);
 | |
| 		else
 | |
| 			verbose(env,
 | |
| 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
 | |
| 				map->name);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (map->spin_lock_off != val + reg->off) {
 | |
| 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
 | |
| 			val + reg->off);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (is_lock) {
 | |
| 		if (cur->active_spin_lock) {
 | |
| 			verbose(env,
 | |
| 				"Locking two bpf_spin_locks are not allowed\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		cur->active_spin_lock = reg->id;
 | |
| 	} else {
 | |
| 		if (!cur->active_spin_lock) {
 | |
| 			verbose(env, "bpf_spin_unlock without taking a lock\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (cur->active_spin_lock != reg->id) {
 | |
| 			verbose(env, "bpf_spin_unlock of different lock\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		cur->active_spin_lock = 0;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
 | |
| {
 | |
| 	return type == ARG_PTR_TO_MEM ||
 | |
| 	       type == ARG_PTR_TO_MEM_OR_NULL ||
 | |
| 	       type == ARG_PTR_TO_UNINIT_MEM;
 | |
| }
 | |
| 
 | |
| static bool arg_type_is_mem_size(enum bpf_arg_type type)
 | |
| {
 | |
| 	return type == ARG_CONST_SIZE ||
 | |
| 	       type == ARG_CONST_SIZE_OR_ZERO;
 | |
| }
 | |
| 
 | |
| static bool arg_type_is_alloc_mem_ptr(enum bpf_arg_type type)
 | |
| {
 | |
| 	return type == ARG_PTR_TO_ALLOC_MEM ||
 | |
| 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
 | |
| }
 | |
| 
 | |
| static bool arg_type_is_alloc_size(enum bpf_arg_type type)
 | |
| {
 | |
| 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
 | |
| }
 | |
| 
 | |
| static bool arg_type_is_int_ptr(enum bpf_arg_type type)
 | |
| {
 | |
| 	return type == ARG_PTR_TO_INT ||
 | |
| 	       type == ARG_PTR_TO_LONG;
 | |
| }
 | |
| 
 | |
| static int int_ptr_type_to_size(enum bpf_arg_type type)
 | |
| {
 | |
| 	if (type == ARG_PTR_TO_INT)
 | |
| 		return sizeof(u32);
 | |
| 	else if (type == ARG_PTR_TO_LONG)
 | |
| 		return sizeof(u64);
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
 | |
| 			  enum bpf_arg_type arg_type,
 | |
| 			  struct bpf_call_arg_meta *meta)
 | |
| {
 | |
| 	struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
 | |
| 	enum bpf_reg_type expected_type, type = reg->type;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (arg_type == ARG_DONTCARE)
 | |
| 		return 0;
 | |
| 
 | |
| 	err = check_reg_arg(env, regno, SRC_OP);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (arg_type == ARG_ANYTHING) {
 | |
| 		if (is_pointer_value(env, regno)) {
 | |
| 			verbose(env, "R%d leaks addr into helper function\n",
 | |
| 				regno);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (type_is_pkt_pointer(type) &&
 | |
| 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
 | |
| 		verbose(env, "helper access to the packet is not allowed\n");
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
 | |
| 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
 | |
| 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
 | |
| 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
 | |
| 		expected_type = PTR_TO_STACK;
 | |
| 		if (register_is_null(reg) &&
 | |
| 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
 | |
| 			/* final test in check_stack_boundary() */;
 | |
| 		else if (!type_is_pkt_pointer(type) &&
 | |
| 			 type != PTR_TO_MAP_VALUE &&
 | |
| 			 type != expected_type)
 | |
| 			goto err_type;
 | |
| 	} else if (arg_type == ARG_CONST_SIZE ||
 | |
| 		   arg_type == ARG_CONST_SIZE_OR_ZERO ||
 | |
| 		   arg_type == ARG_CONST_ALLOC_SIZE_OR_ZERO) {
 | |
| 		expected_type = SCALAR_VALUE;
 | |
| 		if (type != expected_type)
 | |
| 			goto err_type;
 | |
| 	} else if (arg_type == ARG_CONST_MAP_PTR) {
 | |
| 		expected_type = CONST_PTR_TO_MAP;
 | |
| 		if (type != expected_type)
 | |
| 			goto err_type;
 | |
| 	} else if (arg_type == ARG_PTR_TO_CTX ||
 | |
| 		   arg_type == ARG_PTR_TO_CTX_OR_NULL) {
 | |
| 		expected_type = PTR_TO_CTX;
 | |
| 		if (!(register_is_null(reg) &&
 | |
| 		      arg_type == ARG_PTR_TO_CTX_OR_NULL)) {
 | |
| 			if (type != expected_type)
 | |
| 				goto err_type;
 | |
| 			err = check_ctx_reg(env, reg, regno);
 | |
| 			if (err < 0)
 | |
| 				return err;
 | |
| 		}
 | |
| 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
 | |
| 		expected_type = PTR_TO_SOCK_COMMON;
 | |
| 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
 | |
| 		if (!type_is_sk_pointer(type))
 | |
| 			goto err_type;
 | |
| 		if (reg->ref_obj_id) {
 | |
| 			if (meta->ref_obj_id) {
 | |
| 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
 | |
| 					regno, reg->ref_obj_id,
 | |
| 					meta->ref_obj_id);
 | |
| 				return -EFAULT;
 | |
| 			}
 | |
| 			meta->ref_obj_id = reg->ref_obj_id;
 | |
| 		}
 | |
| 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
 | |
| 		expected_type = PTR_TO_SOCKET;
 | |
| 		if (type != expected_type)
 | |
| 			goto err_type;
 | |
| 	} else if (arg_type == ARG_PTR_TO_BTF_ID) {
 | |
| 		expected_type = PTR_TO_BTF_ID;
 | |
| 		if (type != expected_type)
 | |
| 			goto err_type;
 | |
| 		if (reg->btf_id != meta->btf_id) {
 | |
| 			verbose(env, "Helper has type %s got %s in R%d\n",
 | |
| 				kernel_type_name(meta->btf_id),
 | |
| 				kernel_type_name(reg->btf_id), regno);
 | |
| 
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
 | |
| 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
 | |
| 				regno);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
 | |
| 		if (meta->func_id == BPF_FUNC_spin_lock) {
 | |
| 			if (process_spin_lock(env, regno, true))
 | |
| 				return -EACCES;
 | |
| 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
 | |
| 			if (process_spin_lock(env, regno, false))
 | |
| 				return -EACCES;
 | |
| 		} else {
 | |
| 			verbose(env, "verifier internal error\n");
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 	} else if (arg_type_is_mem_ptr(arg_type)) {
 | |
| 		expected_type = PTR_TO_STACK;
 | |
| 		/* One exception here. In case function allows for NULL to be
 | |
| 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
 | |
| 		 * happens during stack boundary checking.
 | |
| 		 */
 | |
| 		if (register_is_null(reg) &&
 | |
| 		    (arg_type == ARG_PTR_TO_MEM_OR_NULL ||
 | |
| 		     arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL))
 | |
| 			/* final test in check_stack_boundary() */;
 | |
| 		else if (!type_is_pkt_pointer(type) &&
 | |
| 			 type != PTR_TO_MAP_VALUE &&
 | |
| 			 type != PTR_TO_MEM &&
 | |
| 			 type != expected_type)
 | |
| 			goto err_type;
 | |
| 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
 | |
| 	} else if (arg_type_is_alloc_mem_ptr(arg_type)) {
 | |
| 		expected_type = PTR_TO_MEM;
 | |
| 		if (register_is_null(reg) &&
 | |
| 		    arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL)
 | |
| 			/* final test in check_stack_boundary() */;
 | |
| 		else if (type != expected_type)
 | |
| 			goto err_type;
 | |
| 		if (meta->ref_obj_id) {
 | |
| 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
 | |
| 				regno, reg->ref_obj_id,
 | |
| 				meta->ref_obj_id);
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		meta->ref_obj_id = reg->ref_obj_id;
 | |
| 	} else if (arg_type_is_int_ptr(arg_type)) {
 | |
| 		expected_type = PTR_TO_STACK;
 | |
| 		if (!type_is_pkt_pointer(type) &&
 | |
| 		    type != PTR_TO_MAP_VALUE &&
 | |
| 		    type != expected_type)
 | |
| 			goto err_type;
 | |
| 	} else {
 | |
| 		verbose(env, "unsupported arg_type %d\n", arg_type);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	if (arg_type == ARG_CONST_MAP_PTR) {
 | |
| 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
 | |
| 		meta->map_ptr = reg->map_ptr;
 | |
| 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
 | |
| 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
 | |
| 		 * check that [key, key + map->key_size) are within
 | |
| 		 * stack limits and initialized
 | |
| 		 */
 | |
| 		if (!meta->map_ptr) {
 | |
| 			/* in function declaration map_ptr must come before
 | |
| 			 * map_key, so that it's verified and known before
 | |
| 			 * we have to check map_key here. Otherwise it means
 | |
| 			 * that kernel subsystem misconfigured verifier
 | |
| 			 */
 | |
| 			verbose(env, "invalid map_ptr to access map->key\n");
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		err = check_helper_mem_access(env, regno,
 | |
| 					      meta->map_ptr->key_size, false,
 | |
| 					      NULL);
 | |
| 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
 | |
| 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
 | |
| 		    !register_is_null(reg)) ||
 | |
| 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
 | |
| 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
 | |
| 		 * check [value, value + map->value_size) validity
 | |
| 		 */
 | |
| 		if (!meta->map_ptr) {
 | |
| 			/* kernel subsystem misconfigured verifier */
 | |
| 			verbose(env, "invalid map_ptr to access map->value\n");
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
 | |
| 		err = check_helper_mem_access(env, regno,
 | |
| 					      meta->map_ptr->value_size, false,
 | |
| 					      meta);
 | |
| 	} else if (arg_type_is_mem_size(arg_type)) {
 | |
| 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
 | |
| 
 | |
| 		/* This is used to refine r0 return value bounds for helpers
 | |
| 		 * that enforce this value as an upper bound on return values.
 | |
| 		 * See do_refine_retval_range() for helpers that can refine
 | |
| 		 * the return value. C type of helper is u32 so we pull register
 | |
| 		 * bound from umax_value however, if negative verifier errors
 | |
| 		 * out. Only upper bounds can be learned because retval is an
 | |
| 		 * int type and negative retvals are allowed.
 | |
| 		 */
 | |
| 		meta->msize_max_value = reg->umax_value;
 | |
| 
 | |
| 		/* The register is SCALAR_VALUE; the access check
 | |
| 		 * happens using its boundaries.
 | |
| 		 */
 | |
| 		if (!tnum_is_const(reg->var_off))
 | |
| 			/* For unprivileged variable accesses, disable raw
 | |
| 			 * mode so that the program is required to
 | |
| 			 * initialize all the memory that the helper could
 | |
| 			 * just partially fill up.
 | |
| 			 */
 | |
| 			meta = NULL;
 | |
| 
 | |
| 		if (reg->smin_value < 0) {
 | |
| 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
 | |
| 				regno);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 
 | |
| 		if (reg->umin_value == 0) {
 | |
| 			err = check_helper_mem_access(env, regno - 1, 0,
 | |
| 						      zero_size_allowed,
 | |
| 						      meta);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 
 | |
| 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
 | |
| 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
 | |
| 				regno);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		err = check_helper_mem_access(env, regno - 1,
 | |
| 					      reg->umax_value,
 | |
| 					      zero_size_allowed, meta);
 | |
| 		if (!err)
 | |
| 			err = mark_chain_precision(env, regno);
 | |
| 	} else if (arg_type_is_alloc_size(arg_type)) {
 | |
| 		if (!tnum_is_const(reg->var_off)) {
 | |
| 			verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
 | |
| 				regno);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		meta->mem_size = reg->var_off.value;
 | |
| 	} else if (arg_type_is_int_ptr(arg_type)) {
 | |
| 		int size = int_ptr_type_to_size(arg_type);
 | |
| 
 | |
| 		err = check_helper_mem_access(env, regno, size, false, meta);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		err = check_ptr_alignment(env, reg, 0, size, true);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| err_type:
 | |
| 	verbose(env, "R%d type=%s expected=%s\n", regno,
 | |
| 		reg_type_str[type], reg_type_str[expected_type]);
 | |
| 	return -EACCES;
 | |
| }
 | |
| 
 | |
| static int check_map_func_compatibility(struct bpf_verifier_env *env,
 | |
| 					struct bpf_map *map, int func_id)
 | |
| {
 | |
| 	if (!map)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* We need a two way check, first is from map perspective ... */
 | |
| 	switch (map->map_type) {
 | |
| 	case BPF_MAP_TYPE_PROG_ARRAY:
 | |
| 		if (func_id != BPF_FUNC_tail_call)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
 | |
| 		if (func_id != BPF_FUNC_perf_event_read &&
 | |
| 		    func_id != BPF_FUNC_perf_event_output &&
 | |
| 		    func_id != BPF_FUNC_skb_output &&
 | |
| 		    func_id != BPF_FUNC_perf_event_read_value &&
 | |
| 		    func_id != BPF_FUNC_xdp_output)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_MAP_TYPE_RINGBUF:
 | |
| 		if (func_id != BPF_FUNC_ringbuf_output &&
 | |
| 		    func_id != BPF_FUNC_ringbuf_reserve &&
 | |
| 		    func_id != BPF_FUNC_ringbuf_submit &&
 | |
| 		    func_id != BPF_FUNC_ringbuf_discard &&
 | |
| 		    func_id != BPF_FUNC_ringbuf_query)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_MAP_TYPE_STACK_TRACE:
 | |
| 		if (func_id != BPF_FUNC_get_stackid)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_MAP_TYPE_CGROUP_ARRAY:
 | |
| 		if (func_id != BPF_FUNC_skb_under_cgroup &&
 | |
| 		    func_id != BPF_FUNC_current_task_under_cgroup)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_MAP_TYPE_CGROUP_STORAGE:
 | |
| 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
 | |
| 		if (func_id != BPF_FUNC_get_local_storage)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_MAP_TYPE_DEVMAP:
 | |
| 	case BPF_MAP_TYPE_DEVMAP_HASH:
 | |
| 		if (func_id != BPF_FUNC_redirect_map &&
 | |
| 		    func_id != BPF_FUNC_map_lookup_elem)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
 | |
| 	 * appear.
 | |
| 	 */
 | |
| 	case BPF_MAP_TYPE_CPUMAP:
 | |
| 		if (func_id != BPF_FUNC_redirect_map)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_MAP_TYPE_XSKMAP:
 | |
| 		if (func_id != BPF_FUNC_redirect_map &&
 | |
| 		    func_id != BPF_FUNC_map_lookup_elem)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
 | |
| 	case BPF_MAP_TYPE_HASH_OF_MAPS:
 | |
| 		if (func_id != BPF_FUNC_map_lookup_elem)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_MAP_TYPE_SOCKMAP:
 | |
| 		if (func_id != BPF_FUNC_sk_redirect_map &&
 | |
| 		    func_id != BPF_FUNC_sock_map_update &&
 | |
| 		    func_id != BPF_FUNC_map_delete_elem &&
 | |
| 		    func_id != BPF_FUNC_msg_redirect_map &&
 | |
| 		    func_id != BPF_FUNC_sk_select_reuseport &&
 | |
| 		    func_id != BPF_FUNC_map_lookup_elem)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_MAP_TYPE_SOCKHASH:
 | |
| 		if (func_id != BPF_FUNC_sk_redirect_hash &&
 | |
| 		    func_id != BPF_FUNC_sock_hash_update &&
 | |
| 		    func_id != BPF_FUNC_map_delete_elem &&
 | |
| 		    func_id != BPF_FUNC_msg_redirect_hash &&
 | |
| 		    func_id != BPF_FUNC_sk_select_reuseport &&
 | |
| 		    func_id != BPF_FUNC_map_lookup_elem)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
 | |
| 		if (func_id != BPF_FUNC_sk_select_reuseport)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_MAP_TYPE_QUEUE:
 | |
| 	case BPF_MAP_TYPE_STACK:
 | |
| 		if (func_id != BPF_FUNC_map_peek_elem &&
 | |
| 		    func_id != BPF_FUNC_map_pop_elem &&
 | |
| 		    func_id != BPF_FUNC_map_push_elem)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_MAP_TYPE_SK_STORAGE:
 | |
| 		if (func_id != BPF_FUNC_sk_storage_get &&
 | |
| 		    func_id != BPF_FUNC_sk_storage_delete)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* ... and second from the function itself. */
 | |
| 	switch (func_id) {
 | |
| 	case BPF_FUNC_tail_call:
 | |
| 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
 | |
| 			goto error;
 | |
| 		if (env->subprog_cnt > 1) {
 | |
| 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		break;
 | |
| 	case BPF_FUNC_perf_event_read:
 | |
| 	case BPF_FUNC_perf_event_output:
 | |
| 	case BPF_FUNC_perf_event_read_value:
 | |
| 	case BPF_FUNC_skb_output:
 | |
| 	case BPF_FUNC_xdp_output:
 | |
| 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_FUNC_get_stackid:
 | |
| 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_FUNC_current_task_under_cgroup:
 | |
| 	case BPF_FUNC_skb_under_cgroup:
 | |
| 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_FUNC_redirect_map:
 | |
| 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
 | |
| 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
 | |
| 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
 | |
| 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_FUNC_sk_redirect_map:
 | |
| 	case BPF_FUNC_msg_redirect_map:
 | |
| 	case BPF_FUNC_sock_map_update:
 | |
| 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_FUNC_sk_redirect_hash:
 | |
| 	case BPF_FUNC_msg_redirect_hash:
 | |
| 	case BPF_FUNC_sock_hash_update:
 | |
| 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_FUNC_get_local_storage:
 | |
| 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
 | |
| 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_FUNC_sk_select_reuseport:
 | |
| 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
 | |
| 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
 | |
| 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_FUNC_map_peek_elem:
 | |
| 	case BPF_FUNC_map_pop_elem:
 | |
| 	case BPF_FUNC_map_push_elem:
 | |
| 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
 | |
| 		    map->map_type != BPF_MAP_TYPE_STACK)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	case BPF_FUNC_sk_storage_get:
 | |
| 	case BPF_FUNC_sk_storage_delete:
 | |
| 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
 | |
| 			goto error;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| error:
 | |
| 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
 | |
| 		map->map_type, func_id_name(func_id), func_id);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
 | |
| {
 | |
| 	int count = 0;
 | |
| 
 | |
| 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
 | |
| 		count++;
 | |
| 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
 | |
| 		count++;
 | |
| 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
 | |
| 		count++;
 | |
| 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
 | |
| 		count++;
 | |
| 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
 | |
| 		count++;
 | |
| 
 | |
| 	/* We only support one arg being in raw mode at the moment,
 | |
| 	 * which is sufficient for the helper functions we have
 | |
| 	 * right now.
 | |
| 	 */
 | |
| 	return count <= 1;
 | |
| }
 | |
| 
 | |
| static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
 | |
| 				    enum bpf_arg_type arg_next)
 | |
| {
 | |
| 	return (arg_type_is_mem_ptr(arg_curr) &&
 | |
| 	        !arg_type_is_mem_size(arg_next)) ||
 | |
| 	       (!arg_type_is_mem_ptr(arg_curr) &&
 | |
| 		arg_type_is_mem_size(arg_next));
 | |
| }
 | |
| 
 | |
| static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
 | |
| {
 | |
| 	/* bpf_xxx(..., buf, len) call will access 'len'
 | |
| 	 * bytes from memory 'buf'. Both arg types need
 | |
| 	 * to be paired, so make sure there's no buggy
 | |
| 	 * helper function specification.
 | |
| 	 */
 | |
| 	if (arg_type_is_mem_size(fn->arg1_type) ||
 | |
| 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
 | |
| 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
 | |
| 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
 | |
| 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
 | |
| 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
 | |
| {
 | |
| 	int count = 0;
 | |
| 
 | |
| 	if (arg_type_may_be_refcounted(fn->arg1_type))
 | |
| 		count++;
 | |
| 	if (arg_type_may_be_refcounted(fn->arg2_type))
 | |
| 		count++;
 | |
| 	if (arg_type_may_be_refcounted(fn->arg3_type))
 | |
| 		count++;
 | |
| 	if (arg_type_may_be_refcounted(fn->arg4_type))
 | |
| 		count++;
 | |
| 	if (arg_type_may_be_refcounted(fn->arg5_type))
 | |
| 		count++;
 | |
| 
 | |
| 	/* A reference acquiring function cannot acquire
 | |
| 	 * another refcounted ptr.
 | |
| 	 */
 | |
| 	if (may_be_acquire_function(func_id) && count)
 | |
| 		return false;
 | |
| 
 | |
| 	/* We only support one arg being unreferenced at the moment,
 | |
| 	 * which is sufficient for the helper functions we have right now.
 | |
| 	 */
 | |
| 	return count <= 1;
 | |
| }
 | |
| 
 | |
| static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
 | |
| {
 | |
| 	return check_raw_mode_ok(fn) &&
 | |
| 	       check_arg_pair_ok(fn) &&
 | |
| 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
 | |
| }
 | |
| 
 | |
| /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 | |
|  * are now invalid, so turn them into unknown SCALAR_VALUE.
 | |
|  */
 | |
| static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
 | |
| 				     struct bpf_func_state *state)
 | |
| {
 | |
| 	struct bpf_reg_state *regs = state->regs, *reg;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_BPF_REG; i++)
 | |
| 		if (reg_is_pkt_pointer_any(®s[i]))
 | |
| 			mark_reg_unknown(env, regs, i);
 | |
| 
 | |
| 	bpf_for_each_spilled_reg(i, state, reg) {
 | |
| 		if (!reg)
 | |
| 			continue;
 | |
| 		if (reg_is_pkt_pointer_any(reg))
 | |
| 			__mark_reg_unknown(env, reg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	struct bpf_verifier_state *vstate = env->cur_state;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i <= vstate->curframe; i++)
 | |
| 		__clear_all_pkt_pointers(env, vstate->frame[i]);
 | |
| }
 | |
| 
 | |
| static void release_reg_references(struct bpf_verifier_env *env,
 | |
| 				   struct bpf_func_state *state,
 | |
| 				   int ref_obj_id)
 | |
| {
 | |
| 	struct bpf_reg_state *regs = state->regs, *reg;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_BPF_REG; i++)
 | |
| 		if (regs[i].ref_obj_id == ref_obj_id)
 | |
| 			mark_reg_unknown(env, regs, i);
 | |
| 
 | |
| 	bpf_for_each_spilled_reg(i, state, reg) {
 | |
| 		if (!reg)
 | |
| 			continue;
 | |
| 		if (reg->ref_obj_id == ref_obj_id)
 | |
| 			__mark_reg_unknown(env, reg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* The pointer with the specified id has released its reference to kernel
 | |
|  * resources. Identify all copies of the same pointer and clear the reference.
 | |
|  */
 | |
| static int release_reference(struct bpf_verifier_env *env,
 | |
| 			     int ref_obj_id)
 | |
| {
 | |
| 	struct bpf_verifier_state *vstate = env->cur_state;
 | |
| 	int err;
 | |
| 	int i;
 | |
| 
 | |
| 	err = release_reference_state(cur_func(env), ref_obj_id);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	for (i = 0; i <= vstate->curframe; i++)
 | |
| 		release_reg_references(env, vstate->frame[i], ref_obj_id);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void clear_caller_saved_regs(struct bpf_verifier_env *env,
 | |
| 				    struct bpf_reg_state *regs)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* after the call registers r0 - r5 were scratched */
 | |
| 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
 | |
| 		mark_reg_not_init(env, regs, caller_saved[i]);
 | |
| 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
 | |
| 			   int *insn_idx)
 | |
| {
 | |
| 	struct bpf_verifier_state *state = env->cur_state;
 | |
| 	struct bpf_func_info_aux *func_info_aux;
 | |
| 	struct bpf_func_state *caller, *callee;
 | |
| 	int i, err, subprog, target_insn;
 | |
| 	bool is_global = false;
 | |
| 
 | |
| 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
 | |
| 		verbose(env, "the call stack of %d frames is too deep\n",
 | |
| 			state->curframe + 2);
 | |
| 		return -E2BIG;
 | |
| 	}
 | |
| 
 | |
| 	target_insn = *insn_idx + insn->imm;
 | |
| 	subprog = find_subprog(env, target_insn + 1);
 | |
| 	if (subprog < 0) {
 | |
| 		verbose(env, "verifier bug. No program starts at insn %d\n",
 | |
| 			target_insn + 1);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	caller = state->frame[state->curframe];
 | |
| 	if (state->frame[state->curframe + 1]) {
 | |
| 		verbose(env, "verifier bug. Frame %d already allocated\n",
 | |
| 			state->curframe + 1);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	func_info_aux = env->prog->aux->func_info_aux;
 | |
| 	if (func_info_aux)
 | |
| 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
 | |
| 	err = btf_check_func_arg_match(env, subprog, caller->regs);
 | |
| 	if (err == -EFAULT)
 | |
| 		return err;
 | |
| 	if (is_global) {
 | |
| 		if (err) {
 | |
| 			verbose(env, "Caller passes invalid args into func#%d\n",
 | |
| 				subprog);
 | |
| 			return err;
 | |
| 		} else {
 | |
| 			if (env->log.level & BPF_LOG_LEVEL)
 | |
| 				verbose(env,
 | |
| 					"Func#%d is global and valid. Skipping.\n",
 | |
| 					subprog);
 | |
| 			clear_caller_saved_regs(env, caller->regs);
 | |
| 
 | |
| 			/* All global functions return SCALAR_VALUE */
 | |
| 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
 | |
| 
 | |
| 			/* continue with next insn after call */
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
 | |
| 	if (!callee)
 | |
| 		return -ENOMEM;
 | |
| 	state->frame[state->curframe + 1] = callee;
 | |
| 
 | |
| 	/* callee cannot access r0, r6 - r9 for reading and has to write
 | |
| 	 * into its own stack before reading from it.
 | |
| 	 * callee can read/write into caller's stack
 | |
| 	 */
 | |
| 	init_func_state(env, callee,
 | |
| 			/* remember the callsite, it will be used by bpf_exit */
 | |
| 			*insn_idx /* callsite */,
 | |
| 			state->curframe + 1 /* frameno within this callchain */,
 | |
| 			subprog /* subprog number within this prog */);
 | |
| 
 | |
| 	/* Transfer references to the callee */
 | |
| 	err = transfer_reference_state(callee, caller);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* copy r1 - r5 args that callee can access.  The copy includes parent
 | |
| 	 * pointers, which connects us up to the liveness chain
 | |
| 	 */
 | |
| 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
 | |
| 		callee->regs[i] = caller->regs[i];
 | |
| 
 | |
| 	clear_caller_saved_regs(env, caller->regs);
 | |
| 
 | |
| 	/* only increment it after check_reg_arg() finished */
 | |
| 	state->curframe++;
 | |
| 
 | |
| 	/* and go analyze first insn of the callee */
 | |
| 	*insn_idx = target_insn;
 | |
| 
 | |
| 	if (env->log.level & BPF_LOG_LEVEL) {
 | |
| 		verbose(env, "caller:\n");
 | |
| 		print_verifier_state(env, caller);
 | |
| 		verbose(env, "callee:\n");
 | |
| 		print_verifier_state(env, callee);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
 | |
| {
 | |
| 	struct bpf_verifier_state *state = env->cur_state;
 | |
| 	struct bpf_func_state *caller, *callee;
 | |
| 	struct bpf_reg_state *r0;
 | |
| 	int err;
 | |
| 
 | |
| 	callee = state->frame[state->curframe];
 | |
| 	r0 = &callee->regs[BPF_REG_0];
 | |
| 	if (r0->type == PTR_TO_STACK) {
 | |
| 		/* technically it's ok to return caller's stack pointer
 | |
| 		 * (or caller's caller's pointer) back to the caller,
 | |
| 		 * since these pointers are valid. Only current stack
 | |
| 		 * pointer will be invalid as soon as function exits,
 | |
| 		 * but let's be conservative
 | |
| 		 */
 | |
| 		verbose(env, "cannot return stack pointer to the caller\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	state->curframe--;
 | |
| 	caller = state->frame[state->curframe];
 | |
| 	/* return to the caller whatever r0 had in the callee */
 | |
| 	caller->regs[BPF_REG_0] = *r0;
 | |
| 
 | |
| 	/* Transfer references to the caller */
 | |
| 	err = transfer_reference_state(caller, callee);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	*insn_idx = callee->callsite + 1;
 | |
| 	if (env->log.level & BPF_LOG_LEVEL) {
 | |
| 		verbose(env, "returning from callee:\n");
 | |
| 		print_verifier_state(env, callee);
 | |
| 		verbose(env, "to caller at %d:\n", *insn_idx);
 | |
| 		print_verifier_state(env, caller);
 | |
| 	}
 | |
| 	/* clear everything in the callee */
 | |
| 	free_func_state(callee);
 | |
| 	state->frame[state->curframe + 1] = NULL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
 | |
| 				   int func_id,
 | |
| 				   struct bpf_call_arg_meta *meta)
 | |
| {
 | |
| 	struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
 | |
| 
 | |
| 	if (ret_type != RET_INTEGER ||
 | |
| 	    (func_id != BPF_FUNC_get_stack &&
 | |
| 	     func_id != BPF_FUNC_probe_read_str &&
 | |
| 	     func_id != BPF_FUNC_probe_read_kernel_str &&
 | |
| 	     func_id != BPF_FUNC_probe_read_user_str))
 | |
| 		return;
 | |
| 
 | |
| 	ret_reg->smax_value = meta->msize_max_value;
 | |
| 	ret_reg->s32_max_value = meta->msize_max_value;
 | |
| 	__reg_deduce_bounds(ret_reg);
 | |
| 	__reg_bound_offset(ret_reg);
 | |
| 	__update_reg_bounds(ret_reg);
 | |
| }
 | |
| 
 | |
| static int
 | |
| record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
 | |
| 		int func_id, int insn_idx)
 | |
| {
 | |
| 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
 | |
| 	struct bpf_map *map = meta->map_ptr;
 | |
| 
 | |
| 	if (func_id != BPF_FUNC_tail_call &&
 | |
| 	    func_id != BPF_FUNC_map_lookup_elem &&
 | |
| 	    func_id != BPF_FUNC_map_update_elem &&
 | |
| 	    func_id != BPF_FUNC_map_delete_elem &&
 | |
| 	    func_id != BPF_FUNC_map_push_elem &&
 | |
| 	    func_id != BPF_FUNC_map_pop_elem &&
 | |
| 	    func_id != BPF_FUNC_map_peek_elem)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (map == NULL) {
 | |
| 		verbose(env, "kernel subsystem misconfigured verifier\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* In case of read-only, some additional restrictions
 | |
| 	 * need to be applied in order to prevent altering the
 | |
| 	 * state of the map from program side.
 | |
| 	 */
 | |
| 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
 | |
| 	    (func_id == BPF_FUNC_map_delete_elem ||
 | |
| 	     func_id == BPF_FUNC_map_update_elem ||
 | |
| 	     func_id == BPF_FUNC_map_push_elem ||
 | |
| 	     func_id == BPF_FUNC_map_pop_elem)) {
 | |
| 		verbose(env, "write into map forbidden\n");
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	if (!BPF_MAP_PTR(aux->map_ptr_state))
 | |
| 		bpf_map_ptr_store(aux, meta->map_ptr,
 | |
| 				  !meta->map_ptr->bypass_spec_v1);
 | |
| 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
 | |
| 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
 | |
| 				  !meta->map_ptr->bypass_spec_v1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
 | |
| 		int func_id, int insn_idx)
 | |
| {
 | |
| 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
 | |
| 	struct bpf_reg_state *regs = cur_regs(env), *reg;
 | |
| 	struct bpf_map *map = meta->map_ptr;
 | |
| 	struct tnum range;
 | |
| 	u64 val;
 | |
| 	int err;
 | |
| 
 | |
| 	if (func_id != BPF_FUNC_tail_call)
 | |
| 		return 0;
 | |
| 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
 | |
| 		verbose(env, "kernel subsystem misconfigured verifier\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	range = tnum_range(0, map->max_entries - 1);
 | |
| 	reg = ®s[BPF_REG_3];
 | |
| 
 | |
| 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
 | |
| 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	err = mark_chain_precision(env, BPF_REG_3);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	val = reg->var_off.value;
 | |
| 	if (bpf_map_key_unseen(aux))
 | |
| 		bpf_map_key_store(aux, val);
 | |
| 	else if (!bpf_map_key_poisoned(aux) &&
 | |
| 		  bpf_map_key_immediate(aux) != val)
 | |
| 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_reference_leak(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	struct bpf_func_state *state = cur_func(env);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < state->acquired_refs; i++) {
 | |
| 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
 | |
| 			state->refs[i].id, state->refs[i].insn_idx);
 | |
| 	}
 | |
| 	return state->acquired_refs ? -EINVAL : 0;
 | |
| }
 | |
| 
 | |
| static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
 | |
| {
 | |
| 	const struct bpf_func_proto *fn = NULL;
 | |
| 	struct bpf_reg_state *regs;
 | |
| 	struct bpf_call_arg_meta meta;
 | |
| 	bool changes_data;
 | |
| 	int i, err;
 | |
| 
 | |
| 	/* find function prototype */
 | |
| 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
 | |
| 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
 | |
| 			func_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (env->ops->get_func_proto)
 | |
| 		fn = env->ops->get_func_proto(func_id, env->prog);
 | |
| 	if (!fn) {
 | |
| 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
 | |
| 			func_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
 | |
| 	if (!env->prog->gpl_compatible && fn->gpl_only) {
 | |
| 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
 | |
| 	changes_data = bpf_helper_changes_pkt_data(fn->func);
 | |
| 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
 | |
| 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
 | |
| 			func_id_name(func_id), func_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	memset(&meta, 0, sizeof(meta));
 | |
| 	meta.pkt_access = fn->pkt_access;
 | |
| 
 | |
| 	err = check_func_proto(fn, func_id);
 | |
| 	if (err) {
 | |
| 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
 | |
| 			func_id_name(func_id), func_id);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	meta.func_id = func_id;
 | |
| 	/* check args */
 | |
| 	for (i = 0; i < 5; i++) {
 | |
| 		err = btf_resolve_helper_id(&env->log, fn, i);
 | |
| 		if (err > 0)
 | |
| 			meta.btf_id = err;
 | |
| 		err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	err = record_func_map(env, &meta, func_id, insn_idx);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = record_func_key(env, &meta, func_id, insn_idx);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
 | |
| 	 * is inferred from register state.
 | |
| 	 */
 | |
| 	for (i = 0; i < meta.access_size; i++) {
 | |
| 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
 | |
| 				       BPF_WRITE, -1, false);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	if (func_id == BPF_FUNC_tail_call) {
 | |
| 		err = check_reference_leak(env);
 | |
| 		if (err) {
 | |
| 			verbose(env, "tail_call would lead to reference leak\n");
 | |
| 			return err;
 | |
| 		}
 | |
| 	} else if (is_release_function(func_id)) {
 | |
| 		err = release_reference(env, meta.ref_obj_id);
 | |
| 		if (err) {
 | |
| 			verbose(env, "func %s#%d reference has not been acquired before\n",
 | |
| 				func_id_name(func_id), func_id);
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	regs = cur_regs(env);
 | |
| 
 | |
| 	/* check that flags argument in get_local_storage(map, flags) is 0,
 | |
| 	 * this is required because get_local_storage() can't return an error.
 | |
| 	 */
 | |
| 	if (func_id == BPF_FUNC_get_local_storage &&
 | |
| 	    !register_is_null(®s[BPF_REG_2])) {
 | |
| 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* reset caller saved regs */
 | |
| 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
 | |
| 		mark_reg_not_init(env, regs, caller_saved[i]);
 | |
| 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
 | |
| 	}
 | |
| 
 | |
| 	/* helper call returns 64-bit value. */
 | |
| 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
 | |
| 
 | |
| 	/* update return register (already marked as written above) */
 | |
| 	if (fn->ret_type == RET_INTEGER) {
 | |
| 		/* sets type to SCALAR_VALUE */
 | |
| 		mark_reg_unknown(env, regs, BPF_REG_0);
 | |
| 	} else if (fn->ret_type == RET_VOID) {
 | |
| 		regs[BPF_REG_0].type = NOT_INIT;
 | |
| 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
 | |
| 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
 | |
| 		/* There is no offset yet applied, variable or fixed */
 | |
| 		mark_reg_known_zero(env, regs, BPF_REG_0);
 | |
| 		/* remember map_ptr, so that check_map_access()
 | |
| 		 * can check 'value_size' boundary of memory access
 | |
| 		 * to map element returned from bpf_map_lookup_elem()
 | |
| 		 */
 | |
| 		if (meta.map_ptr == NULL) {
 | |
| 			verbose(env,
 | |
| 				"kernel subsystem misconfigured verifier\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
 | |
| 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
 | |
| 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
 | |
| 			if (map_value_has_spin_lock(meta.map_ptr))
 | |
| 				regs[BPF_REG_0].id = ++env->id_gen;
 | |
| 		} else {
 | |
| 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
 | |
| 			regs[BPF_REG_0].id = ++env->id_gen;
 | |
| 		}
 | |
| 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
 | |
| 		mark_reg_known_zero(env, regs, BPF_REG_0);
 | |
| 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
 | |
| 		regs[BPF_REG_0].id = ++env->id_gen;
 | |
| 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
 | |
| 		mark_reg_known_zero(env, regs, BPF_REG_0);
 | |
| 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
 | |
| 		regs[BPF_REG_0].id = ++env->id_gen;
 | |
| 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
 | |
| 		mark_reg_known_zero(env, regs, BPF_REG_0);
 | |
| 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
 | |
| 		regs[BPF_REG_0].id = ++env->id_gen;
 | |
| 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
 | |
| 		mark_reg_known_zero(env, regs, BPF_REG_0);
 | |
| 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
 | |
| 		regs[BPF_REG_0].id = ++env->id_gen;
 | |
| 		regs[BPF_REG_0].mem_size = meta.mem_size;
 | |
| 	} else {
 | |
| 		verbose(env, "unknown return type %d of func %s#%d\n",
 | |
| 			fn->ret_type, func_id_name(func_id), func_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (is_ptr_cast_function(func_id)) {
 | |
| 		/* For release_reference() */
 | |
| 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
 | |
| 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
 | |
| 		int id = acquire_reference_state(env, insn_idx);
 | |
| 
 | |
| 		if (id < 0)
 | |
| 			return id;
 | |
| 		/* For mark_ptr_or_null_reg() */
 | |
| 		regs[BPF_REG_0].id = id;
 | |
| 		/* For release_reference() */
 | |
| 		regs[BPF_REG_0].ref_obj_id = id;
 | |
| 	}
 | |
| 
 | |
| 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
 | |
| 
 | |
| 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
 | |
| 		const char *err_str;
 | |
| 
 | |
| #ifdef CONFIG_PERF_EVENTS
 | |
| 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
 | |
| 		err_str = "cannot get callchain buffer for func %s#%d\n";
 | |
| #else
 | |
| 		err = -ENOTSUPP;
 | |
| 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
 | |
| #endif
 | |
| 		if (err) {
 | |
| 			verbose(env, err_str, func_id_name(func_id), func_id);
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		env->prog->has_callchain_buf = true;
 | |
| 	}
 | |
| 
 | |
| 	if (changes_data)
 | |
| 		clear_all_pkt_pointers(env);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool signed_add_overflows(s64 a, s64 b)
 | |
| {
 | |
| 	/* Do the add in u64, where overflow is well-defined */
 | |
| 	s64 res = (s64)((u64)a + (u64)b);
 | |
| 
 | |
| 	if (b < 0)
 | |
| 		return res > a;
 | |
| 	return res < a;
 | |
| }
 | |
| 
 | |
| static bool signed_add32_overflows(s64 a, s64 b)
 | |
| {
 | |
| 	/* Do the add in u32, where overflow is well-defined */
 | |
| 	s32 res = (s32)((u32)a + (u32)b);
 | |
| 
 | |
| 	if (b < 0)
 | |
| 		return res > a;
 | |
| 	return res < a;
 | |
| }
 | |
| 
 | |
| static bool signed_sub_overflows(s32 a, s32 b)
 | |
| {
 | |
| 	/* Do the sub in u64, where overflow is well-defined */
 | |
| 	s64 res = (s64)((u64)a - (u64)b);
 | |
| 
 | |
| 	if (b < 0)
 | |
| 		return res < a;
 | |
| 	return res > a;
 | |
| }
 | |
| 
 | |
| static bool signed_sub32_overflows(s32 a, s32 b)
 | |
| {
 | |
| 	/* Do the sub in u64, where overflow is well-defined */
 | |
| 	s32 res = (s32)((u32)a - (u32)b);
 | |
| 
 | |
| 	if (b < 0)
 | |
| 		return res < a;
 | |
| 	return res > a;
 | |
| }
 | |
| 
 | |
| static bool check_reg_sane_offset(struct bpf_verifier_env *env,
 | |
| 				  const struct bpf_reg_state *reg,
 | |
| 				  enum bpf_reg_type type)
 | |
| {
 | |
| 	bool known = tnum_is_const(reg->var_off);
 | |
| 	s64 val = reg->var_off.value;
 | |
| 	s64 smin = reg->smin_value;
 | |
| 
 | |
| 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
 | |
| 		verbose(env, "math between %s pointer and %lld is not allowed\n",
 | |
| 			reg_type_str[type], val);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
 | |
| 		verbose(env, "%s pointer offset %d is not allowed\n",
 | |
| 			reg_type_str[type], reg->off);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (smin == S64_MIN) {
 | |
| 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
 | |
| 			reg_type_str[type]);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
 | |
| 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
 | |
| 			smin, reg_type_str[type]);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	return &env->insn_aux_data[env->insn_idx];
 | |
| }
 | |
| 
 | |
| static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
 | |
| 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
 | |
| {
 | |
| 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
 | |
| 			    (opcode == BPF_SUB && !off_is_neg);
 | |
| 	u32 off;
 | |
| 
 | |
| 	switch (ptr_reg->type) {
 | |
| 	case PTR_TO_STACK:
 | |
| 		/* Indirect variable offset stack access is prohibited in
 | |
| 		 * unprivileged mode so it's not handled here.
 | |
| 		 */
 | |
| 		off = ptr_reg->off + ptr_reg->var_off.value;
 | |
| 		if (mask_to_left)
 | |
| 			*ptr_limit = MAX_BPF_STACK + off;
 | |
| 		else
 | |
| 			*ptr_limit = -off;
 | |
| 		return 0;
 | |
| 	case PTR_TO_MAP_VALUE:
 | |
| 		if (mask_to_left) {
 | |
| 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
 | |
| 		} else {
 | |
| 			off = ptr_reg->smin_value + ptr_reg->off;
 | |
| 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
 | |
| 				    const struct bpf_insn *insn)
 | |
| {
 | |
| 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
 | |
| }
 | |
| 
 | |
| static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
 | |
| 				       u32 alu_state, u32 alu_limit)
 | |
| {
 | |
| 	/* If we arrived here from different branches with different
 | |
| 	 * state or limits to sanitize, then this won't work.
 | |
| 	 */
 | |
| 	if (aux->alu_state &&
 | |
| 	    (aux->alu_state != alu_state ||
 | |
| 	     aux->alu_limit != alu_limit))
 | |
| 		return -EACCES;
 | |
| 
 | |
| 	/* Corresponding fixup done in fixup_bpf_calls(). */
 | |
| 	aux->alu_state = alu_state;
 | |
| 	aux->alu_limit = alu_limit;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sanitize_val_alu(struct bpf_verifier_env *env,
 | |
| 			    struct bpf_insn *insn)
 | |
| {
 | |
| 	struct bpf_insn_aux_data *aux = cur_aux(env);
 | |
| 
 | |
| 	if (can_skip_alu_sanitation(env, insn))
 | |
| 		return 0;
 | |
| 
 | |
| 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
 | |
| }
 | |
| 
 | |
| static int sanitize_ptr_alu(struct bpf_verifier_env *env,
 | |
| 			    struct bpf_insn *insn,
 | |
| 			    const struct bpf_reg_state *ptr_reg,
 | |
| 			    struct bpf_reg_state *dst_reg,
 | |
| 			    bool off_is_neg)
 | |
| {
 | |
| 	struct bpf_verifier_state *vstate = env->cur_state;
 | |
| 	struct bpf_insn_aux_data *aux = cur_aux(env);
 | |
| 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
 | |
| 	u8 opcode = BPF_OP(insn->code);
 | |
| 	u32 alu_state, alu_limit;
 | |
| 	struct bpf_reg_state tmp;
 | |
| 	bool ret;
 | |
| 
 | |
| 	if (can_skip_alu_sanitation(env, insn))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* We already marked aux for masking from non-speculative
 | |
| 	 * paths, thus we got here in the first place. We only care
 | |
| 	 * to explore bad access from here.
 | |
| 	 */
 | |
| 	if (vstate->speculative)
 | |
| 		goto do_sim;
 | |
| 
 | |
| 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
 | |
| 	alu_state |= ptr_is_dst_reg ?
 | |
| 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
 | |
| 
 | |
| 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
 | |
| 		return 0;
 | |
| 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
 | |
| 		return -EACCES;
 | |
| do_sim:
 | |
| 	/* Simulate and find potential out-of-bounds access under
 | |
| 	 * speculative execution from truncation as a result of
 | |
| 	 * masking when off was not within expected range. If off
 | |
| 	 * sits in dst, then we temporarily need to move ptr there
 | |
| 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
 | |
| 	 * for cases where we use K-based arithmetic in one direction
 | |
| 	 * and truncated reg-based in the other in order to explore
 | |
| 	 * bad access.
 | |
| 	 */
 | |
| 	if (!ptr_is_dst_reg) {
 | |
| 		tmp = *dst_reg;
 | |
| 		*dst_reg = *ptr_reg;
 | |
| 	}
 | |
| 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
 | |
| 	if (!ptr_is_dst_reg && ret)
 | |
| 		*dst_reg = tmp;
 | |
| 	return !ret ? -EFAULT : 0;
 | |
| }
 | |
| 
 | |
| /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 | |
|  * Caller should also handle BPF_MOV case separately.
 | |
|  * If we return -EACCES, caller may want to try again treating pointer as a
 | |
|  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 | |
|  */
 | |
| static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
 | |
| 				   struct bpf_insn *insn,
 | |
| 				   const struct bpf_reg_state *ptr_reg,
 | |
| 				   const struct bpf_reg_state *off_reg)
 | |
| {
 | |
| 	struct bpf_verifier_state *vstate = env->cur_state;
 | |
| 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
 | |
| 	struct bpf_reg_state *regs = state->regs, *dst_reg;
 | |
| 	bool known = tnum_is_const(off_reg->var_off);
 | |
| 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
 | |
| 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
 | |
| 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
 | |
| 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
 | |
| 	u32 dst = insn->dst_reg, src = insn->src_reg;
 | |
| 	u8 opcode = BPF_OP(insn->code);
 | |
| 	int ret;
 | |
| 
 | |
| 	dst_reg = ®s[dst];
 | |
| 
 | |
| 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
 | |
| 	    smin_val > smax_val || umin_val > umax_val) {
 | |
| 		/* Taint dst register if offset had invalid bounds derived from
 | |
| 		 * e.g. dead branches.
 | |
| 		 */
 | |
| 		__mark_reg_unknown(env, dst_reg);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
 | |
| 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
 | |
| 		verbose(env,
 | |
| 			"R%d 32-bit pointer arithmetic prohibited\n",
 | |
| 			dst);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	switch (ptr_reg->type) {
 | |
| 	case PTR_TO_MAP_VALUE_OR_NULL:
 | |
| 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
 | |
| 			dst, reg_type_str[ptr_reg->type]);
 | |
| 		return -EACCES;
 | |
| 	case CONST_PTR_TO_MAP:
 | |
| 	case PTR_TO_PACKET_END:
 | |
| 	case PTR_TO_SOCKET:
 | |
| 	case PTR_TO_SOCKET_OR_NULL:
 | |
| 	case PTR_TO_SOCK_COMMON:
 | |
| 	case PTR_TO_SOCK_COMMON_OR_NULL:
 | |
| 	case PTR_TO_TCP_SOCK:
 | |
| 	case PTR_TO_TCP_SOCK_OR_NULL:
 | |
| 	case PTR_TO_XDP_SOCK:
 | |
| 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
 | |
| 			dst, reg_type_str[ptr_reg->type]);
 | |
| 		return -EACCES;
 | |
| 	case PTR_TO_MAP_VALUE:
 | |
| 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
 | |
| 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
 | |
| 				off_reg == dst_reg ? dst : src);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		/* fall-through */
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
 | |
| 	 * The id may be overwritten later if we create a new variable offset.
 | |
| 	 */
 | |
| 	dst_reg->type = ptr_reg->type;
 | |
| 	dst_reg->id = ptr_reg->id;
 | |
| 
 | |
| 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
 | |
| 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* pointer types do not carry 32-bit bounds at the moment. */
 | |
| 	__mark_reg32_unbounded(dst_reg);
 | |
| 
 | |
| 	switch (opcode) {
 | |
| 	case BPF_ADD:
 | |
| 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
 | |
| 		if (ret < 0) {
 | |
| 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		/* We can take a fixed offset as long as it doesn't overflow
 | |
| 		 * the s32 'off' field
 | |
| 		 */
 | |
| 		if (known && (ptr_reg->off + smin_val ==
 | |
| 			      (s64)(s32)(ptr_reg->off + smin_val))) {
 | |
| 			/* pointer += K.  Accumulate it into fixed offset */
 | |
| 			dst_reg->smin_value = smin_ptr;
 | |
| 			dst_reg->smax_value = smax_ptr;
 | |
| 			dst_reg->umin_value = umin_ptr;
 | |
| 			dst_reg->umax_value = umax_ptr;
 | |
| 			dst_reg->var_off = ptr_reg->var_off;
 | |
| 			dst_reg->off = ptr_reg->off + smin_val;
 | |
| 			dst_reg->raw = ptr_reg->raw;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* A new variable offset is created.  Note that off_reg->off
 | |
| 		 * == 0, since it's a scalar.
 | |
| 		 * dst_reg gets the pointer type and since some positive
 | |
| 		 * integer value was added to the pointer, give it a new 'id'
 | |
| 		 * if it's a PTR_TO_PACKET.
 | |
| 		 * this creates a new 'base' pointer, off_reg (variable) gets
 | |
| 		 * added into the variable offset, and we copy the fixed offset
 | |
| 		 * from ptr_reg.
 | |
| 		 */
 | |
| 		if (signed_add_overflows(smin_ptr, smin_val) ||
 | |
| 		    signed_add_overflows(smax_ptr, smax_val)) {
 | |
| 			dst_reg->smin_value = S64_MIN;
 | |
| 			dst_reg->smax_value = S64_MAX;
 | |
| 		} else {
 | |
| 			dst_reg->smin_value = smin_ptr + smin_val;
 | |
| 			dst_reg->smax_value = smax_ptr + smax_val;
 | |
| 		}
 | |
| 		if (umin_ptr + umin_val < umin_ptr ||
 | |
| 		    umax_ptr + umax_val < umax_ptr) {
 | |
| 			dst_reg->umin_value = 0;
 | |
| 			dst_reg->umax_value = U64_MAX;
 | |
| 		} else {
 | |
| 			dst_reg->umin_value = umin_ptr + umin_val;
 | |
| 			dst_reg->umax_value = umax_ptr + umax_val;
 | |
| 		}
 | |
| 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
 | |
| 		dst_reg->off = ptr_reg->off;
 | |
| 		dst_reg->raw = ptr_reg->raw;
 | |
| 		if (reg_is_pkt_pointer(ptr_reg)) {
 | |
| 			dst_reg->id = ++env->id_gen;
 | |
| 			/* something was added to pkt_ptr, set range to zero */
 | |
| 			dst_reg->raw = 0;
 | |
| 		}
 | |
| 		break;
 | |
| 	case BPF_SUB:
 | |
| 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
 | |
| 		if (ret < 0) {
 | |
| 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		if (dst_reg == off_reg) {
 | |
| 			/* scalar -= pointer.  Creates an unknown scalar */
 | |
| 			verbose(env, "R%d tried to subtract pointer from scalar\n",
 | |
| 				dst);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		/* We don't allow subtraction from FP, because (according to
 | |
| 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
 | |
| 		 * be able to deal with it.
 | |
| 		 */
 | |
| 		if (ptr_reg->type == PTR_TO_STACK) {
 | |
| 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
 | |
| 				dst);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		if (known && (ptr_reg->off - smin_val ==
 | |
| 			      (s64)(s32)(ptr_reg->off - smin_val))) {
 | |
| 			/* pointer -= K.  Subtract it from fixed offset */
 | |
| 			dst_reg->smin_value = smin_ptr;
 | |
| 			dst_reg->smax_value = smax_ptr;
 | |
| 			dst_reg->umin_value = umin_ptr;
 | |
| 			dst_reg->umax_value = umax_ptr;
 | |
| 			dst_reg->var_off = ptr_reg->var_off;
 | |
| 			dst_reg->id = ptr_reg->id;
 | |
| 			dst_reg->off = ptr_reg->off - smin_val;
 | |
| 			dst_reg->raw = ptr_reg->raw;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* A new variable offset is created.  If the subtrahend is known
 | |
| 		 * nonnegative, then any reg->range we had before is still good.
 | |
| 		 */
 | |
| 		if (signed_sub_overflows(smin_ptr, smax_val) ||
 | |
| 		    signed_sub_overflows(smax_ptr, smin_val)) {
 | |
| 			/* Overflow possible, we know nothing */
 | |
| 			dst_reg->smin_value = S64_MIN;
 | |
| 			dst_reg->smax_value = S64_MAX;
 | |
| 		} else {
 | |
| 			dst_reg->smin_value = smin_ptr - smax_val;
 | |
| 			dst_reg->smax_value = smax_ptr - smin_val;
 | |
| 		}
 | |
| 		if (umin_ptr < umax_val) {
 | |
| 			/* Overflow possible, we know nothing */
 | |
| 			dst_reg->umin_value = 0;
 | |
| 			dst_reg->umax_value = U64_MAX;
 | |
| 		} else {
 | |
| 			/* Cannot overflow (as long as bounds are consistent) */
 | |
| 			dst_reg->umin_value = umin_ptr - umax_val;
 | |
| 			dst_reg->umax_value = umax_ptr - umin_val;
 | |
| 		}
 | |
| 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
 | |
| 		dst_reg->off = ptr_reg->off;
 | |
| 		dst_reg->raw = ptr_reg->raw;
 | |
| 		if (reg_is_pkt_pointer(ptr_reg)) {
 | |
| 			dst_reg->id = ++env->id_gen;
 | |
| 			/* something was added to pkt_ptr, set range to zero */
 | |
| 			if (smin_val < 0)
 | |
| 				dst_reg->raw = 0;
 | |
| 		}
 | |
| 		break;
 | |
| 	case BPF_AND:
 | |
| 	case BPF_OR:
 | |
| 	case BPF_XOR:
 | |
| 		/* bitwise ops on pointers are troublesome, prohibit. */
 | |
| 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
 | |
| 			dst, bpf_alu_string[opcode >> 4]);
 | |
| 		return -EACCES;
 | |
| 	default:
 | |
| 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
 | |
| 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
 | |
| 			dst, bpf_alu_string[opcode >> 4]);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	__update_reg_bounds(dst_reg);
 | |
| 	__reg_deduce_bounds(dst_reg);
 | |
| 	__reg_bound_offset(dst_reg);
 | |
| 
 | |
| 	/* For unprivileged we require that resulting offset must be in bounds
 | |
| 	 * in order to be able to sanitize access later on.
 | |
| 	 */
 | |
| 	if (!env->bypass_spec_v1) {
 | |
| 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
 | |
| 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
 | |
| 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
 | |
| 				"prohibited for !root\n", dst);
 | |
| 			return -EACCES;
 | |
| 		} else if (dst_reg->type == PTR_TO_STACK &&
 | |
| 			   check_stack_access(env, dst_reg, dst_reg->off +
 | |
| 					      dst_reg->var_off.value, 1)) {
 | |
| 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
 | |
| 				"prohibited for !root\n", dst);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
 | |
| 				 struct bpf_reg_state *src_reg)
 | |
| {
 | |
| 	s32 smin_val = src_reg->s32_min_value;
 | |
| 	s32 smax_val = src_reg->s32_max_value;
 | |
| 	u32 umin_val = src_reg->u32_min_value;
 | |
| 	u32 umax_val = src_reg->u32_max_value;
 | |
| 
 | |
| 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
 | |
| 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
 | |
| 		dst_reg->s32_min_value = S32_MIN;
 | |
| 		dst_reg->s32_max_value = S32_MAX;
 | |
| 	} else {
 | |
| 		dst_reg->s32_min_value += smin_val;
 | |
| 		dst_reg->s32_max_value += smax_val;
 | |
| 	}
 | |
| 	if (dst_reg->u32_min_value + umin_val < umin_val ||
 | |
| 	    dst_reg->u32_max_value + umax_val < umax_val) {
 | |
| 		dst_reg->u32_min_value = 0;
 | |
| 		dst_reg->u32_max_value = U32_MAX;
 | |
| 	} else {
 | |
| 		dst_reg->u32_min_value += umin_val;
 | |
| 		dst_reg->u32_max_value += umax_val;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
 | |
| 			       struct bpf_reg_state *src_reg)
 | |
| {
 | |
| 	s64 smin_val = src_reg->smin_value;
 | |
| 	s64 smax_val = src_reg->smax_value;
 | |
| 	u64 umin_val = src_reg->umin_value;
 | |
| 	u64 umax_val = src_reg->umax_value;
 | |
| 
 | |
| 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
 | |
| 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
 | |
| 		dst_reg->smin_value = S64_MIN;
 | |
| 		dst_reg->smax_value = S64_MAX;
 | |
| 	} else {
 | |
| 		dst_reg->smin_value += smin_val;
 | |
| 		dst_reg->smax_value += smax_val;
 | |
| 	}
 | |
| 	if (dst_reg->umin_value + umin_val < umin_val ||
 | |
| 	    dst_reg->umax_value + umax_val < umax_val) {
 | |
| 		dst_reg->umin_value = 0;
 | |
| 		dst_reg->umax_value = U64_MAX;
 | |
| 	} else {
 | |
| 		dst_reg->umin_value += umin_val;
 | |
| 		dst_reg->umax_value += umax_val;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
 | |
| 				 struct bpf_reg_state *src_reg)
 | |
| {
 | |
| 	s32 smin_val = src_reg->s32_min_value;
 | |
| 	s32 smax_val = src_reg->s32_max_value;
 | |
| 	u32 umin_val = src_reg->u32_min_value;
 | |
| 	u32 umax_val = src_reg->u32_max_value;
 | |
| 
 | |
| 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
 | |
| 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
 | |
| 		/* Overflow possible, we know nothing */
 | |
| 		dst_reg->s32_min_value = S32_MIN;
 | |
| 		dst_reg->s32_max_value = S32_MAX;
 | |
| 	} else {
 | |
| 		dst_reg->s32_min_value -= smax_val;
 | |
| 		dst_reg->s32_max_value -= smin_val;
 | |
| 	}
 | |
| 	if (dst_reg->u32_min_value < umax_val) {
 | |
| 		/* Overflow possible, we know nothing */
 | |
| 		dst_reg->u32_min_value = 0;
 | |
| 		dst_reg->u32_max_value = U32_MAX;
 | |
| 	} else {
 | |
| 		/* Cannot overflow (as long as bounds are consistent) */
 | |
| 		dst_reg->u32_min_value -= umax_val;
 | |
| 		dst_reg->u32_max_value -= umin_val;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
 | |
| 			       struct bpf_reg_state *src_reg)
 | |
| {
 | |
| 	s64 smin_val = src_reg->smin_value;
 | |
| 	s64 smax_val = src_reg->smax_value;
 | |
| 	u64 umin_val = src_reg->umin_value;
 | |
| 	u64 umax_val = src_reg->umax_value;
 | |
| 
 | |
| 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
 | |
| 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
 | |
| 		/* Overflow possible, we know nothing */
 | |
| 		dst_reg->smin_value = S64_MIN;
 | |
| 		dst_reg->smax_value = S64_MAX;
 | |
| 	} else {
 | |
| 		dst_reg->smin_value -= smax_val;
 | |
| 		dst_reg->smax_value -= smin_val;
 | |
| 	}
 | |
| 	if (dst_reg->umin_value < umax_val) {
 | |
| 		/* Overflow possible, we know nothing */
 | |
| 		dst_reg->umin_value = 0;
 | |
| 		dst_reg->umax_value = U64_MAX;
 | |
| 	} else {
 | |
| 		/* Cannot overflow (as long as bounds are consistent) */
 | |
| 		dst_reg->umin_value -= umax_val;
 | |
| 		dst_reg->umax_value -= umin_val;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
 | |
| 				 struct bpf_reg_state *src_reg)
 | |
| {
 | |
| 	s32 smin_val = src_reg->s32_min_value;
 | |
| 	u32 umin_val = src_reg->u32_min_value;
 | |
| 	u32 umax_val = src_reg->u32_max_value;
 | |
| 
 | |
| 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
 | |
| 		/* Ain't nobody got time to multiply that sign */
 | |
| 		__mark_reg32_unbounded(dst_reg);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* Both values are positive, so we can work with unsigned and
 | |
| 	 * copy the result to signed (unless it exceeds S32_MAX).
 | |
| 	 */
 | |
| 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
 | |
| 		/* Potential overflow, we know nothing */
 | |
| 		__mark_reg32_unbounded(dst_reg);
 | |
| 		return;
 | |
| 	}
 | |
| 	dst_reg->u32_min_value *= umin_val;
 | |
| 	dst_reg->u32_max_value *= umax_val;
 | |
| 	if (dst_reg->u32_max_value > S32_MAX) {
 | |
| 		/* Overflow possible, we know nothing */
 | |
| 		dst_reg->s32_min_value = S32_MIN;
 | |
| 		dst_reg->s32_max_value = S32_MAX;
 | |
| 	} else {
 | |
| 		dst_reg->s32_min_value = dst_reg->u32_min_value;
 | |
| 		dst_reg->s32_max_value = dst_reg->u32_max_value;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
 | |
| 			       struct bpf_reg_state *src_reg)
 | |
| {
 | |
| 	s64 smin_val = src_reg->smin_value;
 | |
| 	u64 umin_val = src_reg->umin_value;
 | |
| 	u64 umax_val = src_reg->umax_value;
 | |
| 
 | |
| 	if (smin_val < 0 || dst_reg->smin_value < 0) {
 | |
| 		/* Ain't nobody got time to multiply that sign */
 | |
| 		__mark_reg64_unbounded(dst_reg);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* Both values are positive, so we can work with unsigned and
 | |
| 	 * copy the result to signed (unless it exceeds S64_MAX).
 | |
| 	 */
 | |
| 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
 | |
| 		/* Potential overflow, we know nothing */
 | |
| 		__mark_reg64_unbounded(dst_reg);
 | |
| 		return;
 | |
| 	}
 | |
| 	dst_reg->umin_value *= umin_val;
 | |
| 	dst_reg->umax_value *= umax_val;
 | |
| 	if (dst_reg->umax_value > S64_MAX) {
 | |
| 		/* Overflow possible, we know nothing */
 | |
| 		dst_reg->smin_value = S64_MIN;
 | |
| 		dst_reg->smax_value = S64_MAX;
 | |
| 	} else {
 | |
| 		dst_reg->smin_value = dst_reg->umin_value;
 | |
| 		dst_reg->smax_value = dst_reg->umax_value;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
 | |
| 				 struct bpf_reg_state *src_reg)
 | |
| {
 | |
| 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
 | |
| 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
 | |
| 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
 | |
| 	s32 smin_val = src_reg->s32_min_value;
 | |
| 	u32 umax_val = src_reg->u32_max_value;
 | |
| 
 | |
| 	/* Assuming scalar64_min_max_and will be called so its safe
 | |
| 	 * to skip updating register for known 32-bit case.
 | |
| 	 */
 | |
| 	if (src_known && dst_known)
 | |
| 		return;
 | |
| 
 | |
| 	/* We get our minimum from the var_off, since that's inherently
 | |
| 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
 | |
| 	 */
 | |
| 	dst_reg->u32_min_value = var32_off.value;
 | |
| 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
 | |
| 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
 | |
| 		/* Lose signed bounds when ANDing negative numbers,
 | |
| 		 * ain't nobody got time for that.
 | |
| 		 */
 | |
| 		dst_reg->s32_min_value = S32_MIN;
 | |
| 		dst_reg->s32_max_value = S32_MAX;
 | |
| 	} else {
 | |
| 		/* ANDing two positives gives a positive, so safe to
 | |
| 		 * cast result into s64.
 | |
| 		 */
 | |
| 		dst_reg->s32_min_value = dst_reg->u32_min_value;
 | |
| 		dst_reg->s32_max_value = dst_reg->u32_max_value;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
 | |
| 			       struct bpf_reg_state *src_reg)
 | |
| {
 | |
| 	bool src_known = tnum_is_const(src_reg->var_off);
 | |
| 	bool dst_known = tnum_is_const(dst_reg->var_off);
 | |
| 	s64 smin_val = src_reg->smin_value;
 | |
| 	u64 umax_val = src_reg->umax_value;
 | |
| 
 | |
| 	if (src_known && dst_known) {
 | |
| 		__mark_reg_known(dst_reg, dst_reg->var_off.value &
 | |
| 					  src_reg->var_off.value);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* We get our minimum from the var_off, since that's inherently
 | |
| 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
 | |
| 	 */
 | |
| 	dst_reg->umin_value = dst_reg->var_off.value;
 | |
| 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
 | |
| 	if (dst_reg->smin_value < 0 || smin_val < 0) {
 | |
| 		/* Lose signed bounds when ANDing negative numbers,
 | |
| 		 * ain't nobody got time for that.
 | |
| 		 */
 | |
| 		dst_reg->smin_value = S64_MIN;
 | |
| 		dst_reg->smax_value = S64_MAX;
 | |
| 	} else {
 | |
| 		/* ANDing two positives gives a positive, so safe to
 | |
| 		 * cast result into s64.
 | |
| 		 */
 | |
| 		dst_reg->smin_value = dst_reg->umin_value;
 | |
| 		dst_reg->smax_value = dst_reg->umax_value;
 | |
| 	}
 | |
| 	/* We may learn something more from the var_off */
 | |
| 	__update_reg_bounds(dst_reg);
 | |
| }
 | |
| 
 | |
| static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
 | |
| 				struct bpf_reg_state *src_reg)
 | |
| {
 | |
| 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
 | |
| 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
 | |
| 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
 | |
| 	s32 smin_val = src_reg->smin_value;
 | |
| 	u32 umin_val = src_reg->umin_value;
 | |
| 
 | |
| 	/* Assuming scalar64_min_max_or will be called so it is safe
 | |
| 	 * to skip updating register for known case.
 | |
| 	 */
 | |
| 	if (src_known && dst_known)
 | |
| 		return;
 | |
| 
 | |
| 	/* We get our maximum from the var_off, and our minimum is the
 | |
| 	 * maximum of the operands' minima
 | |
| 	 */
 | |
| 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
 | |
| 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
 | |
| 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
 | |
| 		/* Lose signed bounds when ORing negative numbers,
 | |
| 		 * ain't nobody got time for that.
 | |
| 		 */
 | |
| 		dst_reg->s32_min_value = S32_MIN;
 | |
| 		dst_reg->s32_max_value = S32_MAX;
 | |
| 	} else {
 | |
| 		/* ORing two positives gives a positive, so safe to
 | |
| 		 * cast result into s64.
 | |
| 		 */
 | |
| 		dst_reg->s32_min_value = dst_reg->umin_value;
 | |
| 		dst_reg->s32_max_value = dst_reg->umax_value;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
 | |
| 			      struct bpf_reg_state *src_reg)
 | |
| {
 | |
| 	bool src_known = tnum_is_const(src_reg->var_off);
 | |
| 	bool dst_known = tnum_is_const(dst_reg->var_off);
 | |
| 	s64 smin_val = src_reg->smin_value;
 | |
| 	u64 umin_val = src_reg->umin_value;
 | |
| 
 | |
| 	if (src_known && dst_known) {
 | |
| 		__mark_reg_known(dst_reg, dst_reg->var_off.value |
 | |
| 					  src_reg->var_off.value);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* We get our maximum from the var_off, and our minimum is the
 | |
| 	 * maximum of the operands' minima
 | |
| 	 */
 | |
| 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
 | |
| 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
 | |
| 	if (dst_reg->smin_value < 0 || smin_val < 0) {
 | |
| 		/* Lose signed bounds when ORing negative numbers,
 | |
| 		 * ain't nobody got time for that.
 | |
| 		 */
 | |
| 		dst_reg->smin_value = S64_MIN;
 | |
| 		dst_reg->smax_value = S64_MAX;
 | |
| 	} else {
 | |
| 		/* ORing two positives gives a positive, so safe to
 | |
| 		 * cast result into s64.
 | |
| 		 */
 | |
| 		dst_reg->smin_value = dst_reg->umin_value;
 | |
| 		dst_reg->smax_value = dst_reg->umax_value;
 | |
| 	}
 | |
| 	/* We may learn something more from the var_off */
 | |
| 	__update_reg_bounds(dst_reg);
 | |
| }
 | |
| 
 | |
| static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
 | |
| 				   u64 umin_val, u64 umax_val)
 | |
| {
 | |
| 	/* We lose all sign bit information (except what we can pick
 | |
| 	 * up from var_off)
 | |
| 	 */
 | |
| 	dst_reg->s32_min_value = S32_MIN;
 | |
| 	dst_reg->s32_max_value = S32_MAX;
 | |
| 	/* If we might shift our top bit out, then we know nothing */
 | |
| 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
 | |
| 		dst_reg->u32_min_value = 0;
 | |
| 		dst_reg->u32_max_value = U32_MAX;
 | |
| 	} else {
 | |
| 		dst_reg->u32_min_value <<= umin_val;
 | |
| 		dst_reg->u32_max_value <<= umax_val;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
 | |
| 				 struct bpf_reg_state *src_reg)
 | |
| {
 | |
| 	u32 umax_val = src_reg->u32_max_value;
 | |
| 	u32 umin_val = src_reg->u32_min_value;
 | |
| 	/* u32 alu operation will zext upper bits */
 | |
| 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
 | |
| 
 | |
| 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
 | |
| 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
 | |
| 	/* Not required but being careful mark reg64 bounds as unknown so
 | |
| 	 * that we are forced to pick them up from tnum and zext later and
 | |
| 	 * if some path skips this step we are still safe.
 | |
| 	 */
 | |
| 	__mark_reg64_unbounded(dst_reg);
 | |
| 	__update_reg32_bounds(dst_reg);
 | |
| }
 | |
| 
 | |
| static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
 | |
| 				   u64 umin_val, u64 umax_val)
 | |
| {
 | |
| 	/* Special case <<32 because it is a common compiler pattern to sign
 | |
| 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
 | |
| 	 * positive we know this shift will also be positive so we can track
 | |
| 	 * bounds correctly. Otherwise we lose all sign bit information except
 | |
| 	 * what we can pick up from var_off. Perhaps we can generalize this
 | |
| 	 * later to shifts of any length.
 | |
| 	 */
 | |
| 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
 | |
| 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
 | |
| 	else
 | |
| 		dst_reg->smax_value = S64_MAX;
 | |
| 
 | |
| 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
 | |
| 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
 | |
| 	else
 | |
| 		dst_reg->smin_value = S64_MIN;
 | |
| 
 | |
| 	/* If we might shift our top bit out, then we know nothing */
 | |
| 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
 | |
| 		dst_reg->umin_value = 0;
 | |
| 		dst_reg->umax_value = U64_MAX;
 | |
| 	} else {
 | |
| 		dst_reg->umin_value <<= umin_val;
 | |
| 		dst_reg->umax_value <<= umax_val;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
 | |
| 			       struct bpf_reg_state *src_reg)
 | |
| {
 | |
| 	u64 umax_val = src_reg->umax_value;
 | |
| 	u64 umin_val = src_reg->umin_value;
 | |
| 
 | |
| 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
 | |
| 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
 | |
| 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
 | |
| 
 | |
| 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
 | |
| 	/* We may learn something more from the var_off */
 | |
| 	__update_reg_bounds(dst_reg);
 | |
| }
 | |
| 
 | |
| static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
 | |
| 				 struct bpf_reg_state *src_reg)
 | |
| {
 | |
| 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
 | |
| 	u32 umax_val = src_reg->u32_max_value;
 | |
| 	u32 umin_val = src_reg->u32_min_value;
 | |
| 
 | |
| 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
 | |
| 	 * be negative, then either:
 | |
| 	 * 1) src_reg might be zero, so the sign bit of the result is
 | |
| 	 *    unknown, so we lose our signed bounds
 | |
| 	 * 2) it's known negative, thus the unsigned bounds capture the
 | |
| 	 *    signed bounds
 | |
| 	 * 3) the signed bounds cross zero, so they tell us nothing
 | |
| 	 *    about the result
 | |
| 	 * If the value in dst_reg is known nonnegative, then again the
 | |
| 	 * unsigned bounts capture the signed bounds.
 | |
| 	 * Thus, in all cases it suffices to blow away our signed bounds
 | |
| 	 * and rely on inferring new ones from the unsigned bounds and
 | |
| 	 * var_off of the result.
 | |
| 	 */
 | |
| 	dst_reg->s32_min_value = S32_MIN;
 | |
| 	dst_reg->s32_max_value = S32_MAX;
 | |
| 
 | |
| 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
 | |
| 	dst_reg->u32_min_value >>= umax_val;
 | |
| 	dst_reg->u32_max_value >>= umin_val;
 | |
| 
 | |
| 	__mark_reg64_unbounded(dst_reg);
 | |
| 	__update_reg32_bounds(dst_reg);
 | |
| }
 | |
| 
 | |
| static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
 | |
| 			       struct bpf_reg_state *src_reg)
 | |
| {
 | |
| 	u64 umax_val = src_reg->umax_value;
 | |
| 	u64 umin_val = src_reg->umin_value;
 | |
| 
 | |
| 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
 | |
| 	 * be negative, then either:
 | |
| 	 * 1) src_reg might be zero, so the sign bit of the result is
 | |
| 	 *    unknown, so we lose our signed bounds
 | |
| 	 * 2) it's known negative, thus the unsigned bounds capture the
 | |
| 	 *    signed bounds
 | |
| 	 * 3) the signed bounds cross zero, so they tell us nothing
 | |
| 	 *    about the result
 | |
| 	 * If the value in dst_reg is known nonnegative, then again the
 | |
| 	 * unsigned bounts capture the signed bounds.
 | |
| 	 * Thus, in all cases it suffices to blow away our signed bounds
 | |
| 	 * and rely on inferring new ones from the unsigned bounds and
 | |
| 	 * var_off of the result.
 | |
| 	 */
 | |
| 	dst_reg->smin_value = S64_MIN;
 | |
| 	dst_reg->smax_value = S64_MAX;
 | |
| 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
 | |
| 	dst_reg->umin_value >>= umax_val;
 | |
| 	dst_reg->umax_value >>= umin_val;
 | |
| 
 | |
| 	/* Its not easy to operate on alu32 bounds here because it depends
 | |
| 	 * on bits being shifted in. Take easy way out and mark unbounded
 | |
| 	 * so we can recalculate later from tnum.
 | |
| 	 */
 | |
| 	__mark_reg32_unbounded(dst_reg);
 | |
| 	__update_reg_bounds(dst_reg);
 | |
| }
 | |
| 
 | |
| static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
 | |
| 				  struct bpf_reg_state *src_reg)
 | |
| {
 | |
| 	u64 umin_val = src_reg->u32_min_value;
 | |
| 
 | |
| 	/* Upon reaching here, src_known is true and
 | |
| 	 * umax_val is equal to umin_val.
 | |
| 	 */
 | |
| 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
 | |
| 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
 | |
| 
 | |
| 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
 | |
| 
 | |
| 	/* blow away the dst_reg umin_value/umax_value and rely on
 | |
| 	 * dst_reg var_off to refine the result.
 | |
| 	 */
 | |
| 	dst_reg->u32_min_value = 0;
 | |
| 	dst_reg->u32_max_value = U32_MAX;
 | |
| 
 | |
| 	__mark_reg64_unbounded(dst_reg);
 | |
| 	__update_reg32_bounds(dst_reg);
 | |
| }
 | |
| 
 | |
| static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
 | |
| 				struct bpf_reg_state *src_reg)
 | |
| {
 | |
| 	u64 umin_val = src_reg->umin_value;
 | |
| 
 | |
| 	/* Upon reaching here, src_known is true and umax_val is equal
 | |
| 	 * to umin_val.
 | |
| 	 */
 | |
| 	dst_reg->smin_value >>= umin_val;
 | |
| 	dst_reg->smax_value >>= umin_val;
 | |
| 
 | |
| 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
 | |
| 
 | |
| 	/* blow away the dst_reg umin_value/umax_value and rely on
 | |
| 	 * dst_reg var_off to refine the result.
 | |
| 	 */
 | |
| 	dst_reg->umin_value = 0;
 | |
| 	dst_reg->umax_value = U64_MAX;
 | |
| 
 | |
| 	/* Its not easy to operate on alu32 bounds here because it depends
 | |
| 	 * on bits being shifted in from upper 32-bits. Take easy way out
 | |
| 	 * and mark unbounded so we can recalculate later from tnum.
 | |
| 	 */
 | |
| 	__mark_reg32_unbounded(dst_reg);
 | |
| 	__update_reg_bounds(dst_reg);
 | |
| }
 | |
| 
 | |
| /* WARNING: This function does calculations on 64-bit values, but the actual
 | |
|  * execution may occur on 32-bit values. Therefore, things like bitshifts
 | |
|  * need extra checks in the 32-bit case.
 | |
|  */
 | |
| static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
 | |
| 				      struct bpf_insn *insn,
 | |
| 				      struct bpf_reg_state *dst_reg,
 | |
| 				      struct bpf_reg_state src_reg)
 | |
| {
 | |
| 	struct bpf_reg_state *regs = cur_regs(env);
 | |
| 	u8 opcode = BPF_OP(insn->code);
 | |
| 	bool src_known;
 | |
| 	s64 smin_val, smax_val;
 | |
| 	u64 umin_val, umax_val;
 | |
| 	s32 s32_min_val, s32_max_val;
 | |
| 	u32 u32_min_val, u32_max_val;
 | |
| 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
 | |
| 	u32 dst = insn->dst_reg;
 | |
| 	int ret;
 | |
| 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
 | |
| 
 | |
| 	smin_val = src_reg.smin_value;
 | |
| 	smax_val = src_reg.smax_value;
 | |
| 	umin_val = src_reg.umin_value;
 | |
| 	umax_val = src_reg.umax_value;
 | |
| 
 | |
| 	s32_min_val = src_reg.s32_min_value;
 | |
| 	s32_max_val = src_reg.s32_max_value;
 | |
| 	u32_min_val = src_reg.u32_min_value;
 | |
| 	u32_max_val = src_reg.u32_max_value;
 | |
| 
 | |
| 	if (alu32) {
 | |
| 		src_known = tnum_subreg_is_const(src_reg.var_off);
 | |
| 		if ((src_known &&
 | |
| 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
 | |
| 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
 | |
| 			/* Taint dst register if offset had invalid bounds
 | |
| 			 * derived from e.g. dead branches.
 | |
| 			 */
 | |
| 			__mark_reg_unknown(env, dst_reg);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} else {
 | |
| 		src_known = tnum_is_const(src_reg.var_off);
 | |
| 		if ((src_known &&
 | |
| 		     (smin_val != smax_val || umin_val != umax_val)) ||
 | |
| 		    smin_val > smax_val || umin_val > umax_val) {
 | |
| 			/* Taint dst register if offset had invalid bounds
 | |
| 			 * derived from e.g. dead branches.
 | |
| 			 */
 | |
| 			__mark_reg_unknown(env, dst_reg);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!src_known &&
 | |
| 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
 | |
| 		__mark_reg_unknown(env, dst_reg);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
 | |
| 	 * There are two classes of instructions: The first class we track both
 | |
| 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
 | |
| 	 * greatest amount of precision when alu operations are mixed with jmp32
 | |
| 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
 | |
| 	 * and BPF_OR. This is possible because these ops have fairly easy to
 | |
| 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
 | |
| 	 * See alu32 verifier tests for examples. The second class of
 | |
| 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
 | |
| 	 * with regards to tracking sign/unsigned bounds because the bits may
 | |
| 	 * cross subreg boundaries in the alu64 case. When this happens we mark
 | |
| 	 * the reg unbounded in the subreg bound space and use the resulting
 | |
| 	 * tnum to calculate an approximation of the sign/unsigned bounds.
 | |
| 	 */
 | |
| 	switch (opcode) {
 | |
| 	case BPF_ADD:
 | |
| 		ret = sanitize_val_alu(env, insn);
 | |
| 		if (ret < 0) {
 | |
| 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		scalar32_min_max_add(dst_reg, &src_reg);
 | |
| 		scalar_min_max_add(dst_reg, &src_reg);
 | |
| 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
 | |
| 		break;
 | |
| 	case BPF_SUB:
 | |
| 		ret = sanitize_val_alu(env, insn);
 | |
| 		if (ret < 0) {
 | |
| 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		scalar32_min_max_sub(dst_reg, &src_reg);
 | |
| 		scalar_min_max_sub(dst_reg, &src_reg);
 | |
| 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
 | |
| 		break;
 | |
| 	case BPF_MUL:
 | |
| 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
 | |
| 		scalar32_min_max_mul(dst_reg, &src_reg);
 | |
| 		scalar_min_max_mul(dst_reg, &src_reg);
 | |
| 		break;
 | |
| 	case BPF_AND:
 | |
| 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
 | |
| 		scalar32_min_max_and(dst_reg, &src_reg);
 | |
| 		scalar_min_max_and(dst_reg, &src_reg);
 | |
| 		break;
 | |
| 	case BPF_OR:
 | |
| 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
 | |
| 		scalar32_min_max_or(dst_reg, &src_reg);
 | |
| 		scalar_min_max_or(dst_reg, &src_reg);
 | |
| 		break;
 | |
| 	case BPF_LSH:
 | |
| 		if (umax_val >= insn_bitness) {
 | |
| 			/* Shifts greater than 31 or 63 are undefined.
 | |
| 			 * This includes shifts by a negative number.
 | |
| 			 */
 | |
| 			mark_reg_unknown(env, regs, insn->dst_reg);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (alu32)
 | |
| 			scalar32_min_max_lsh(dst_reg, &src_reg);
 | |
| 		else
 | |
| 			scalar_min_max_lsh(dst_reg, &src_reg);
 | |
| 		break;
 | |
| 	case BPF_RSH:
 | |
| 		if (umax_val >= insn_bitness) {
 | |
| 			/* Shifts greater than 31 or 63 are undefined.
 | |
| 			 * This includes shifts by a negative number.
 | |
| 			 */
 | |
| 			mark_reg_unknown(env, regs, insn->dst_reg);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (alu32)
 | |
| 			scalar32_min_max_rsh(dst_reg, &src_reg);
 | |
| 		else
 | |
| 			scalar_min_max_rsh(dst_reg, &src_reg);
 | |
| 		break;
 | |
| 	case BPF_ARSH:
 | |
| 		if (umax_val >= insn_bitness) {
 | |
| 			/* Shifts greater than 31 or 63 are undefined.
 | |
| 			 * This includes shifts by a negative number.
 | |
| 			 */
 | |
| 			mark_reg_unknown(env, regs, insn->dst_reg);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (alu32)
 | |
| 			scalar32_min_max_arsh(dst_reg, &src_reg);
 | |
| 		else
 | |
| 			scalar_min_max_arsh(dst_reg, &src_reg);
 | |
| 		break;
 | |
| 	default:
 | |
| 		mark_reg_unknown(env, regs, insn->dst_reg);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* ALU32 ops are zero extended into 64bit register */
 | |
| 	if (alu32)
 | |
| 		zext_32_to_64(dst_reg);
 | |
| 
 | |
| 	__update_reg_bounds(dst_reg);
 | |
| 	__reg_deduce_bounds(dst_reg);
 | |
| 	__reg_bound_offset(dst_reg);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 | |
|  * and var_off.
 | |
|  */
 | |
| static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
 | |
| 				   struct bpf_insn *insn)
 | |
| {
 | |
| 	struct bpf_verifier_state *vstate = env->cur_state;
 | |
| 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
 | |
| 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
 | |
| 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
 | |
| 	u8 opcode = BPF_OP(insn->code);
 | |
| 	int err;
 | |
| 
 | |
| 	dst_reg = ®s[insn->dst_reg];
 | |
| 	src_reg = NULL;
 | |
| 	if (dst_reg->type != SCALAR_VALUE)
 | |
| 		ptr_reg = dst_reg;
 | |
| 	if (BPF_SRC(insn->code) == BPF_X) {
 | |
| 		src_reg = ®s[insn->src_reg];
 | |
| 		if (src_reg->type != SCALAR_VALUE) {
 | |
| 			if (dst_reg->type != SCALAR_VALUE) {
 | |
| 				/* Combining two pointers by any ALU op yields
 | |
| 				 * an arbitrary scalar. Disallow all math except
 | |
| 				 * pointer subtraction
 | |
| 				 */
 | |
| 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
 | |
| 					mark_reg_unknown(env, regs, insn->dst_reg);
 | |
| 					return 0;
 | |
| 				}
 | |
| 				verbose(env, "R%d pointer %s pointer prohibited\n",
 | |
| 					insn->dst_reg,
 | |
| 					bpf_alu_string[opcode >> 4]);
 | |
| 				return -EACCES;
 | |
| 			} else {
 | |
| 				/* scalar += pointer
 | |
| 				 * This is legal, but we have to reverse our
 | |
| 				 * src/dest handling in computing the range
 | |
| 				 */
 | |
| 				err = mark_chain_precision(env, insn->dst_reg);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 				return adjust_ptr_min_max_vals(env, insn,
 | |
| 							       src_reg, dst_reg);
 | |
| 			}
 | |
| 		} else if (ptr_reg) {
 | |
| 			/* pointer += scalar */
 | |
| 			err = mark_chain_precision(env, insn->src_reg);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			return adjust_ptr_min_max_vals(env, insn,
 | |
| 						       dst_reg, src_reg);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Pretend the src is a reg with a known value, since we only
 | |
| 		 * need to be able to read from this state.
 | |
| 		 */
 | |
| 		off_reg.type = SCALAR_VALUE;
 | |
| 		__mark_reg_known(&off_reg, insn->imm);
 | |
| 		src_reg = &off_reg;
 | |
| 		if (ptr_reg) /* pointer += K */
 | |
| 			return adjust_ptr_min_max_vals(env, insn,
 | |
| 						       ptr_reg, src_reg);
 | |
| 	}
 | |
| 
 | |
| 	/* Got here implies adding two SCALAR_VALUEs */
 | |
| 	if (WARN_ON_ONCE(ptr_reg)) {
 | |
| 		print_verifier_state(env, state);
 | |
| 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (WARN_ON(!src_reg)) {
 | |
| 		print_verifier_state(env, state);
 | |
| 		verbose(env, "verifier internal error: no src_reg\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
 | |
| }
 | |
| 
 | |
| /* check validity of 32-bit and 64-bit arithmetic operations */
 | |
| static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
 | |
| {
 | |
| 	struct bpf_reg_state *regs = cur_regs(env);
 | |
| 	u8 opcode = BPF_OP(insn->code);
 | |
| 	int err;
 | |
| 
 | |
| 	if (opcode == BPF_END || opcode == BPF_NEG) {
 | |
| 		if (opcode == BPF_NEG) {
 | |
| 			if (BPF_SRC(insn->code) != 0 ||
 | |
| 			    insn->src_reg != BPF_REG_0 ||
 | |
| 			    insn->off != 0 || insn->imm != 0) {
 | |
| 				verbose(env, "BPF_NEG uses reserved fields\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
 | |
| 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
 | |
| 			    BPF_CLASS(insn->code) == BPF_ALU64) {
 | |
| 				verbose(env, "BPF_END uses reserved fields\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* check src operand */
 | |
| 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		if (is_pointer_value(env, insn->dst_reg)) {
 | |
| 			verbose(env, "R%d pointer arithmetic prohibited\n",
 | |
| 				insn->dst_reg);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 
 | |
| 		/* check dest operand */
 | |
| 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 	} else if (opcode == BPF_MOV) {
 | |
| 
 | |
| 		if (BPF_SRC(insn->code) == BPF_X) {
 | |
| 			if (insn->imm != 0 || insn->off != 0) {
 | |
| 				verbose(env, "BPF_MOV uses reserved fields\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			/* check src operand */
 | |
| 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		} else {
 | |
| 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
 | |
| 				verbose(env, "BPF_MOV uses reserved fields\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* check dest operand, mark as required later */
 | |
| 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		if (BPF_SRC(insn->code) == BPF_X) {
 | |
| 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
 | |
| 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
 | |
| 
 | |
| 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
 | |
| 				/* case: R1 = R2
 | |
| 				 * copy register state to dest reg
 | |
| 				 */
 | |
| 				*dst_reg = *src_reg;
 | |
| 				dst_reg->live |= REG_LIVE_WRITTEN;
 | |
| 				dst_reg->subreg_def = DEF_NOT_SUBREG;
 | |
| 			} else {
 | |
| 				/* R1 = (u32) R2 */
 | |
| 				if (is_pointer_value(env, insn->src_reg)) {
 | |
| 					verbose(env,
 | |
| 						"R%d partial copy of pointer\n",
 | |
| 						insn->src_reg);
 | |
| 					return -EACCES;
 | |
| 				} else if (src_reg->type == SCALAR_VALUE) {
 | |
| 					*dst_reg = *src_reg;
 | |
| 					dst_reg->live |= REG_LIVE_WRITTEN;
 | |
| 					dst_reg->subreg_def = env->insn_idx + 1;
 | |
| 				} else {
 | |
| 					mark_reg_unknown(env, regs,
 | |
| 							 insn->dst_reg);
 | |
| 				}
 | |
| 				zext_32_to_64(dst_reg);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* case: R = imm
 | |
| 			 * remember the value we stored into this reg
 | |
| 			 */
 | |
| 			/* clear any state __mark_reg_known doesn't set */
 | |
| 			mark_reg_unknown(env, regs, insn->dst_reg);
 | |
| 			regs[insn->dst_reg].type = SCALAR_VALUE;
 | |
| 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
 | |
| 				__mark_reg_known(regs + insn->dst_reg,
 | |
| 						 insn->imm);
 | |
| 			} else {
 | |
| 				__mark_reg_known(regs + insn->dst_reg,
 | |
| 						 (u32)insn->imm);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	} else if (opcode > BPF_END) {
 | |
| 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
 | |
| 
 | |
| 		if (BPF_SRC(insn->code) == BPF_X) {
 | |
| 			if (insn->imm != 0 || insn->off != 0) {
 | |
| 				verbose(env, "BPF_ALU uses reserved fields\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			/* check src1 operand */
 | |
| 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		} else {
 | |
| 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
 | |
| 				verbose(env, "BPF_ALU uses reserved fields\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* check src2 operand */
 | |
| 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
 | |
| 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
 | |
| 			verbose(env, "div by zero\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
 | |
| 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
 | |
| 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
 | |
| 
 | |
| 			if (insn->imm < 0 || insn->imm >= size) {
 | |
| 				verbose(env, "invalid shift %d\n", insn->imm);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* check dest operand */
 | |
| 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		return adjust_reg_min_max_vals(env, insn);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __find_good_pkt_pointers(struct bpf_func_state *state,
 | |
| 				     struct bpf_reg_state *dst_reg,
 | |
| 				     enum bpf_reg_type type, u16 new_range)
 | |
| {
 | |
| 	struct bpf_reg_state *reg;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_BPF_REG; i++) {
 | |
| 		reg = &state->regs[i];
 | |
| 		if (reg->type == type && reg->id == dst_reg->id)
 | |
| 			/* keep the maximum range already checked */
 | |
| 			reg->range = max(reg->range, new_range);
 | |
| 	}
 | |
| 
 | |
| 	bpf_for_each_spilled_reg(i, state, reg) {
 | |
| 		if (!reg)
 | |
| 			continue;
 | |
| 		if (reg->type == type && reg->id == dst_reg->id)
 | |
| 			reg->range = max(reg->range, new_range);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
 | |
| 				   struct bpf_reg_state *dst_reg,
 | |
| 				   enum bpf_reg_type type,
 | |
| 				   bool range_right_open)
 | |
| {
 | |
| 	u16 new_range;
 | |
| 	int i;
 | |
| 
 | |
| 	if (dst_reg->off < 0 ||
 | |
| 	    (dst_reg->off == 0 && range_right_open))
 | |
| 		/* This doesn't give us any range */
 | |
| 		return;
 | |
| 
 | |
| 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
 | |
| 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
 | |
| 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
 | |
| 		 * than pkt_end, but that's because it's also less than pkt.
 | |
| 		 */
 | |
| 		return;
 | |
| 
 | |
| 	new_range = dst_reg->off;
 | |
| 	if (range_right_open)
 | |
| 		new_range--;
 | |
| 
 | |
| 	/* Examples for register markings:
 | |
| 	 *
 | |
| 	 * pkt_data in dst register:
 | |
| 	 *
 | |
| 	 *   r2 = r3;
 | |
| 	 *   r2 += 8;
 | |
| 	 *   if (r2 > pkt_end) goto <handle exception>
 | |
| 	 *   <access okay>
 | |
| 	 *
 | |
| 	 *   r2 = r3;
 | |
| 	 *   r2 += 8;
 | |
| 	 *   if (r2 < pkt_end) goto <access okay>
 | |
| 	 *   <handle exception>
 | |
| 	 *
 | |
| 	 *   Where:
 | |
| 	 *     r2 == dst_reg, pkt_end == src_reg
 | |
| 	 *     r2=pkt(id=n,off=8,r=0)
 | |
| 	 *     r3=pkt(id=n,off=0,r=0)
 | |
| 	 *
 | |
| 	 * pkt_data in src register:
 | |
| 	 *
 | |
| 	 *   r2 = r3;
 | |
| 	 *   r2 += 8;
 | |
| 	 *   if (pkt_end >= r2) goto <access okay>
 | |
| 	 *   <handle exception>
 | |
| 	 *
 | |
| 	 *   r2 = r3;
 | |
| 	 *   r2 += 8;
 | |
| 	 *   if (pkt_end <= r2) goto <handle exception>
 | |
| 	 *   <access okay>
 | |
| 	 *
 | |
| 	 *   Where:
 | |
| 	 *     pkt_end == dst_reg, r2 == src_reg
 | |
| 	 *     r2=pkt(id=n,off=8,r=0)
 | |
| 	 *     r3=pkt(id=n,off=0,r=0)
 | |
| 	 *
 | |
| 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
 | |
| 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
 | |
| 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
 | |
| 	 * the check.
 | |
| 	 */
 | |
| 
 | |
| 	/* If our ids match, then we must have the same max_value.  And we
 | |
| 	 * don't care about the other reg's fixed offset, since if it's too big
 | |
| 	 * the range won't allow anything.
 | |
| 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
 | |
| 	 */
 | |
| 	for (i = 0; i <= vstate->curframe; i++)
 | |
| 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
 | |
| 					 new_range);
 | |
| }
 | |
| 
 | |
| static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
 | |
| {
 | |
| 	struct tnum subreg = tnum_subreg(reg->var_off);
 | |
| 	s32 sval = (s32)val;
 | |
| 
 | |
| 	switch (opcode) {
 | |
| 	case BPF_JEQ:
 | |
| 		if (tnum_is_const(subreg))
 | |
| 			return !!tnum_equals_const(subreg, val);
 | |
| 		break;
 | |
| 	case BPF_JNE:
 | |
| 		if (tnum_is_const(subreg))
 | |
| 			return !tnum_equals_const(subreg, val);
 | |
| 		break;
 | |
| 	case BPF_JSET:
 | |
| 		if ((~subreg.mask & subreg.value) & val)
 | |
| 			return 1;
 | |
| 		if (!((subreg.mask | subreg.value) & val))
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	case BPF_JGT:
 | |
| 		if (reg->u32_min_value > val)
 | |
| 			return 1;
 | |
| 		else if (reg->u32_max_value <= val)
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	case BPF_JSGT:
 | |
| 		if (reg->s32_min_value > sval)
 | |
| 			return 1;
 | |
| 		else if (reg->s32_max_value < sval)
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	case BPF_JLT:
 | |
| 		if (reg->u32_max_value < val)
 | |
| 			return 1;
 | |
| 		else if (reg->u32_min_value >= val)
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	case BPF_JSLT:
 | |
| 		if (reg->s32_max_value < sval)
 | |
| 			return 1;
 | |
| 		else if (reg->s32_min_value >= sval)
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	case BPF_JGE:
 | |
| 		if (reg->u32_min_value >= val)
 | |
| 			return 1;
 | |
| 		else if (reg->u32_max_value < val)
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	case BPF_JSGE:
 | |
| 		if (reg->s32_min_value >= sval)
 | |
| 			return 1;
 | |
| 		else if (reg->s32_max_value < sval)
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	case BPF_JLE:
 | |
| 		if (reg->u32_max_value <= val)
 | |
| 			return 1;
 | |
| 		else if (reg->u32_min_value > val)
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	case BPF_JSLE:
 | |
| 		if (reg->s32_max_value <= sval)
 | |
| 			return 1;
 | |
| 		else if (reg->s32_min_value > sval)
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
 | |
| {
 | |
| 	s64 sval = (s64)val;
 | |
| 
 | |
| 	switch (opcode) {
 | |
| 	case BPF_JEQ:
 | |
| 		if (tnum_is_const(reg->var_off))
 | |
| 			return !!tnum_equals_const(reg->var_off, val);
 | |
| 		break;
 | |
| 	case BPF_JNE:
 | |
| 		if (tnum_is_const(reg->var_off))
 | |
| 			return !tnum_equals_const(reg->var_off, val);
 | |
| 		break;
 | |
| 	case BPF_JSET:
 | |
| 		if ((~reg->var_off.mask & reg->var_off.value) & val)
 | |
| 			return 1;
 | |
| 		if (!((reg->var_off.mask | reg->var_off.value) & val))
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	case BPF_JGT:
 | |
| 		if (reg->umin_value > val)
 | |
| 			return 1;
 | |
| 		else if (reg->umax_value <= val)
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	case BPF_JSGT:
 | |
| 		if (reg->smin_value > sval)
 | |
| 			return 1;
 | |
| 		else if (reg->smax_value < sval)
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	case BPF_JLT:
 | |
| 		if (reg->umax_value < val)
 | |
| 			return 1;
 | |
| 		else if (reg->umin_value >= val)
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	case BPF_JSLT:
 | |
| 		if (reg->smax_value < sval)
 | |
| 			return 1;
 | |
| 		else if (reg->smin_value >= sval)
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	case BPF_JGE:
 | |
| 		if (reg->umin_value >= val)
 | |
| 			return 1;
 | |
| 		else if (reg->umax_value < val)
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	case BPF_JSGE:
 | |
| 		if (reg->smin_value >= sval)
 | |
| 			return 1;
 | |
| 		else if (reg->smax_value < sval)
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	case BPF_JLE:
 | |
| 		if (reg->umax_value <= val)
 | |
| 			return 1;
 | |
| 		else if (reg->umin_value > val)
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	case BPF_JSLE:
 | |
| 		if (reg->smax_value <= sval)
 | |
| 			return 1;
 | |
| 		else if (reg->smin_value > sval)
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* compute branch direction of the expression "if (reg opcode val) goto target;"
 | |
|  * and return:
 | |
|  *  1 - branch will be taken and "goto target" will be executed
 | |
|  *  0 - branch will not be taken and fall-through to next insn
 | |
|  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
 | |
|  *      range [0,10]
 | |
|  */
 | |
| static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
 | |
| 			   bool is_jmp32)
 | |
| {
 | |
| 	if (__is_pointer_value(false, reg)) {
 | |
| 		if (!reg_type_not_null(reg->type))
 | |
| 			return -1;
 | |
| 
 | |
| 		/* If pointer is valid tests against zero will fail so we can
 | |
| 		 * use this to direct branch taken.
 | |
| 		 */
 | |
| 		if (val != 0)
 | |
| 			return -1;
 | |
| 
 | |
| 		switch (opcode) {
 | |
| 		case BPF_JEQ:
 | |
| 			return 0;
 | |
| 		case BPF_JNE:
 | |
| 			return 1;
 | |
| 		default:
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (is_jmp32)
 | |
| 		return is_branch32_taken(reg, val, opcode);
 | |
| 	return is_branch64_taken(reg, val, opcode);
 | |
| }
 | |
| 
 | |
| /* Adjusts the register min/max values in the case that the dst_reg is the
 | |
|  * variable register that we are working on, and src_reg is a constant or we're
 | |
|  * simply doing a BPF_K check.
 | |
|  * In JEQ/JNE cases we also adjust the var_off values.
 | |
|  */
 | |
| static void reg_set_min_max(struct bpf_reg_state *true_reg,
 | |
| 			    struct bpf_reg_state *false_reg,
 | |
| 			    u64 val, u32 val32,
 | |
| 			    u8 opcode, bool is_jmp32)
 | |
| {
 | |
| 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
 | |
| 	struct tnum false_64off = false_reg->var_off;
 | |
| 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
 | |
| 	struct tnum true_64off = true_reg->var_off;
 | |
| 	s64 sval = (s64)val;
 | |
| 	s32 sval32 = (s32)val32;
 | |
| 
 | |
| 	/* If the dst_reg is a pointer, we can't learn anything about its
 | |
| 	 * variable offset from the compare (unless src_reg were a pointer into
 | |
| 	 * the same object, but we don't bother with that.
 | |
| 	 * Since false_reg and true_reg have the same type by construction, we
 | |
| 	 * only need to check one of them for pointerness.
 | |
| 	 */
 | |
| 	if (__is_pointer_value(false, false_reg))
 | |
| 		return;
 | |
| 
 | |
| 	switch (opcode) {
 | |
| 	case BPF_JEQ:
 | |
| 	case BPF_JNE:
 | |
| 	{
 | |
| 		struct bpf_reg_state *reg =
 | |
| 			opcode == BPF_JEQ ? true_reg : false_reg;
 | |
| 
 | |
| 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
 | |
| 		 * if it is true we know the value for sure. Likewise for
 | |
| 		 * BPF_JNE.
 | |
| 		 */
 | |
| 		if (is_jmp32)
 | |
| 			__mark_reg32_known(reg, val32);
 | |
| 		else
 | |
| 			__mark_reg_known(reg, val);
 | |
| 		break;
 | |
| 	}
 | |
| 	case BPF_JSET:
 | |
| 		if (is_jmp32) {
 | |
| 			false_32off = tnum_and(false_32off, tnum_const(~val32));
 | |
| 			if (is_power_of_2(val32))
 | |
| 				true_32off = tnum_or(true_32off,
 | |
| 						     tnum_const(val32));
 | |
| 		} else {
 | |
| 			false_64off = tnum_and(false_64off, tnum_const(~val));
 | |
| 			if (is_power_of_2(val))
 | |
| 				true_64off = tnum_or(true_64off,
 | |
| 						     tnum_const(val));
 | |
| 		}
 | |
| 		break;
 | |
| 	case BPF_JGE:
 | |
| 	case BPF_JGT:
 | |
| 	{
 | |
| 		if (is_jmp32) {
 | |
| 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
 | |
| 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
 | |
| 
 | |
| 			false_reg->u32_max_value = min(false_reg->u32_max_value,
 | |
| 						       false_umax);
 | |
| 			true_reg->u32_min_value = max(true_reg->u32_min_value,
 | |
| 						      true_umin);
 | |
| 		} else {
 | |
| 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
 | |
| 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
 | |
| 
 | |
| 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
 | |
| 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	case BPF_JSGE:
 | |
| 	case BPF_JSGT:
 | |
| 	{
 | |
| 		if (is_jmp32) {
 | |
| 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
 | |
| 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
 | |
| 
 | |
| 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
 | |
| 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
 | |
| 		} else {
 | |
| 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
 | |
| 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
 | |
| 
 | |
| 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
 | |
| 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	case BPF_JLE:
 | |
| 	case BPF_JLT:
 | |
| 	{
 | |
| 		if (is_jmp32) {
 | |
| 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
 | |
| 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
 | |
| 
 | |
| 			false_reg->u32_min_value = max(false_reg->u32_min_value,
 | |
| 						       false_umin);
 | |
| 			true_reg->u32_max_value = min(true_reg->u32_max_value,
 | |
| 						      true_umax);
 | |
| 		} else {
 | |
| 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
 | |
| 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
 | |
| 
 | |
| 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
 | |
| 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	case BPF_JSLE:
 | |
| 	case BPF_JSLT:
 | |
| 	{
 | |
| 		if (is_jmp32) {
 | |
| 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
 | |
| 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
 | |
| 
 | |
| 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
 | |
| 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
 | |
| 		} else {
 | |
| 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
 | |
| 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
 | |
| 
 | |
| 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
 | |
| 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (is_jmp32) {
 | |
| 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
 | |
| 					     tnum_subreg(false_32off));
 | |
| 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
 | |
| 					    tnum_subreg(true_32off));
 | |
| 		__reg_combine_32_into_64(false_reg);
 | |
| 		__reg_combine_32_into_64(true_reg);
 | |
| 	} else {
 | |
| 		false_reg->var_off = false_64off;
 | |
| 		true_reg->var_off = true_64off;
 | |
| 		__reg_combine_64_into_32(false_reg);
 | |
| 		__reg_combine_64_into_32(true_reg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Same as above, but for the case that dst_reg holds a constant and src_reg is
 | |
|  * the variable reg.
 | |
|  */
 | |
| static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
 | |
| 				struct bpf_reg_state *false_reg,
 | |
| 				u64 val, u32 val32,
 | |
| 				u8 opcode, bool is_jmp32)
 | |
| {
 | |
| 	/* How can we transform "a <op> b" into "b <op> a"? */
 | |
| 	static const u8 opcode_flip[16] = {
 | |
| 		/* these stay the same */
 | |
| 		[BPF_JEQ  >> 4] = BPF_JEQ,
 | |
| 		[BPF_JNE  >> 4] = BPF_JNE,
 | |
| 		[BPF_JSET >> 4] = BPF_JSET,
 | |
| 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
 | |
| 		[BPF_JGE  >> 4] = BPF_JLE,
 | |
| 		[BPF_JGT  >> 4] = BPF_JLT,
 | |
| 		[BPF_JLE  >> 4] = BPF_JGE,
 | |
| 		[BPF_JLT  >> 4] = BPF_JGT,
 | |
| 		[BPF_JSGE >> 4] = BPF_JSLE,
 | |
| 		[BPF_JSGT >> 4] = BPF_JSLT,
 | |
| 		[BPF_JSLE >> 4] = BPF_JSGE,
 | |
| 		[BPF_JSLT >> 4] = BPF_JSGT
 | |
| 	};
 | |
| 	opcode = opcode_flip[opcode >> 4];
 | |
| 	/* This uses zero as "not present in table"; luckily the zero opcode,
 | |
| 	 * BPF_JA, can't get here.
 | |
| 	 */
 | |
| 	if (opcode)
 | |
| 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
 | |
| }
 | |
| 
 | |
| /* Regs are known to be equal, so intersect their min/max/var_off */
 | |
| static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
 | |
| 				  struct bpf_reg_state *dst_reg)
 | |
| {
 | |
| 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
 | |
| 							dst_reg->umin_value);
 | |
| 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
 | |
| 							dst_reg->umax_value);
 | |
| 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
 | |
| 							dst_reg->smin_value);
 | |
| 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
 | |
| 							dst_reg->smax_value);
 | |
| 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
 | |
| 							     dst_reg->var_off);
 | |
| 	/* We might have learned new bounds from the var_off. */
 | |
| 	__update_reg_bounds(src_reg);
 | |
| 	__update_reg_bounds(dst_reg);
 | |
| 	/* We might have learned something about the sign bit. */
 | |
| 	__reg_deduce_bounds(src_reg);
 | |
| 	__reg_deduce_bounds(dst_reg);
 | |
| 	/* We might have learned some bits from the bounds. */
 | |
| 	__reg_bound_offset(src_reg);
 | |
| 	__reg_bound_offset(dst_reg);
 | |
| 	/* Intersecting with the old var_off might have improved our bounds
 | |
| 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
 | |
| 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
 | |
| 	 */
 | |
| 	__update_reg_bounds(src_reg);
 | |
| 	__update_reg_bounds(dst_reg);
 | |
| }
 | |
| 
 | |
| static void reg_combine_min_max(struct bpf_reg_state *true_src,
 | |
| 				struct bpf_reg_state *true_dst,
 | |
| 				struct bpf_reg_state *false_src,
 | |
| 				struct bpf_reg_state *false_dst,
 | |
| 				u8 opcode)
 | |
| {
 | |
| 	switch (opcode) {
 | |
| 	case BPF_JEQ:
 | |
| 		__reg_combine_min_max(true_src, true_dst);
 | |
| 		break;
 | |
| 	case BPF_JNE:
 | |
| 		__reg_combine_min_max(false_src, false_dst);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mark_ptr_or_null_reg(struct bpf_func_state *state,
 | |
| 				 struct bpf_reg_state *reg, u32 id,
 | |
| 				 bool is_null)
 | |
| {
 | |
| 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
 | |
| 		/* Old offset (both fixed and variable parts) should
 | |
| 		 * have been known-zero, because we don't allow pointer
 | |
| 		 * arithmetic on pointers that might be NULL.
 | |
| 		 */
 | |
| 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
 | |
| 				 !tnum_equals_const(reg->var_off, 0) ||
 | |
| 				 reg->off)) {
 | |
| 			__mark_reg_known_zero(reg);
 | |
| 			reg->off = 0;
 | |
| 		}
 | |
| 		if (is_null) {
 | |
| 			reg->type = SCALAR_VALUE;
 | |
| 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
 | |
| 			const struct bpf_map *map = reg->map_ptr;
 | |
| 
 | |
| 			if (map->inner_map_meta) {
 | |
| 				reg->type = CONST_PTR_TO_MAP;
 | |
| 				reg->map_ptr = map->inner_map_meta;
 | |
| 			} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
 | |
| 				reg->type = PTR_TO_XDP_SOCK;
 | |
| 			} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
 | |
| 				   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
 | |
| 				reg->type = PTR_TO_SOCKET;
 | |
| 			} else {
 | |
| 				reg->type = PTR_TO_MAP_VALUE;
 | |
| 			}
 | |
| 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
 | |
| 			reg->type = PTR_TO_SOCKET;
 | |
| 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
 | |
| 			reg->type = PTR_TO_SOCK_COMMON;
 | |
| 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
 | |
| 			reg->type = PTR_TO_TCP_SOCK;
 | |
| 		} else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
 | |
| 			reg->type = PTR_TO_BTF_ID;
 | |
| 		} else if (reg->type == PTR_TO_MEM_OR_NULL) {
 | |
| 			reg->type = PTR_TO_MEM;
 | |
| 		}
 | |
| 		if (is_null) {
 | |
| 			/* We don't need id and ref_obj_id from this point
 | |
| 			 * onwards anymore, thus we should better reset it,
 | |
| 			 * so that state pruning has chances to take effect.
 | |
| 			 */
 | |
| 			reg->id = 0;
 | |
| 			reg->ref_obj_id = 0;
 | |
| 		} else if (!reg_may_point_to_spin_lock(reg)) {
 | |
| 			/* For not-NULL ptr, reg->ref_obj_id will be reset
 | |
| 			 * in release_reg_references().
 | |
| 			 *
 | |
| 			 * reg->id is still used by spin_lock ptr. Other
 | |
| 			 * than spin_lock ptr type, reg->id can be reset.
 | |
| 			 */
 | |
| 			reg->id = 0;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
 | |
| 				    bool is_null)
 | |
| {
 | |
| 	struct bpf_reg_state *reg;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_BPF_REG; i++)
 | |
| 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
 | |
| 
 | |
| 	bpf_for_each_spilled_reg(i, state, reg) {
 | |
| 		if (!reg)
 | |
| 			continue;
 | |
| 		mark_ptr_or_null_reg(state, reg, id, is_null);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* The logic is similar to find_good_pkt_pointers(), both could eventually
 | |
|  * be folded together at some point.
 | |
|  */
 | |
| static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
 | |
| 				  bool is_null)
 | |
| {
 | |
| 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
 | |
| 	struct bpf_reg_state *regs = state->regs;
 | |
| 	u32 ref_obj_id = regs[regno].ref_obj_id;
 | |
| 	u32 id = regs[regno].id;
 | |
| 	int i;
 | |
| 
 | |
| 	if (ref_obj_id && ref_obj_id == id && is_null)
 | |
| 		/* regs[regno] is in the " == NULL" branch.
 | |
| 		 * No one could have freed the reference state before
 | |
| 		 * doing the NULL check.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(release_reference_state(state, id));
 | |
| 
 | |
| 	for (i = 0; i <= vstate->curframe; i++)
 | |
| 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
 | |
| }
 | |
| 
 | |
| static bool try_match_pkt_pointers(const struct bpf_insn *insn,
 | |
| 				   struct bpf_reg_state *dst_reg,
 | |
| 				   struct bpf_reg_state *src_reg,
 | |
| 				   struct bpf_verifier_state *this_branch,
 | |
| 				   struct bpf_verifier_state *other_branch)
 | |
| {
 | |
| 	if (BPF_SRC(insn->code) != BPF_X)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Pointers are always 64-bit. */
 | |
| 	if (BPF_CLASS(insn->code) == BPF_JMP32)
 | |
| 		return false;
 | |
| 
 | |
| 	switch (BPF_OP(insn->code)) {
 | |
| 	case BPF_JGT:
 | |
| 		if ((dst_reg->type == PTR_TO_PACKET &&
 | |
| 		     src_reg->type == PTR_TO_PACKET_END) ||
 | |
| 		    (dst_reg->type == PTR_TO_PACKET_META &&
 | |
| 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
 | |
| 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
 | |
| 			find_good_pkt_pointers(this_branch, dst_reg,
 | |
| 					       dst_reg->type, false);
 | |
| 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
 | |
| 			    src_reg->type == PTR_TO_PACKET) ||
 | |
| 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
 | |
| 			    src_reg->type == PTR_TO_PACKET_META)) {
 | |
| 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
 | |
| 			find_good_pkt_pointers(other_branch, src_reg,
 | |
| 					       src_reg->type, true);
 | |
| 		} else {
 | |
| 			return false;
 | |
| 		}
 | |
| 		break;
 | |
| 	case BPF_JLT:
 | |
| 		if ((dst_reg->type == PTR_TO_PACKET &&
 | |
| 		     src_reg->type == PTR_TO_PACKET_END) ||
 | |
| 		    (dst_reg->type == PTR_TO_PACKET_META &&
 | |
| 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
 | |
| 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
 | |
| 			find_good_pkt_pointers(other_branch, dst_reg,
 | |
| 					       dst_reg->type, true);
 | |
| 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
 | |
| 			    src_reg->type == PTR_TO_PACKET) ||
 | |
| 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
 | |
| 			    src_reg->type == PTR_TO_PACKET_META)) {
 | |
| 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
 | |
| 			find_good_pkt_pointers(this_branch, src_reg,
 | |
| 					       src_reg->type, false);
 | |
| 		} else {
 | |
| 			return false;
 | |
| 		}
 | |
| 		break;
 | |
| 	case BPF_JGE:
 | |
| 		if ((dst_reg->type == PTR_TO_PACKET &&
 | |
| 		     src_reg->type == PTR_TO_PACKET_END) ||
 | |
| 		    (dst_reg->type == PTR_TO_PACKET_META &&
 | |
| 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
 | |
| 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
 | |
| 			find_good_pkt_pointers(this_branch, dst_reg,
 | |
| 					       dst_reg->type, true);
 | |
| 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
 | |
| 			    src_reg->type == PTR_TO_PACKET) ||
 | |
| 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
 | |
| 			    src_reg->type == PTR_TO_PACKET_META)) {
 | |
| 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
 | |
| 			find_good_pkt_pointers(other_branch, src_reg,
 | |
| 					       src_reg->type, false);
 | |
| 		} else {
 | |
| 			return false;
 | |
| 		}
 | |
| 		break;
 | |
| 	case BPF_JLE:
 | |
| 		if ((dst_reg->type == PTR_TO_PACKET &&
 | |
| 		     src_reg->type == PTR_TO_PACKET_END) ||
 | |
| 		    (dst_reg->type == PTR_TO_PACKET_META &&
 | |
| 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
 | |
| 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
 | |
| 			find_good_pkt_pointers(other_branch, dst_reg,
 | |
| 					       dst_reg->type, false);
 | |
| 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
 | |
| 			    src_reg->type == PTR_TO_PACKET) ||
 | |
| 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
 | |
| 			    src_reg->type == PTR_TO_PACKET_META)) {
 | |
| 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
 | |
| 			find_good_pkt_pointers(this_branch, src_reg,
 | |
| 					       src_reg->type, true);
 | |
| 		} else {
 | |
| 			return false;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int check_cond_jmp_op(struct bpf_verifier_env *env,
 | |
| 			     struct bpf_insn *insn, int *insn_idx)
 | |
| {
 | |
| 	struct bpf_verifier_state *this_branch = env->cur_state;
 | |
| 	struct bpf_verifier_state *other_branch;
 | |
| 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
 | |
| 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
 | |
| 	u8 opcode = BPF_OP(insn->code);
 | |
| 	bool is_jmp32;
 | |
| 	int pred = -1;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Only conditional jumps are expected to reach here. */
 | |
| 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
 | |
| 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (BPF_SRC(insn->code) == BPF_X) {
 | |
| 		if (insn->imm != 0) {
 | |
| 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/* check src1 operand */
 | |
| 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		if (is_pointer_value(env, insn->src_reg)) {
 | |
| 			verbose(env, "R%d pointer comparison prohibited\n",
 | |
| 				insn->src_reg);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 		src_reg = ®s[insn->src_reg];
 | |
| 	} else {
 | |
| 		if (insn->src_reg != BPF_REG_0) {
 | |
| 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* check src2 operand */
 | |
| 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dst_reg = ®s[insn->dst_reg];
 | |
| 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
 | |
| 
 | |
| 	if (BPF_SRC(insn->code) == BPF_K) {
 | |
| 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
 | |
| 	} else if (src_reg->type == SCALAR_VALUE &&
 | |
| 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
 | |
| 		pred = is_branch_taken(dst_reg,
 | |
| 				       tnum_subreg(src_reg->var_off).value,
 | |
| 				       opcode,
 | |
| 				       is_jmp32);
 | |
| 	} else if (src_reg->type == SCALAR_VALUE &&
 | |
| 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
 | |
| 		pred = is_branch_taken(dst_reg,
 | |
| 				       src_reg->var_off.value,
 | |
| 				       opcode,
 | |
| 				       is_jmp32);
 | |
| 	}
 | |
| 
 | |
| 	if (pred >= 0) {
 | |
| 		/* If we get here with a dst_reg pointer type it is because
 | |
| 		 * above is_branch_taken() special cased the 0 comparison.
 | |
| 		 */
 | |
| 		if (!__is_pointer_value(false, dst_reg))
 | |
| 			err = mark_chain_precision(env, insn->dst_reg);
 | |
| 		if (BPF_SRC(insn->code) == BPF_X && !err)
 | |
| 			err = mark_chain_precision(env, insn->src_reg);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 	if (pred == 1) {
 | |
| 		/* only follow the goto, ignore fall-through */
 | |
| 		*insn_idx += insn->off;
 | |
| 		return 0;
 | |
| 	} else if (pred == 0) {
 | |
| 		/* only follow fall-through branch, since
 | |
| 		 * that's where the program will go
 | |
| 		 */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
 | |
| 				  false);
 | |
| 	if (!other_branch)
 | |
| 		return -EFAULT;
 | |
| 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
 | |
| 
 | |
| 	/* detect if we are comparing against a constant value so we can adjust
 | |
| 	 * our min/max values for our dst register.
 | |
| 	 * this is only legit if both are scalars (or pointers to the same
 | |
| 	 * object, I suppose, but we don't support that right now), because
 | |
| 	 * otherwise the different base pointers mean the offsets aren't
 | |
| 	 * comparable.
 | |
| 	 */
 | |
| 	if (BPF_SRC(insn->code) == BPF_X) {
 | |
| 		struct bpf_reg_state *src_reg = ®s[insn->src_reg];
 | |
| 
 | |
| 		if (dst_reg->type == SCALAR_VALUE &&
 | |
| 		    src_reg->type == SCALAR_VALUE) {
 | |
| 			if (tnum_is_const(src_reg->var_off) ||
 | |
| 			    (is_jmp32 &&
 | |
| 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
 | |
| 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
 | |
| 						dst_reg,
 | |
| 						src_reg->var_off.value,
 | |
| 						tnum_subreg(src_reg->var_off).value,
 | |
| 						opcode, is_jmp32);
 | |
| 			else if (tnum_is_const(dst_reg->var_off) ||
 | |
| 				 (is_jmp32 &&
 | |
| 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
 | |
| 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
 | |
| 						    src_reg,
 | |
| 						    dst_reg->var_off.value,
 | |
| 						    tnum_subreg(dst_reg->var_off).value,
 | |
| 						    opcode, is_jmp32);
 | |
| 			else if (!is_jmp32 &&
 | |
| 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
 | |
| 				/* Comparing for equality, we can combine knowledge */
 | |
| 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
 | |
| 						    &other_branch_regs[insn->dst_reg],
 | |
| 						    src_reg, dst_reg, opcode);
 | |
| 		}
 | |
| 	} else if (dst_reg->type == SCALAR_VALUE) {
 | |
| 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
 | |
| 					dst_reg, insn->imm, (u32)insn->imm,
 | |
| 					opcode, is_jmp32);
 | |
| 	}
 | |
| 
 | |
| 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
 | |
| 	 * NOTE: these optimizations below are related with pointer comparison
 | |
| 	 *       which will never be JMP32.
 | |
| 	 */
 | |
| 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
 | |
| 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
 | |
| 	    reg_type_may_be_null(dst_reg->type)) {
 | |
| 		/* Mark all identical registers in each branch as either
 | |
| 		 * safe or unknown depending R == 0 or R != 0 conditional.
 | |
| 		 */
 | |
| 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
 | |
| 				      opcode == BPF_JNE);
 | |
| 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
 | |
| 				      opcode == BPF_JEQ);
 | |
| 	} else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
 | |
| 					   this_branch, other_branch) &&
 | |
| 		   is_pointer_value(env, insn->dst_reg)) {
 | |
| 		verbose(env, "R%d pointer comparison prohibited\n",
 | |
| 			insn->dst_reg);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 	if (env->log.level & BPF_LOG_LEVEL)
 | |
| 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* verify BPF_LD_IMM64 instruction */
 | |
| static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
 | |
| {
 | |
| 	struct bpf_insn_aux_data *aux = cur_aux(env);
 | |
| 	struct bpf_reg_state *regs = cur_regs(env);
 | |
| 	struct bpf_map *map;
 | |
| 	int err;
 | |
| 
 | |
| 	if (BPF_SIZE(insn->code) != BPF_DW) {
 | |
| 		verbose(env, "invalid BPF_LD_IMM insn\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (insn->off != 0) {
 | |
| 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (insn->src_reg == 0) {
 | |
| 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
 | |
| 
 | |
| 		regs[insn->dst_reg].type = SCALAR_VALUE;
 | |
| 		__mark_reg_known(®s[insn->dst_reg], imm);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	map = env->used_maps[aux->map_index];
 | |
| 	mark_reg_known_zero(env, regs, insn->dst_reg);
 | |
| 	regs[insn->dst_reg].map_ptr = map;
 | |
| 
 | |
| 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
 | |
| 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
 | |
| 		regs[insn->dst_reg].off = aux->map_off;
 | |
| 		if (map_value_has_spin_lock(map))
 | |
| 			regs[insn->dst_reg].id = ++env->id_gen;
 | |
| 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
 | |
| 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
 | |
| 	} else {
 | |
| 		verbose(env, "bpf verifier is misconfigured\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool may_access_skb(enum bpf_prog_type type)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case BPF_PROG_TYPE_SOCKET_FILTER:
 | |
| 	case BPF_PROG_TYPE_SCHED_CLS:
 | |
| 	case BPF_PROG_TYPE_SCHED_ACT:
 | |
| 		return true;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* verify safety of LD_ABS|LD_IND instructions:
 | |
|  * - they can only appear in the programs where ctx == skb
 | |
|  * - since they are wrappers of function calls, they scratch R1-R5 registers,
 | |
|  *   preserve R6-R9, and store return value into R0
 | |
|  *
 | |
|  * Implicit input:
 | |
|  *   ctx == skb == R6 == CTX
 | |
|  *
 | |
|  * Explicit input:
 | |
|  *   SRC == any register
 | |
|  *   IMM == 32-bit immediate
 | |
|  *
 | |
|  * Output:
 | |
|  *   R0 - 8/16/32-bit skb data converted to cpu endianness
 | |
|  */
 | |
| static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
 | |
| {
 | |
| 	struct bpf_reg_state *regs = cur_regs(env);
 | |
| 	static const int ctx_reg = BPF_REG_6;
 | |
| 	u8 mode = BPF_MODE(insn->code);
 | |
| 	int i, err;
 | |
| 
 | |
| 	if (!may_access_skb(env->prog->type)) {
 | |
| 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!env->ops->gen_ld_abs) {
 | |
| 		verbose(env, "bpf verifier is misconfigured\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (env->subprog_cnt > 1) {
 | |
| 		/* when program has LD_ABS insn JITs and interpreter assume
 | |
| 		 * that r1 == ctx == skb which is not the case for callees
 | |
| 		 * that can have arbitrary arguments. It's problematic
 | |
| 		 * for main prog as well since JITs would need to analyze
 | |
| 		 * all functions in order to make proper register save/restore
 | |
| 		 * decisions in the main prog. Hence disallow LD_ABS with calls
 | |
| 		 */
 | |
| 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
 | |
| 	    BPF_SIZE(insn->code) == BPF_DW ||
 | |
| 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
 | |
| 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* check whether implicit source operand (register R6) is readable */
 | |
| 	err = check_reg_arg(env, ctx_reg, SRC_OP);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
 | |
| 	 * gen_ld_abs() may terminate the program at runtime, leading to
 | |
| 	 * reference leak.
 | |
| 	 */
 | |
| 	err = check_reference_leak(env);
 | |
| 	if (err) {
 | |
| 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	if (env->cur_state->active_spin_lock) {
 | |
| 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (regs[ctx_reg].type != PTR_TO_CTX) {
 | |
| 		verbose(env,
 | |
| 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (mode == BPF_IND) {
 | |
| 		/* check explicit source operand */
 | |
| 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	/* reset caller saved regs to unreadable */
 | |
| 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
 | |
| 		mark_reg_not_init(env, regs, caller_saved[i]);
 | |
| 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
 | |
| 	}
 | |
| 
 | |
| 	/* mark destination R0 register as readable, since it contains
 | |
| 	 * the value fetched from the packet.
 | |
| 	 * Already marked as written above.
 | |
| 	 */
 | |
| 	mark_reg_unknown(env, regs, BPF_REG_0);
 | |
| 	/* ld_abs load up to 32-bit skb data. */
 | |
| 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_return_code(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	struct tnum enforce_attach_type_range = tnum_unknown;
 | |
| 	const struct bpf_prog *prog = env->prog;
 | |
| 	struct bpf_reg_state *reg;
 | |
| 	struct tnum range = tnum_range(0, 1);
 | |
| 	int err;
 | |
| 
 | |
| 	/* LSM and struct_ops func-ptr's return type could be "void" */
 | |
| 	if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
 | |
| 	     env->prog->type == BPF_PROG_TYPE_LSM) &&
 | |
| 	    !prog->aux->attach_func_proto->type)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* eBPF calling convetion is such that R0 is used
 | |
| 	 * to return the value from eBPF program.
 | |
| 	 * Make sure that it's readable at this time
 | |
| 	 * of bpf_exit, which means that program wrote
 | |
| 	 * something into it earlier
 | |
| 	 */
 | |
| 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (is_pointer_value(env, BPF_REG_0)) {
 | |
| 		verbose(env, "R0 leaks addr as return value\n");
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	switch (env->prog->type) {
 | |
| 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
 | |
| 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
 | |
| 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
 | |
| 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
 | |
| 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
 | |
| 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
 | |
| 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
 | |
| 			range = tnum_range(1, 1);
 | |
| 		break;
 | |
| 	case BPF_PROG_TYPE_CGROUP_SKB:
 | |
| 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
 | |
| 			range = tnum_range(0, 3);
 | |
| 			enforce_attach_type_range = tnum_range(2, 3);
 | |
| 		}
 | |
| 		break;
 | |
| 	case BPF_PROG_TYPE_CGROUP_SOCK:
 | |
| 	case BPF_PROG_TYPE_SOCK_OPS:
 | |
| 	case BPF_PROG_TYPE_CGROUP_DEVICE:
 | |
| 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
 | |
| 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
 | |
| 		break;
 | |
| 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
 | |
| 		if (!env->prog->aux->attach_btf_id)
 | |
| 			return 0;
 | |
| 		range = tnum_const(0);
 | |
| 		break;
 | |
| 	case BPF_PROG_TYPE_TRACING:
 | |
| 		switch (env->prog->expected_attach_type) {
 | |
| 		case BPF_TRACE_FENTRY:
 | |
| 		case BPF_TRACE_FEXIT:
 | |
| 			range = tnum_const(0);
 | |
| 			break;
 | |
| 		case BPF_TRACE_RAW_TP:
 | |
| 		case BPF_MODIFY_RETURN:
 | |
| 			return 0;
 | |
| 		case BPF_TRACE_ITER:
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -ENOTSUPP;
 | |
| 		}
 | |
| 		break;
 | |
| 	case BPF_PROG_TYPE_EXT:
 | |
| 		/* freplace program can return anything as its return value
 | |
| 		 * depends on the to-be-replaced kernel func or bpf program.
 | |
| 		 */
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	reg = cur_regs(env) + BPF_REG_0;
 | |
| 	if (reg->type != SCALAR_VALUE) {
 | |
| 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
 | |
| 			reg_type_str[reg->type]);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!tnum_in(range, reg->var_off)) {
 | |
| 		char tn_buf[48];
 | |
| 
 | |
| 		verbose(env, "At program exit the register R0 ");
 | |
| 		if (!tnum_is_unknown(reg->var_off)) {
 | |
| 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 | |
| 			verbose(env, "has value %s", tn_buf);
 | |
| 		} else {
 | |
| 			verbose(env, "has unknown scalar value");
 | |
| 		}
 | |
| 		tnum_strn(tn_buf, sizeof(tn_buf), range);
 | |
| 		verbose(env, " should have been in %s\n", tn_buf);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!tnum_is_unknown(enforce_attach_type_range) &&
 | |
| 	    tnum_in(enforce_attach_type_range, reg->var_off))
 | |
| 		env->prog->enforce_expected_attach_type = 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* non-recursive DFS pseudo code
 | |
|  * 1  procedure DFS-iterative(G,v):
 | |
|  * 2      label v as discovered
 | |
|  * 3      let S be a stack
 | |
|  * 4      S.push(v)
 | |
|  * 5      while S is not empty
 | |
|  * 6            t <- S.pop()
 | |
|  * 7            if t is what we're looking for:
 | |
|  * 8                return t
 | |
|  * 9            for all edges e in G.adjacentEdges(t) do
 | |
|  * 10               if edge e is already labelled
 | |
|  * 11                   continue with the next edge
 | |
|  * 12               w <- G.adjacentVertex(t,e)
 | |
|  * 13               if vertex w is not discovered and not explored
 | |
|  * 14                   label e as tree-edge
 | |
|  * 15                   label w as discovered
 | |
|  * 16                   S.push(w)
 | |
|  * 17                   continue at 5
 | |
|  * 18               else if vertex w is discovered
 | |
|  * 19                   label e as back-edge
 | |
|  * 20               else
 | |
|  * 21                   // vertex w is explored
 | |
|  * 22                   label e as forward- or cross-edge
 | |
|  * 23           label t as explored
 | |
|  * 24           S.pop()
 | |
|  *
 | |
|  * convention:
 | |
|  * 0x10 - discovered
 | |
|  * 0x11 - discovered and fall-through edge labelled
 | |
|  * 0x12 - discovered and fall-through and branch edges labelled
 | |
|  * 0x20 - explored
 | |
|  */
 | |
| 
 | |
| enum {
 | |
| 	DISCOVERED = 0x10,
 | |
| 	EXPLORED = 0x20,
 | |
| 	FALLTHROUGH = 1,
 | |
| 	BRANCH = 2,
 | |
| };
 | |
| 
 | |
| static u32 state_htab_size(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	return env->prog->len;
 | |
| }
 | |
| 
 | |
| static struct bpf_verifier_state_list **explored_state(
 | |
| 					struct bpf_verifier_env *env,
 | |
| 					int idx)
 | |
| {
 | |
| 	struct bpf_verifier_state *cur = env->cur_state;
 | |
| 	struct bpf_func_state *state = cur->frame[cur->curframe];
 | |
| 
 | |
| 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
 | |
| }
 | |
| 
 | |
| static void init_explored_state(struct bpf_verifier_env *env, int idx)
 | |
| {
 | |
| 	env->insn_aux_data[idx].prune_point = true;
 | |
| }
 | |
| 
 | |
| /* t, w, e - match pseudo-code above:
 | |
|  * t - index of current instruction
 | |
|  * w - next instruction
 | |
|  * e - edge
 | |
|  */
 | |
| static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
 | |
| 		     bool loop_ok)
 | |
| {
 | |
| 	int *insn_stack = env->cfg.insn_stack;
 | |
| 	int *insn_state = env->cfg.insn_state;
 | |
| 
 | |
| 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (w < 0 || w >= env->prog->len) {
 | |
| 		verbose_linfo(env, t, "%d: ", t);
 | |
| 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (e == BRANCH)
 | |
| 		/* mark branch target for state pruning */
 | |
| 		init_explored_state(env, w);
 | |
| 
 | |
| 	if (insn_state[w] == 0) {
 | |
| 		/* tree-edge */
 | |
| 		insn_state[t] = DISCOVERED | e;
 | |
| 		insn_state[w] = DISCOVERED;
 | |
| 		if (env->cfg.cur_stack >= env->prog->len)
 | |
| 			return -E2BIG;
 | |
| 		insn_stack[env->cfg.cur_stack++] = w;
 | |
| 		return 1;
 | |
| 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
 | |
| 		if (loop_ok && env->bpf_capable)
 | |
| 			return 0;
 | |
| 		verbose_linfo(env, t, "%d: ", t);
 | |
| 		verbose_linfo(env, w, "%d: ", w);
 | |
| 		verbose(env, "back-edge from insn %d to %d\n", t, w);
 | |
| 		return -EINVAL;
 | |
| 	} else if (insn_state[w] == EXPLORED) {
 | |
| 		/* forward- or cross-edge */
 | |
| 		insn_state[t] = DISCOVERED | e;
 | |
| 	} else {
 | |
| 		verbose(env, "insn state internal bug\n");
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* non-recursive depth-first-search to detect loops in BPF program
 | |
|  * loop == back-edge in directed graph
 | |
|  */
 | |
| static int check_cfg(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	struct bpf_insn *insns = env->prog->insnsi;
 | |
| 	int insn_cnt = env->prog->len;
 | |
| 	int *insn_stack, *insn_state;
 | |
| 	int ret = 0;
 | |
| 	int i, t;
 | |
| 
 | |
| 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
 | |
| 	if (!insn_state)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
 | |
| 	if (!insn_stack) {
 | |
| 		kvfree(insn_state);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
 | |
| 	insn_stack[0] = 0; /* 0 is the first instruction */
 | |
| 	env->cfg.cur_stack = 1;
 | |
| 
 | |
| peek_stack:
 | |
| 	if (env->cfg.cur_stack == 0)
 | |
| 		goto check_state;
 | |
| 	t = insn_stack[env->cfg.cur_stack - 1];
 | |
| 
 | |
| 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
 | |
| 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
 | |
| 		u8 opcode = BPF_OP(insns[t].code);
 | |
| 
 | |
| 		if (opcode == BPF_EXIT) {
 | |
| 			goto mark_explored;
 | |
| 		} else if (opcode == BPF_CALL) {
 | |
| 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
 | |
| 			if (ret == 1)
 | |
| 				goto peek_stack;
 | |
| 			else if (ret < 0)
 | |
| 				goto err_free;
 | |
| 			if (t + 1 < insn_cnt)
 | |
| 				init_explored_state(env, t + 1);
 | |
| 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
 | |
| 				init_explored_state(env, t);
 | |
| 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
 | |
| 						env, false);
 | |
| 				if (ret == 1)
 | |
| 					goto peek_stack;
 | |
| 				else if (ret < 0)
 | |
| 					goto err_free;
 | |
| 			}
 | |
| 		} else if (opcode == BPF_JA) {
 | |
| 			if (BPF_SRC(insns[t].code) != BPF_K) {
 | |
| 				ret = -EINVAL;
 | |
| 				goto err_free;
 | |
| 			}
 | |
| 			/* unconditional jump with single edge */
 | |
| 			ret = push_insn(t, t + insns[t].off + 1,
 | |
| 					FALLTHROUGH, env, true);
 | |
| 			if (ret == 1)
 | |
| 				goto peek_stack;
 | |
| 			else if (ret < 0)
 | |
| 				goto err_free;
 | |
| 			/* unconditional jmp is not a good pruning point,
 | |
| 			 * but it's marked, since backtracking needs
 | |
| 			 * to record jmp history in is_state_visited().
 | |
| 			 */
 | |
| 			init_explored_state(env, t + insns[t].off + 1);
 | |
| 			/* tell verifier to check for equivalent states
 | |
| 			 * after every call and jump
 | |
| 			 */
 | |
| 			if (t + 1 < insn_cnt)
 | |
| 				init_explored_state(env, t + 1);
 | |
| 		} else {
 | |
| 			/* conditional jump with two edges */
 | |
| 			init_explored_state(env, t);
 | |
| 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
 | |
| 			if (ret == 1)
 | |
| 				goto peek_stack;
 | |
| 			else if (ret < 0)
 | |
| 				goto err_free;
 | |
| 
 | |
| 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
 | |
| 			if (ret == 1)
 | |
| 				goto peek_stack;
 | |
| 			else if (ret < 0)
 | |
| 				goto err_free;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* all other non-branch instructions with single
 | |
| 		 * fall-through edge
 | |
| 		 */
 | |
| 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
 | |
| 		if (ret == 1)
 | |
| 			goto peek_stack;
 | |
| 		else if (ret < 0)
 | |
| 			goto err_free;
 | |
| 	}
 | |
| 
 | |
| mark_explored:
 | |
| 	insn_state[t] = EXPLORED;
 | |
| 	if (env->cfg.cur_stack-- <= 0) {
 | |
| 		verbose(env, "pop stack internal bug\n");
 | |
| 		ret = -EFAULT;
 | |
| 		goto err_free;
 | |
| 	}
 | |
| 	goto peek_stack;
 | |
| 
 | |
| check_state:
 | |
| 	for (i = 0; i < insn_cnt; i++) {
 | |
| 		if (insn_state[i] != EXPLORED) {
 | |
| 			verbose(env, "unreachable insn %d\n", i);
 | |
| 			ret = -EINVAL;
 | |
| 			goto err_free;
 | |
| 		}
 | |
| 	}
 | |
| 	ret = 0; /* cfg looks good */
 | |
| 
 | |
| err_free:
 | |
| 	kvfree(insn_state);
 | |
| 	kvfree(insn_stack);
 | |
| 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* The minimum supported BTF func info size */
 | |
| #define MIN_BPF_FUNCINFO_SIZE	8
 | |
| #define MAX_FUNCINFO_REC_SIZE	252
 | |
| 
 | |
| static int check_btf_func(struct bpf_verifier_env *env,
 | |
| 			  const union bpf_attr *attr,
 | |
| 			  union bpf_attr __user *uattr)
 | |
| {
 | |
| 	u32 i, nfuncs, urec_size, min_size;
 | |
| 	u32 krec_size = sizeof(struct bpf_func_info);
 | |
| 	struct bpf_func_info *krecord;
 | |
| 	struct bpf_func_info_aux *info_aux = NULL;
 | |
| 	const struct btf_type *type;
 | |
| 	struct bpf_prog *prog;
 | |
| 	const struct btf *btf;
 | |
| 	void __user *urecord;
 | |
| 	u32 prev_offset = 0;
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	nfuncs = attr->func_info_cnt;
 | |
| 	if (!nfuncs)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (nfuncs != env->subprog_cnt) {
 | |
| 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	urec_size = attr->func_info_rec_size;
 | |
| 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
 | |
| 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
 | |
| 	    urec_size % sizeof(u32)) {
 | |
| 		verbose(env, "invalid func info rec size %u\n", urec_size);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	prog = env->prog;
 | |
| 	btf = prog->aux->btf;
 | |
| 
 | |
| 	urecord = u64_to_user_ptr(attr->func_info);
 | |
| 	min_size = min_t(u32, krec_size, urec_size);
 | |
| 
 | |
| 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!krecord)
 | |
| 		return -ENOMEM;
 | |
| 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!info_aux)
 | |
| 		goto err_free;
 | |
| 
 | |
| 	for (i = 0; i < nfuncs; i++) {
 | |
| 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
 | |
| 		if (ret) {
 | |
| 			if (ret == -E2BIG) {
 | |
| 				verbose(env, "nonzero tailing record in func info");
 | |
| 				/* set the size kernel expects so loader can zero
 | |
| 				 * out the rest of the record.
 | |
| 				 */
 | |
| 				if (put_user(min_size, &uattr->func_info_rec_size))
 | |
| 					ret = -EFAULT;
 | |
| 			}
 | |
| 			goto err_free;
 | |
| 		}
 | |
| 
 | |
| 		if (copy_from_user(&krecord[i], urecord, min_size)) {
 | |
| 			ret = -EFAULT;
 | |
| 			goto err_free;
 | |
| 		}
 | |
| 
 | |
| 		/* check insn_off */
 | |
| 		if (i == 0) {
 | |
| 			if (krecord[i].insn_off) {
 | |
| 				verbose(env,
 | |
| 					"nonzero insn_off %u for the first func info record",
 | |
| 					krecord[i].insn_off);
 | |
| 				ret = -EINVAL;
 | |
| 				goto err_free;
 | |
| 			}
 | |
| 		} else if (krecord[i].insn_off <= prev_offset) {
 | |
| 			verbose(env,
 | |
| 				"same or smaller insn offset (%u) than previous func info record (%u)",
 | |
| 				krecord[i].insn_off, prev_offset);
 | |
| 			ret = -EINVAL;
 | |
| 			goto err_free;
 | |
| 		}
 | |
| 
 | |
| 		if (env->subprog_info[i].start != krecord[i].insn_off) {
 | |
| 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
 | |
| 			ret = -EINVAL;
 | |
| 			goto err_free;
 | |
| 		}
 | |
| 
 | |
| 		/* check type_id */
 | |
| 		type = btf_type_by_id(btf, krecord[i].type_id);
 | |
| 		if (!type || !btf_type_is_func(type)) {
 | |
| 			verbose(env, "invalid type id %d in func info",
 | |
| 				krecord[i].type_id);
 | |
| 			ret = -EINVAL;
 | |
| 			goto err_free;
 | |
| 		}
 | |
| 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
 | |
| 		prev_offset = krecord[i].insn_off;
 | |
| 		urecord += urec_size;
 | |
| 	}
 | |
| 
 | |
| 	prog->aux->func_info = krecord;
 | |
| 	prog->aux->func_info_cnt = nfuncs;
 | |
| 	prog->aux->func_info_aux = info_aux;
 | |
| 	return 0;
 | |
| 
 | |
| err_free:
 | |
| 	kvfree(krecord);
 | |
| 	kfree(info_aux);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void adjust_btf_func(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	struct bpf_prog_aux *aux = env->prog->aux;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!aux->func_info)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < env->subprog_cnt; i++)
 | |
| 		aux->func_info[i].insn_off = env->subprog_info[i].start;
 | |
| }
 | |
| 
 | |
| #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
 | |
| 		sizeof(((struct bpf_line_info *)(0))->line_col))
 | |
| #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
 | |
| 
 | |
| static int check_btf_line(struct bpf_verifier_env *env,
 | |
| 			  const union bpf_attr *attr,
 | |
| 			  union bpf_attr __user *uattr)
 | |
| {
 | |
| 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
 | |
| 	struct bpf_subprog_info *sub;
 | |
| 	struct bpf_line_info *linfo;
 | |
| 	struct bpf_prog *prog;
 | |
| 	const struct btf *btf;
 | |
| 	void __user *ulinfo;
 | |
| 	int err;
 | |
| 
 | |
| 	nr_linfo = attr->line_info_cnt;
 | |
| 	if (!nr_linfo)
 | |
| 		return 0;
 | |
| 
 | |
| 	rec_size = attr->line_info_rec_size;
 | |
| 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
 | |
| 	    rec_size > MAX_LINEINFO_REC_SIZE ||
 | |
| 	    rec_size & (sizeof(u32) - 1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Need to zero it in case the userspace may
 | |
| 	 * pass in a smaller bpf_line_info object.
 | |
| 	 */
 | |
| 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
 | |
| 			 GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!linfo)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	prog = env->prog;
 | |
| 	btf = prog->aux->btf;
 | |
| 
 | |
| 	s = 0;
 | |
| 	sub = env->subprog_info;
 | |
| 	ulinfo = u64_to_user_ptr(attr->line_info);
 | |
| 	expected_size = sizeof(struct bpf_line_info);
 | |
| 	ncopy = min_t(u32, expected_size, rec_size);
 | |
| 	for (i = 0; i < nr_linfo; i++) {
 | |
| 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
 | |
| 		if (err) {
 | |
| 			if (err == -E2BIG) {
 | |
| 				verbose(env, "nonzero tailing record in line_info");
 | |
| 				if (put_user(expected_size,
 | |
| 					     &uattr->line_info_rec_size))
 | |
| 					err = -EFAULT;
 | |
| 			}
 | |
| 			goto err_free;
 | |
| 		}
 | |
| 
 | |
| 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
 | |
| 			err = -EFAULT;
 | |
| 			goto err_free;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Check insn_off to ensure
 | |
| 		 * 1) strictly increasing AND
 | |
| 		 * 2) bounded by prog->len
 | |
| 		 *
 | |
| 		 * The linfo[0].insn_off == 0 check logically falls into
 | |
| 		 * the later "missing bpf_line_info for func..." case
 | |
| 		 * because the first linfo[0].insn_off must be the
 | |
| 		 * first sub also and the first sub must have
 | |
| 		 * subprog_info[0].start == 0.
 | |
| 		 */
 | |
| 		if ((i && linfo[i].insn_off <= prev_offset) ||
 | |
| 		    linfo[i].insn_off >= prog->len) {
 | |
| 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
 | |
| 				i, linfo[i].insn_off, prev_offset,
 | |
| 				prog->len);
 | |
| 			err = -EINVAL;
 | |
| 			goto err_free;
 | |
| 		}
 | |
| 
 | |
| 		if (!prog->insnsi[linfo[i].insn_off].code) {
 | |
| 			verbose(env,
 | |
| 				"Invalid insn code at line_info[%u].insn_off\n",
 | |
| 				i);
 | |
| 			err = -EINVAL;
 | |
| 			goto err_free;
 | |
| 		}
 | |
| 
 | |
| 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
 | |
| 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
 | |
| 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
 | |
| 			err = -EINVAL;
 | |
| 			goto err_free;
 | |
| 		}
 | |
| 
 | |
| 		if (s != env->subprog_cnt) {
 | |
| 			if (linfo[i].insn_off == sub[s].start) {
 | |
| 				sub[s].linfo_idx = i;
 | |
| 				s++;
 | |
| 			} else if (sub[s].start < linfo[i].insn_off) {
 | |
| 				verbose(env, "missing bpf_line_info for func#%u\n", s);
 | |
| 				err = -EINVAL;
 | |
| 				goto err_free;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		prev_offset = linfo[i].insn_off;
 | |
| 		ulinfo += rec_size;
 | |
| 	}
 | |
| 
 | |
| 	if (s != env->subprog_cnt) {
 | |
| 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
 | |
| 			env->subprog_cnt - s, s);
 | |
| 		err = -EINVAL;
 | |
| 		goto err_free;
 | |
| 	}
 | |
| 
 | |
| 	prog->aux->linfo = linfo;
 | |
| 	prog->aux->nr_linfo = nr_linfo;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_free:
 | |
| 	kvfree(linfo);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int check_btf_info(struct bpf_verifier_env *env,
 | |
| 			  const union bpf_attr *attr,
 | |
| 			  union bpf_attr __user *uattr)
 | |
| {
 | |
| 	struct btf *btf;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!attr->func_info_cnt && !attr->line_info_cnt)
 | |
| 		return 0;
 | |
| 
 | |
| 	btf = btf_get_by_fd(attr->prog_btf_fd);
 | |
| 	if (IS_ERR(btf))
 | |
| 		return PTR_ERR(btf);
 | |
| 	env->prog->aux->btf = btf;
 | |
| 
 | |
| 	err = check_btf_func(env, attr, uattr);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = check_btf_line(env, attr, uattr);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* check %cur's range satisfies %old's */
 | |
| static bool range_within(struct bpf_reg_state *old,
 | |
| 			 struct bpf_reg_state *cur)
 | |
| {
 | |
| 	return old->umin_value <= cur->umin_value &&
 | |
| 	       old->umax_value >= cur->umax_value &&
 | |
| 	       old->smin_value <= cur->smin_value &&
 | |
| 	       old->smax_value >= cur->smax_value;
 | |
| }
 | |
| 
 | |
| /* Maximum number of register states that can exist at once */
 | |
| #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
 | |
| struct idpair {
 | |
| 	u32 old;
 | |
| 	u32 cur;
 | |
| };
 | |
| 
 | |
| /* If in the old state two registers had the same id, then they need to have
 | |
|  * the same id in the new state as well.  But that id could be different from
 | |
|  * the old state, so we need to track the mapping from old to new ids.
 | |
|  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 | |
|  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 | |
|  * regs with a different old id could still have new id 9, we don't care about
 | |
|  * that.
 | |
|  * So we look through our idmap to see if this old id has been seen before.  If
 | |
|  * so, we require the new id to match; otherwise, we add the id pair to the map.
 | |
|  */
 | |
| static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < ID_MAP_SIZE; i++) {
 | |
| 		if (!idmap[i].old) {
 | |
| 			/* Reached an empty slot; haven't seen this id before */
 | |
| 			idmap[i].old = old_id;
 | |
| 			idmap[i].cur = cur_id;
 | |
| 			return true;
 | |
| 		}
 | |
| 		if (idmap[i].old == old_id)
 | |
| 			return idmap[i].cur == cur_id;
 | |
| 	}
 | |
| 	/* We ran out of idmap slots, which should be impossible */
 | |
| 	WARN_ON_ONCE(1);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void clean_func_state(struct bpf_verifier_env *env,
 | |
| 			     struct bpf_func_state *st)
 | |
| {
 | |
| 	enum bpf_reg_liveness live;
 | |
| 	int i, j;
 | |
| 
 | |
| 	for (i = 0; i < BPF_REG_FP; i++) {
 | |
| 		live = st->regs[i].live;
 | |
| 		/* liveness must not touch this register anymore */
 | |
| 		st->regs[i].live |= REG_LIVE_DONE;
 | |
| 		if (!(live & REG_LIVE_READ))
 | |
| 			/* since the register is unused, clear its state
 | |
| 			 * to make further comparison simpler
 | |
| 			 */
 | |
| 			__mark_reg_not_init(env, &st->regs[i]);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
 | |
| 		live = st->stack[i].spilled_ptr.live;
 | |
| 		/* liveness must not touch this stack slot anymore */
 | |
| 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
 | |
| 		if (!(live & REG_LIVE_READ)) {
 | |
| 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
 | |
| 			for (j = 0; j < BPF_REG_SIZE; j++)
 | |
| 				st->stack[i].slot_type[j] = STACK_INVALID;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void clean_verifier_state(struct bpf_verifier_env *env,
 | |
| 				 struct bpf_verifier_state *st)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
 | |
| 		/* all regs in this state in all frames were already marked */
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i <= st->curframe; i++)
 | |
| 		clean_func_state(env, st->frame[i]);
 | |
| }
 | |
| 
 | |
| /* the parentage chains form a tree.
 | |
|  * the verifier states are added to state lists at given insn and
 | |
|  * pushed into state stack for future exploration.
 | |
|  * when the verifier reaches bpf_exit insn some of the verifer states
 | |
|  * stored in the state lists have their final liveness state already,
 | |
|  * but a lot of states will get revised from liveness point of view when
 | |
|  * the verifier explores other branches.
 | |
|  * Example:
 | |
|  * 1: r0 = 1
 | |
|  * 2: if r1 == 100 goto pc+1
 | |
|  * 3: r0 = 2
 | |
|  * 4: exit
 | |
|  * when the verifier reaches exit insn the register r0 in the state list of
 | |
|  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
 | |
|  * of insn 2 and goes exploring further. At the insn 4 it will walk the
 | |
|  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
 | |
|  *
 | |
|  * Since the verifier pushes the branch states as it sees them while exploring
 | |
|  * the program the condition of walking the branch instruction for the second
 | |
|  * time means that all states below this branch were already explored and
 | |
|  * their final liveness markes are already propagated.
 | |
|  * Hence when the verifier completes the search of state list in is_state_visited()
 | |
|  * we can call this clean_live_states() function to mark all liveness states
 | |
|  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
 | |
|  * will not be used.
 | |
|  * This function also clears the registers and stack for states that !READ
 | |
|  * to simplify state merging.
 | |
|  *
 | |
|  * Important note here that walking the same branch instruction in the callee
 | |
|  * doesn't meant that the states are DONE. The verifier has to compare
 | |
|  * the callsites
 | |
|  */
 | |
| static void clean_live_states(struct bpf_verifier_env *env, int insn,
 | |
| 			      struct bpf_verifier_state *cur)
 | |
| {
 | |
| 	struct bpf_verifier_state_list *sl;
 | |
| 	int i;
 | |
| 
 | |
| 	sl = *explored_state(env, insn);
 | |
| 	while (sl) {
 | |
| 		if (sl->state.branches)
 | |
| 			goto next;
 | |
| 		if (sl->state.insn_idx != insn ||
 | |
| 		    sl->state.curframe != cur->curframe)
 | |
| 			goto next;
 | |
| 		for (i = 0; i <= cur->curframe; i++)
 | |
| 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
 | |
| 				goto next;
 | |
| 		clean_verifier_state(env, &sl->state);
 | |
| next:
 | |
| 		sl = sl->next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Returns true if (rold safe implies rcur safe) */
 | |
| static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
 | |
| 		    struct idpair *idmap)
 | |
| {
 | |
| 	bool equal;
 | |
| 
 | |
| 	if (!(rold->live & REG_LIVE_READ))
 | |
| 		/* explored state didn't use this */
 | |
| 		return true;
 | |
| 
 | |
| 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
 | |
| 
 | |
| 	if (rold->type == PTR_TO_STACK)
 | |
| 		/* two stack pointers are equal only if they're pointing to
 | |
| 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
 | |
| 		 */
 | |
| 		return equal && rold->frameno == rcur->frameno;
 | |
| 
 | |
| 	if (equal)
 | |
| 		return true;
 | |
| 
 | |
| 	if (rold->type == NOT_INIT)
 | |
| 		/* explored state can't have used this */
 | |
| 		return true;
 | |
| 	if (rcur->type == NOT_INIT)
 | |
| 		return false;
 | |
| 	switch (rold->type) {
 | |
| 	case SCALAR_VALUE:
 | |
| 		if (rcur->type == SCALAR_VALUE) {
 | |
| 			if (!rold->precise && !rcur->precise)
 | |
| 				return true;
 | |
| 			/* new val must satisfy old val knowledge */
 | |
| 			return range_within(rold, rcur) &&
 | |
| 			       tnum_in(rold->var_off, rcur->var_off);
 | |
| 		} else {
 | |
| 			/* We're trying to use a pointer in place of a scalar.
 | |
| 			 * Even if the scalar was unbounded, this could lead to
 | |
| 			 * pointer leaks because scalars are allowed to leak
 | |
| 			 * while pointers are not. We could make this safe in
 | |
| 			 * special cases if root is calling us, but it's
 | |
| 			 * probably not worth the hassle.
 | |
| 			 */
 | |
| 			return false;
 | |
| 		}
 | |
| 	case PTR_TO_MAP_VALUE:
 | |
| 		/* If the new min/max/var_off satisfy the old ones and
 | |
| 		 * everything else matches, we are OK.
 | |
| 		 * 'id' is not compared, since it's only used for maps with
 | |
| 		 * bpf_spin_lock inside map element and in such cases if
 | |
| 		 * the rest of the prog is valid for one map element then
 | |
| 		 * it's valid for all map elements regardless of the key
 | |
| 		 * used in bpf_map_lookup()
 | |
| 		 */
 | |
| 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
 | |
| 		       range_within(rold, rcur) &&
 | |
| 		       tnum_in(rold->var_off, rcur->var_off);
 | |
| 	case PTR_TO_MAP_VALUE_OR_NULL:
 | |
| 		/* a PTR_TO_MAP_VALUE could be safe to use as a
 | |
| 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
 | |
| 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
 | |
| 		 * checked, doing so could have affected others with the same
 | |
| 		 * id, and we can't check for that because we lost the id when
 | |
| 		 * we converted to a PTR_TO_MAP_VALUE.
 | |
| 		 */
 | |
| 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
 | |
| 			return false;
 | |
| 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
 | |
| 			return false;
 | |
| 		/* Check our ids match any regs they're supposed to */
 | |
| 		return check_ids(rold->id, rcur->id, idmap);
 | |
| 	case PTR_TO_PACKET_META:
 | |
| 	case PTR_TO_PACKET:
 | |
| 		if (rcur->type != rold->type)
 | |
| 			return false;
 | |
| 		/* We must have at least as much range as the old ptr
 | |
| 		 * did, so that any accesses which were safe before are
 | |
| 		 * still safe.  This is true even if old range < old off,
 | |
| 		 * since someone could have accessed through (ptr - k), or
 | |
| 		 * even done ptr -= k in a register, to get a safe access.
 | |
| 		 */
 | |
| 		if (rold->range > rcur->range)
 | |
| 			return false;
 | |
| 		/* If the offsets don't match, we can't trust our alignment;
 | |
| 		 * nor can we be sure that we won't fall out of range.
 | |
| 		 */
 | |
| 		if (rold->off != rcur->off)
 | |
| 			return false;
 | |
| 		/* id relations must be preserved */
 | |
| 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
 | |
| 			return false;
 | |
| 		/* new val must satisfy old val knowledge */
 | |
| 		return range_within(rold, rcur) &&
 | |
| 		       tnum_in(rold->var_off, rcur->var_off);
 | |
| 	case PTR_TO_CTX:
 | |
| 	case CONST_PTR_TO_MAP:
 | |
| 	case PTR_TO_PACKET_END:
 | |
| 	case PTR_TO_FLOW_KEYS:
 | |
| 	case PTR_TO_SOCKET:
 | |
| 	case PTR_TO_SOCKET_OR_NULL:
 | |
| 	case PTR_TO_SOCK_COMMON:
 | |
| 	case PTR_TO_SOCK_COMMON_OR_NULL:
 | |
| 	case PTR_TO_TCP_SOCK:
 | |
| 	case PTR_TO_TCP_SOCK_OR_NULL:
 | |
| 	case PTR_TO_XDP_SOCK:
 | |
| 		/* Only valid matches are exact, which memcmp() above
 | |
| 		 * would have accepted
 | |
| 		 */
 | |
| 	default:
 | |
| 		/* Don't know what's going on, just say it's not safe */
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* Shouldn't get here; if we do, say it's not safe */
 | |
| 	WARN_ON_ONCE(1);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool stacksafe(struct bpf_func_state *old,
 | |
| 		      struct bpf_func_state *cur,
 | |
| 		      struct idpair *idmap)
 | |
| {
 | |
| 	int i, spi;
 | |
| 
 | |
| 	/* walk slots of the explored stack and ignore any additional
 | |
| 	 * slots in the current stack, since explored(safe) state
 | |
| 	 * didn't use them
 | |
| 	 */
 | |
| 	for (i = 0; i < old->allocated_stack; i++) {
 | |
| 		spi = i / BPF_REG_SIZE;
 | |
| 
 | |
| 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
 | |
| 			i += BPF_REG_SIZE - 1;
 | |
| 			/* explored state didn't use this */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
 | |
| 			continue;
 | |
| 
 | |
| 		/* explored stack has more populated slots than current stack
 | |
| 		 * and these slots were used
 | |
| 		 */
 | |
| 		if (i >= cur->allocated_stack)
 | |
| 			return false;
 | |
| 
 | |
| 		/* if old state was safe with misc data in the stack
 | |
| 		 * it will be safe with zero-initialized stack.
 | |
| 		 * The opposite is not true
 | |
| 		 */
 | |
| 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
 | |
| 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
 | |
| 			continue;
 | |
| 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
 | |
| 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
 | |
| 			/* Ex: old explored (safe) state has STACK_SPILL in
 | |
| 			 * this stack slot, but current has has STACK_MISC ->
 | |
| 			 * this verifier states are not equivalent,
 | |
| 			 * return false to continue verification of this path
 | |
| 			 */
 | |
| 			return false;
 | |
| 		if (i % BPF_REG_SIZE)
 | |
| 			continue;
 | |
| 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
 | |
| 			continue;
 | |
| 		if (!regsafe(&old->stack[spi].spilled_ptr,
 | |
| 			     &cur->stack[spi].spilled_ptr,
 | |
| 			     idmap))
 | |
| 			/* when explored and current stack slot are both storing
 | |
| 			 * spilled registers, check that stored pointers types
 | |
| 			 * are the same as well.
 | |
| 			 * Ex: explored safe path could have stored
 | |
| 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
 | |
| 			 * but current path has stored:
 | |
| 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
 | |
| 			 * such verifier states are not equivalent.
 | |
| 			 * return false to continue verification of this path
 | |
| 			 */
 | |
| 			return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
 | |
| {
 | |
| 	if (old->acquired_refs != cur->acquired_refs)
 | |
| 		return false;
 | |
| 	return !memcmp(old->refs, cur->refs,
 | |
| 		       sizeof(*old->refs) * old->acquired_refs);
 | |
| }
 | |
| 
 | |
| /* compare two verifier states
 | |
|  *
 | |
|  * all states stored in state_list are known to be valid, since
 | |
|  * verifier reached 'bpf_exit' instruction through them
 | |
|  *
 | |
|  * this function is called when verifier exploring different branches of
 | |
|  * execution popped from the state stack. If it sees an old state that has
 | |
|  * more strict register state and more strict stack state then this execution
 | |
|  * branch doesn't need to be explored further, since verifier already
 | |
|  * concluded that more strict state leads to valid finish.
 | |
|  *
 | |
|  * Therefore two states are equivalent if register state is more conservative
 | |
|  * and explored stack state is more conservative than the current one.
 | |
|  * Example:
 | |
|  *       explored                   current
 | |
|  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 | |
|  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 | |
|  *
 | |
|  * In other words if current stack state (one being explored) has more
 | |
|  * valid slots than old one that already passed validation, it means
 | |
|  * the verifier can stop exploring and conclude that current state is valid too
 | |
|  *
 | |
|  * Similarly with registers. If explored state has register type as invalid
 | |
|  * whereas register type in current state is meaningful, it means that
 | |
|  * the current state will reach 'bpf_exit' instruction safely
 | |
|  */
 | |
| static bool func_states_equal(struct bpf_func_state *old,
 | |
| 			      struct bpf_func_state *cur)
 | |
| {
 | |
| 	struct idpair *idmap;
 | |
| 	bool ret = false;
 | |
| 	int i;
 | |
| 
 | |
| 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
 | |
| 	/* If we failed to allocate the idmap, just say it's not safe */
 | |
| 	if (!idmap)
 | |
| 		return false;
 | |
| 
 | |
| 	for (i = 0; i < MAX_BPF_REG; i++) {
 | |
| 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
 | |
| 			goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	if (!stacksafe(old, cur, idmap))
 | |
| 		goto out_free;
 | |
| 
 | |
| 	if (!refsafe(old, cur))
 | |
| 		goto out_free;
 | |
| 	ret = true;
 | |
| out_free:
 | |
| 	kfree(idmap);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool states_equal(struct bpf_verifier_env *env,
 | |
| 			 struct bpf_verifier_state *old,
 | |
| 			 struct bpf_verifier_state *cur)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (old->curframe != cur->curframe)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Verification state from speculative execution simulation
 | |
| 	 * must never prune a non-speculative execution one.
 | |
| 	 */
 | |
| 	if (old->speculative && !cur->speculative)
 | |
| 		return false;
 | |
| 
 | |
| 	if (old->active_spin_lock != cur->active_spin_lock)
 | |
| 		return false;
 | |
| 
 | |
| 	/* for states to be equal callsites have to be the same
 | |
| 	 * and all frame states need to be equivalent
 | |
| 	 */
 | |
| 	for (i = 0; i <= old->curframe; i++) {
 | |
| 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
 | |
| 			return false;
 | |
| 		if (!func_states_equal(old->frame[i], cur->frame[i]))
 | |
| 			return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Return 0 if no propagation happened. Return negative error code if error
 | |
|  * happened. Otherwise, return the propagated bit.
 | |
|  */
 | |
| static int propagate_liveness_reg(struct bpf_verifier_env *env,
 | |
| 				  struct bpf_reg_state *reg,
 | |
| 				  struct bpf_reg_state *parent_reg)
 | |
| {
 | |
| 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
 | |
| 	u8 flag = reg->live & REG_LIVE_READ;
 | |
| 	int err;
 | |
| 
 | |
| 	/* When comes here, read flags of PARENT_REG or REG could be any of
 | |
| 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
 | |
| 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
 | |
| 	 */
 | |
| 	if (parent_flag == REG_LIVE_READ64 ||
 | |
| 	    /* Or if there is no read flag from REG. */
 | |
| 	    !flag ||
 | |
| 	    /* Or if the read flag from REG is the same as PARENT_REG. */
 | |
| 	    parent_flag == flag)
 | |
| 		return 0;
 | |
| 
 | |
| 	err = mark_reg_read(env, reg, parent_reg, flag);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return flag;
 | |
| }
 | |
| 
 | |
| /* A write screens off any subsequent reads; but write marks come from the
 | |
|  * straight-line code between a state and its parent.  When we arrive at an
 | |
|  * equivalent state (jump target or such) we didn't arrive by the straight-line
 | |
|  * code, so read marks in the state must propagate to the parent regardless
 | |
|  * of the state's write marks. That's what 'parent == state->parent' comparison
 | |
|  * in mark_reg_read() is for.
 | |
|  */
 | |
| static int propagate_liveness(struct bpf_verifier_env *env,
 | |
| 			      const struct bpf_verifier_state *vstate,
 | |
| 			      struct bpf_verifier_state *vparent)
 | |
| {
 | |
| 	struct bpf_reg_state *state_reg, *parent_reg;
 | |
| 	struct bpf_func_state *state, *parent;
 | |
| 	int i, frame, err = 0;
 | |
| 
 | |
| 	if (vparent->curframe != vstate->curframe) {
 | |
| 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
 | |
| 		     vparent->curframe, vstate->curframe);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 	/* Propagate read liveness of registers... */
 | |
| 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
 | |
| 	for (frame = 0; frame <= vstate->curframe; frame++) {
 | |
| 		parent = vparent->frame[frame];
 | |
| 		state = vstate->frame[frame];
 | |
| 		parent_reg = parent->regs;
 | |
| 		state_reg = state->regs;
 | |
| 		/* We don't need to worry about FP liveness, it's read-only */
 | |
| 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
 | |
| 			err = propagate_liveness_reg(env, &state_reg[i],
 | |
| 						     &parent_reg[i]);
 | |
| 			if (err < 0)
 | |
| 				return err;
 | |
| 			if (err == REG_LIVE_READ64)
 | |
| 				mark_insn_zext(env, &parent_reg[i]);
 | |
| 		}
 | |
| 
 | |
| 		/* Propagate stack slots. */
 | |
| 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
 | |
| 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
 | |
| 			parent_reg = &parent->stack[i].spilled_ptr;
 | |
| 			state_reg = &state->stack[i].spilled_ptr;
 | |
| 			err = propagate_liveness_reg(env, state_reg,
 | |
| 						     parent_reg);
 | |
| 			if (err < 0)
 | |
| 				return err;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* find precise scalars in the previous equivalent state and
 | |
|  * propagate them into the current state
 | |
|  */
 | |
| static int propagate_precision(struct bpf_verifier_env *env,
 | |
| 			       const struct bpf_verifier_state *old)
 | |
| {
 | |
| 	struct bpf_reg_state *state_reg;
 | |
| 	struct bpf_func_state *state;
 | |
| 	int i, err = 0;
 | |
| 
 | |
| 	state = old->frame[old->curframe];
 | |
| 	state_reg = state->regs;
 | |
| 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
 | |
| 		if (state_reg->type != SCALAR_VALUE ||
 | |
| 		    !state_reg->precise)
 | |
| 			continue;
 | |
| 		if (env->log.level & BPF_LOG_LEVEL2)
 | |
| 			verbose(env, "propagating r%d\n", i);
 | |
| 		err = mark_chain_precision(env, i);
 | |
| 		if (err < 0)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
 | |
| 		if (state->stack[i].slot_type[0] != STACK_SPILL)
 | |
| 			continue;
 | |
| 		state_reg = &state->stack[i].spilled_ptr;
 | |
| 		if (state_reg->type != SCALAR_VALUE ||
 | |
| 		    !state_reg->precise)
 | |
| 			continue;
 | |
| 		if (env->log.level & BPF_LOG_LEVEL2)
 | |
| 			verbose(env, "propagating fp%d\n",
 | |
| 				(-i - 1) * BPF_REG_SIZE);
 | |
| 		err = mark_chain_precision_stack(env, i);
 | |
| 		if (err < 0)
 | |
| 			return err;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool states_maybe_looping(struct bpf_verifier_state *old,
 | |
| 				 struct bpf_verifier_state *cur)
 | |
| {
 | |
| 	struct bpf_func_state *fold, *fcur;
 | |
| 	int i, fr = cur->curframe;
 | |
| 
 | |
| 	if (old->curframe != fr)
 | |
| 		return false;
 | |
| 
 | |
| 	fold = old->frame[fr];
 | |
| 	fcur = cur->frame[fr];
 | |
| 	for (i = 0; i < MAX_BPF_REG; i++)
 | |
| 		if (memcmp(&fold->regs[i], &fcur->regs[i],
 | |
| 			   offsetof(struct bpf_reg_state, parent)))
 | |
| 			return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
 | |
| {
 | |
| 	struct bpf_verifier_state_list *new_sl;
 | |
| 	struct bpf_verifier_state_list *sl, **pprev;
 | |
| 	struct bpf_verifier_state *cur = env->cur_state, *new;
 | |
| 	int i, j, err, states_cnt = 0;
 | |
| 	bool add_new_state = env->test_state_freq ? true : false;
 | |
| 
 | |
| 	cur->last_insn_idx = env->prev_insn_idx;
 | |
| 	if (!env->insn_aux_data[insn_idx].prune_point)
 | |
| 		/* this 'insn_idx' instruction wasn't marked, so we will not
 | |
| 		 * be doing state search here
 | |
| 		 */
 | |
| 		return 0;
 | |
| 
 | |
| 	/* bpf progs typically have pruning point every 4 instructions
 | |
| 	 * http://vger.kernel.org/bpfconf2019.html#session-1
 | |
| 	 * Do not add new state for future pruning if the verifier hasn't seen
 | |
| 	 * at least 2 jumps and at least 8 instructions.
 | |
| 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
 | |
| 	 * In tests that amounts to up to 50% reduction into total verifier
 | |
| 	 * memory consumption and 20% verifier time speedup.
 | |
| 	 */
 | |
| 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
 | |
| 	    env->insn_processed - env->prev_insn_processed >= 8)
 | |
| 		add_new_state = true;
 | |
| 
 | |
| 	pprev = explored_state(env, insn_idx);
 | |
| 	sl = *pprev;
 | |
| 
 | |
| 	clean_live_states(env, insn_idx, cur);
 | |
| 
 | |
| 	while (sl) {
 | |
| 		states_cnt++;
 | |
| 		if (sl->state.insn_idx != insn_idx)
 | |
| 			goto next;
 | |
| 		if (sl->state.branches) {
 | |
| 			if (states_maybe_looping(&sl->state, cur) &&
 | |
| 			    states_equal(env, &sl->state, cur)) {
 | |
| 				verbose_linfo(env, insn_idx, "; ");
 | |
| 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			/* if the verifier is processing a loop, avoid adding new state
 | |
| 			 * too often, since different loop iterations have distinct
 | |
| 			 * states and may not help future pruning.
 | |
| 			 * This threshold shouldn't be too low to make sure that
 | |
| 			 * a loop with large bound will be rejected quickly.
 | |
| 			 * The most abusive loop will be:
 | |
| 			 * r1 += 1
 | |
| 			 * if r1 < 1000000 goto pc-2
 | |
| 			 * 1M insn_procssed limit / 100 == 10k peak states.
 | |
| 			 * This threshold shouldn't be too high either, since states
 | |
| 			 * at the end of the loop are likely to be useful in pruning.
 | |
| 			 */
 | |
| 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
 | |
| 			    env->insn_processed - env->prev_insn_processed < 100)
 | |
| 				add_new_state = false;
 | |
| 			goto miss;
 | |
| 		}
 | |
| 		if (states_equal(env, &sl->state, cur)) {
 | |
| 			sl->hit_cnt++;
 | |
| 			/* reached equivalent register/stack state,
 | |
| 			 * prune the search.
 | |
| 			 * Registers read by the continuation are read by us.
 | |
| 			 * If we have any write marks in env->cur_state, they
 | |
| 			 * will prevent corresponding reads in the continuation
 | |
| 			 * from reaching our parent (an explored_state).  Our
 | |
| 			 * own state will get the read marks recorded, but
 | |
| 			 * they'll be immediately forgotten as we're pruning
 | |
| 			 * this state and will pop a new one.
 | |
| 			 */
 | |
| 			err = propagate_liveness(env, &sl->state, cur);
 | |
| 
 | |
| 			/* if previous state reached the exit with precision and
 | |
| 			 * current state is equivalent to it (except precsion marks)
 | |
| 			 * the precision needs to be propagated back in
 | |
| 			 * the current state.
 | |
| 			 */
 | |
| 			err = err ? : push_jmp_history(env, cur);
 | |
| 			err = err ? : propagate_precision(env, &sl->state);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			return 1;
 | |
| 		}
 | |
| miss:
 | |
| 		/* when new state is not going to be added do not increase miss count.
 | |
| 		 * Otherwise several loop iterations will remove the state
 | |
| 		 * recorded earlier. The goal of these heuristics is to have
 | |
| 		 * states from some iterations of the loop (some in the beginning
 | |
| 		 * and some at the end) to help pruning.
 | |
| 		 */
 | |
| 		if (add_new_state)
 | |
| 			sl->miss_cnt++;
 | |
| 		/* heuristic to determine whether this state is beneficial
 | |
| 		 * to keep checking from state equivalence point of view.
 | |
| 		 * Higher numbers increase max_states_per_insn and verification time,
 | |
| 		 * but do not meaningfully decrease insn_processed.
 | |
| 		 */
 | |
| 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
 | |
| 			/* the state is unlikely to be useful. Remove it to
 | |
| 			 * speed up verification
 | |
| 			 */
 | |
| 			*pprev = sl->next;
 | |
| 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
 | |
| 				u32 br = sl->state.branches;
 | |
| 
 | |
| 				WARN_ONCE(br,
 | |
| 					  "BUG live_done but branches_to_explore %d\n",
 | |
| 					  br);
 | |
| 				free_verifier_state(&sl->state, false);
 | |
| 				kfree(sl);
 | |
| 				env->peak_states--;
 | |
| 			} else {
 | |
| 				/* cannot free this state, since parentage chain may
 | |
| 				 * walk it later. Add it for free_list instead to
 | |
| 				 * be freed at the end of verification
 | |
| 				 */
 | |
| 				sl->next = env->free_list;
 | |
| 				env->free_list = sl;
 | |
| 			}
 | |
| 			sl = *pprev;
 | |
| 			continue;
 | |
| 		}
 | |
| next:
 | |
| 		pprev = &sl->next;
 | |
| 		sl = *pprev;
 | |
| 	}
 | |
| 
 | |
| 	if (env->max_states_per_insn < states_cnt)
 | |
| 		env->max_states_per_insn = states_cnt;
 | |
| 
 | |
| 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
 | |
| 		return push_jmp_history(env, cur);
 | |
| 
 | |
| 	if (!add_new_state)
 | |
| 		return push_jmp_history(env, cur);
 | |
| 
 | |
| 	/* There were no equivalent states, remember the current one.
 | |
| 	 * Technically the current state is not proven to be safe yet,
 | |
| 	 * but it will either reach outer most bpf_exit (which means it's safe)
 | |
| 	 * or it will be rejected. When there are no loops the verifier won't be
 | |
| 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
 | |
| 	 * again on the way to bpf_exit.
 | |
| 	 * When looping the sl->state.branches will be > 0 and this state
 | |
| 	 * will not be considered for equivalence until branches == 0.
 | |
| 	 */
 | |
| 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
 | |
| 	if (!new_sl)
 | |
| 		return -ENOMEM;
 | |
| 	env->total_states++;
 | |
| 	env->peak_states++;
 | |
| 	env->prev_jmps_processed = env->jmps_processed;
 | |
| 	env->prev_insn_processed = env->insn_processed;
 | |
| 
 | |
| 	/* add new state to the head of linked list */
 | |
| 	new = &new_sl->state;
 | |
| 	err = copy_verifier_state(new, cur);
 | |
| 	if (err) {
 | |
| 		free_verifier_state(new, false);
 | |
| 		kfree(new_sl);
 | |
| 		return err;
 | |
| 	}
 | |
| 	new->insn_idx = insn_idx;
 | |
| 	WARN_ONCE(new->branches != 1,
 | |
| 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
 | |
| 
 | |
| 	cur->parent = new;
 | |
| 	cur->first_insn_idx = insn_idx;
 | |
| 	clear_jmp_history(cur);
 | |
| 	new_sl->next = *explored_state(env, insn_idx);
 | |
| 	*explored_state(env, insn_idx) = new_sl;
 | |
| 	/* connect new state to parentage chain. Current frame needs all
 | |
| 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
 | |
| 	 * to the stack implicitly by JITs) so in callers' frames connect just
 | |
| 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
 | |
| 	 * the state of the call instruction (with WRITTEN set), and r0 comes
 | |
| 	 * from callee with its full parentage chain, anyway.
 | |
| 	 */
 | |
| 	/* clear write marks in current state: the writes we did are not writes
 | |
| 	 * our child did, so they don't screen off its reads from us.
 | |
| 	 * (There are no read marks in current state, because reads always mark
 | |
| 	 * their parent and current state never has children yet.  Only
 | |
| 	 * explored_states can get read marks.)
 | |
| 	 */
 | |
| 	for (j = 0; j <= cur->curframe; j++) {
 | |
| 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
 | |
| 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
 | |
| 		for (i = 0; i < BPF_REG_FP; i++)
 | |
| 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
 | |
| 	}
 | |
| 
 | |
| 	/* all stack frames are accessible from callee, clear them all */
 | |
| 	for (j = 0; j <= cur->curframe; j++) {
 | |
| 		struct bpf_func_state *frame = cur->frame[j];
 | |
| 		struct bpf_func_state *newframe = new->frame[j];
 | |
| 
 | |
| 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
 | |
| 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
 | |
| 			frame->stack[i].spilled_ptr.parent =
 | |
| 						&newframe->stack[i].spilled_ptr;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Return true if it's OK to have the same insn return a different type. */
 | |
| static bool reg_type_mismatch_ok(enum bpf_reg_type type)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case PTR_TO_CTX:
 | |
| 	case PTR_TO_SOCKET:
 | |
| 	case PTR_TO_SOCKET_OR_NULL:
 | |
| 	case PTR_TO_SOCK_COMMON:
 | |
| 	case PTR_TO_SOCK_COMMON_OR_NULL:
 | |
| 	case PTR_TO_TCP_SOCK:
 | |
| 	case PTR_TO_TCP_SOCK_OR_NULL:
 | |
| 	case PTR_TO_XDP_SOCK:
 | |
| 	case PTR_TO_BTF_ID:
 | |
| 	case PTR_TO_BTF_ID_OR_NULL:
 | |
| 		return false;
 | |
| 	default:
 | |
| 		return true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* If an instruction was previously used with particular pointer types, then we
 | |
|  * need to be careful to avoid cases such as the below, where it may be ok
 | |
|  * for one branch accessing the pointer, but not ok for the other branch:
 | |
|  *
 | |
|  * R1 = sock_ptr
 | |
|  * goto X;
 | |
|  * ...
 | |
|  * R1 = some_other_valid_ptr;
 | |
|  * goto X;
 | |
|  * ...
 | |
|  * R2 = *(u32 *)(R1 + 0);
 | |
|  */
 | |
| static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
 | |
| {
 | |
| 	return src != prev && (!reg_type_mismatch_ok(src) ||
 | |
| 			       !reg_type_mismatch_ok(prev));
 | |
| }
 | |
| 
 | |
| static int do_check(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
 | |
| 	struct bpf_verifier_state *state = env->cur_state;
 | |
| 	struct bpf_insn *insns = env->prog->insnsi;
 | |
| 	struct bpf_reg_state *regs;
 | |
| 	int insn_cnt = env->prog->len;
 | |
| 	bool do_print_state = false;
 | |
| 	int prev_insn_idx = -1;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		struct bpf_insn *insn;
 | |
| 		u8 class;
 | |
| 		int err;
 | |
| 
 | |
| 		env->prev_insn_idx = prev_insn_idx;
 | |
| 		if (env->insn_idx >= insn_cnt) {
 | |
| 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
 | |
| 				env->insn_idx, insn_cnt);
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 
 | |
| 		insn = &insns[env->insn_idx];
 | |
| 		class = BPF_CLASS(insn->code);
 | |
| 
 | |
| 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
 | |
| 			verbose(env,
 | |
| 				"BPF program is too large. Processed %d insn\n",
 | |
| 				env->insn_processed);
 | |
| 			return -E2BIG;
 | |
| 		}
 | |
| 
 | |
| 		err = is_state_visited(env, env->insn_idx);
 | |
| 		if (err < 0)
 | |
| 			return err;
 | |
| 		if (err == 1) {
 | |
| 			/* found equivalent state, can prune the search */
 | |
| 			if (env->log.level & BPF_LOG_LEVEL) {
 | |
| 				if (do_print_state)
 | |
| 					verbose(env, "\nfrom %d to %d%s: safe\n",
 | |
| 						env->prev_insn_idx, env->insn_idx,
 | |
| 						env->cur_state->speculative ?
 | |
| 						" (speculative execution)" : "");
 | |
| 				else
 | |
| 					verbose(env, "%d: safe\n", env->insn_idx);
 | |
| 			}
 | |
| 			goto process_bpf_exit;
 | |
| 		}
 | |
| 
 | |
| 		if (signal_pending(current))
 | |
| 			return -EAGAIN;
 | |
| 
 | |
| 		if (need_resched())
 | |
| 			cond_resched();
 | |
| 
 | |
| 		if (env->log.level & BPF_LOG_LEVEL2 ||
 | |
| 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
 | |
| 			if (env->log.level & BPF_LOG_LEVEL2)
 | |
| 				verbose(env, "%d:", env->insn_idx);
 | |
| 			else
 | |
| 				verbose(env, "\nfrom %d to %d%s:",
 | |
| 					env->prev_insn_idx, env->insn_idx,
 | |
| 					env->cur_state->speculative ?
 | |
| 					" (speculative execution)" : "");
 | |
| 			print_verifier_state(env, state->frame[state->curframe]);
 | |
| 			do_print_state = false;
 | |
| 		}
 | |
| 
 | |
| 		if (env->log.level & BPF_LOG_LEVEL) {
 | |
| 			const struct bpf_insn_cbs cbs = {
 | |
| 				.cb_print	= verbose,
 | |
| 				.private_data	= env,
 | |
| 			};
 | |
| 
 | |
| 			verbose_linfo(env, env->insn_idx, "; ");
 | |
| 			verbose(env, "%d: ", env->insn_idx);
 | |
| 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
 | |
| 		}
 | |
| 
 | |
| 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
 | |
| 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
 | |
| 							   env->prev_insn_idx);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 
 | |
| 		regs = cur_regs(env);
 | |
| 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
 | |
| 		prev_insn_idx = env->insn_idx;
 | |
| 
 | |
| 		if (class == BPF_ALU || class == BPF_ALU64) {
 | |
| 			err = check_alu_op(env, insn);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 		} else if (class == BPF_LDX) {
 | |
| 			enum bpf_reg_type *prev_src_type, src_reg_type;
 | |
| 
 | |
| 			/* check for reserved fields is already done */
 | |
| 
 | |
| 			/* check src operand */
 | |
| 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 			src_reg_type = regs[insn->src_reg].type;
 | |
| 
 | |
| 			/* check that memory (src_reg + off) is readable,
 | |
| 			 * the state of dst_reg will be updated by this func
 | |
| 			 */
 | |
| 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
 | |
| 					       insn->off, BPF_SIZE(insn->code),
 | |
| 					       BPF_READ, insn->dst_reg, false);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
 | |
| 
 | |
| 			if (*prev_src_type == NOT_INIT) {
 | |
| 				/* saw a valid insn
 | |
| 				 * dst_reg = *(u32 *)(src_reg + off)
 | |
| 				 * save type to validate intersecting paths
 | |
| 				 */
 | |
| 				*prev_src_type = src_reg_type;
 | |
| 
 | |
| 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
 | |
| 				/* ABuser program is trying to use the same insn
 | |
| 				 * dst_reg = *(u32*) (src_reg + off)
 | |
| 				 * with different pointer types:
 | |
| 				 * src_reg == ctx in one branch and
 | |
| 				 * src_reg == stack|map in some other branch.
 | |
| 				 * Reject it.
 | |
| 				 */
 | |
| 				verbose(env, "same insn cannot be used with different pointers\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 		} else if (class == BPF_STX) {
 | |
| 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
 | |
| 
 | |
| 			if (BPF_MODE(insn->code) == BPF_XADD) {
 | |
| 				err = check_xadd(env, env->insn_idx, insn);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 				env->insn_idx++;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* check src1 operand */
 | |
| 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			/* check src2 operand */
 | |
| 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 			dst_reg_type = regs[insn->dst_reg].type;
 | |
| 
 | |
| 			/* check that memory (dst_reg + off) is writeable */
 | |
| 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
 | |
| 					       insn->off, BPF_SIZE(insn->code),
 | |
| 					       BPF_WRITE, insn->src_reg, false);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
 | |
| 
 | |
| 			if (*prev_dst_type == NOT_INIT) {
 | |
| 				*prev_dst_type = dst_reg_type;
 | |
| 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
 | |
| 				verbose(env, "same insn cannot be used with different pointers\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 		} else if (class == BPF_ST) {
 | |
| 			if (BPF_MODE(insn->code) != BPF_MEM ||
 | |
| 			    insn->src_reg != BPF_REG_0) {
 | |
| 				verbose(env, "BPF_ST uses reserved fields\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			/* check src operand */
 | |
| 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 			if (is_ctx_reg(env, insn->dst_reg)) {
 | |
| 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
 | |
| 					insn->dst_reg,
 | |
| 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
 | |
| 				return -EACCES;
 | |
| 			}
 | |
| 
 | |
| 			/* check that memory (dst_reg + off) is writeable */
 | |
| 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
 | |
| 					       insn->off, BPF_SIZE(insn->code),
 | |
| 					       BPF_WRITE, -1, false);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 		} else if (class == BPF_JMP || class == BPF_JMP32) {
 | |
| 			u8 opcode = BPF_OP(insn->code);
 | |
| 
 | |
| 			env->jmps_processed++;
 | |
| 			if (opcode == BPF_CALL) {
 | |
| 				if (BPF_SRC(insn->code) != BPF_K ||
 | |
| 				    insn->off != 0 ||
 | |
| 				    (insn->src_reg != BPF_REG_0 &&
 | |
| 				     insn->src_reg != BPF_PSEUDO_CALL) ||
 | |
| 				    insn->dst_reg != BPF_REG_0 ||
 | |
| 				    class == BPF_JMP32) {
 | |
| 					verbose(env, "BPF_CALL uses reserved fields\n");
 | |
| 					return -EINVAL;
 | |
| 				}
 | |
| 
 | |
| 				if (env->cur_state->active_spin_lock &&
 | |
| 				    (insn->src_reg == BPF_PSEUDO_CALL ||
 | |
| 				     insn->imm != BPF_FUNC_spin_unlock)) {
 | |
| 					verbose(env, "function calls are not allowed while holding a lock\n");
 | |
| 					return -EINVAL;
 | |
| 				}
 | |
| 				if (insn->src_reg == BPF_PSEUDO_CALL)
 | |
| 					err = check_func_call(env, insn, &env->insn_idx);
 | |
| 				else
 | |
| 					err = check_helper_call(env, insn->imm, env->insn_idx);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 
 | |
| 			} else if (opcode == BPF_JA) {
 | |
| 				if (BPF_SRC(insn->code) != BPF_K ||
 | |
| 				    insn->imm != 0 ||
 | |
| 				    insn->src_reg != BPF_REG_0 ||
 | |
| 				    insn->dst_reg != BPF_REG_0 ||
 | |
| 				    class == BPF_JMP32) {
 | |
| 					verbose(env, "BPF_JA uses reserved fields\n");
 | |
| 					return -EINVAL;
 | |
| 				}
 | |
| 
 | |
| 				env->insn_idx += insn->off + 1;
 | |
| 				continue;
 | |
| 
 | |
| 			} else if (opcode == BPF_EXIT) {
 | |
| 				if (BPF_SRC(insn->code) != BPF_K ||
 | |
| 				    insn->imm != 0 ||
 | |
| 				    insn->src_reg != BPF_REG_0 ||
 | |
| 				    insn->dst_reg != BPF_REG_0 ||
 | |
| 				    class == BPF_JMP32) {
 | |
| 					verbose(env, "BPF_EXIT uses reserved fields\n");
 | |
| 					return -EINVAL;
 | |
| 				}
 | |
| 
 | |
| 				if (env->cur_state->active_spin_lock) {
 | |
| 					verbose(env, "bpf_spin_unlock is missing\n");
 | |
| 					return -EINVAL;
 | |
| 				}
 | |
| 
 | |
| 				if (state->curframe) {
 | |
| 					/* exit from nested function */
 | |
| 					err = prepare_func_exit(env, &env->insn_idx);
 | |
| 					if (err)
 | |
| 						return err;
 | |
| 					do_print_state = true;
 | |
| 					continue;
 | |
| 				}
 | |
| 
 | |
| 				err = check_reference_leak(env);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 
 | |
| 				err = check_return_code(env);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| process_bpf_exit:
 | |
| 				update_branch_counts(env, env->cur_state);
 | |
| 				err = pop_stack(env, &prev_insn_idx,
 | |
| 						&env->insn_idx, pop_log);
 | |
| 				if (err < 0) {
 | |
| 					if (err != -ENOENT)
 | |
| 						return err;
 | |
| 					break;
 | |
| 				} else {
 | |
| 					do_print_state = true;
 | |
| 					continue;
 | |
| 				}
 | |
| 			} else {
 | |
| 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 			}
 | |
| 		} else if (class == BPF_LD) {
 | |
| 			u8 mode = BPF_MODE(insn->code);
 | |
| 
 | |
| 			if (mode == BPF_ABS || mode == BPF_IND) {
 | |
| 				err = check_ld_abs(env, insn);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 
 | |
| 			} else if (mode == BPF_IMM) {
 | |
| 				err = check_ld_imm(env, insn);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 
 | |
| 				env->insn_idx++;
 | |
| 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
 | |
| 			} else {
 | |
| 				verbose(env, "invalid BPF_LD mode\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		} else {
 | |
| 			verbose(env, "unknown insn class %d\n", class);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		env->insn_idx++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_map_prealloc(struct bpf_map *map)
 | |
| {
 | |
| 	return (map->map_type != BPF_MAP_TYPE_HASH &&
 | |
| 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
 | |
| 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
 | |
| 		!(map->map_flags & BPF_F_NO_PREALLOC);
 | |
| }
 | |
| 
 | |
| static bool is_tracing_prog_type(enum bpf_prog_type type)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case BPF_PROG_TYPE_KPROBE:
 | |
| 	case BPF_PROG_TYPE_TRACEPOINT:
 | |
| 	case BPF_PROG_TYPE_PERF_EVENT:
 | |
| 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
 | |
| 		return true;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool is_preallocated_map(struct bpf_map *map)
 | |
| {
 | |
| 	if (!check_map_prealloc(map))
 | |
| 		return false;
 | |
| 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int check_map_prog_compatibility(struct bpf_verifier_env *env,
 | |
| 					struct bpf_map *map,
 | |
| 					struct bpf_prog *prog)
 | |
| 
 | |
| {
 | |
| 	/*
 | |
| 	 * Validate that trace type programs use preallocated hash maps.
 | |
| 	 *
 | |
| 	 * For programs attached to PERF events this is mandatory as the
 | |
| 	 * perf NMI can hit any arbitrary code sequence.
 | |
| 	 *
 | |
| 	 * All other trace types using preallocated hash maps are unsafe as
 | |
| 	 * well because tracepoint or kprobes can be inside locked regions
 | |
| 	 * of the memory allocator or at a place where a recursion into the
 | |
| 	 * memory allocator would see inconsistent state.
 | |
| 	 *
 | |
| 	 * On RT enabled kernels run-time allocation of all trace type
 | |
| 	 * programs is strictly prohibited due to lock type constraints. On
 | |
| 	 * !RT kernels it is allowed for backwards compatibility reasons for
 | |
| 	 * now, but warnings are emitted so developers are made aware of
 | |
| 	 * the unsafety and can fix their programs before this is enforced.
 | |
| 	 */
 | |
| 	if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) {
 | |
| 		if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
 | |
| 			verbose(env, "perf_event programs can only use preallocated hash map\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
 | |
| 			verbose(env, "trace type programs can only use preallocated hash map\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
 | |
| 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
 | |
| 	}
 | |
| 
 | |
| 	if ((is_tracing_prog_type(prog->type) ||
 | |
| 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
 | |
| 	    map_value_has_spin_lock(map)) {
 | |
| 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
 | |
| 	    !bpf_offload_prog_map_match(prog, map)) {
 | |
| 		verbose(env, "offload device mismatch between prog and map\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
 | |
| 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
 | |
| {
 | |
| 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
 | |
| 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
 | |
| }
 | |
| 
 | |
| /* look for pseudo eBPF instructions that access map FDs and
 | |
|  * replace them with actual map pointers
 | |
|  */
 | |
| static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	struct bpf_insn *insn = env->prog->insnsi;
 | |
| 	int insn_cnt = env->prog->len;
 | |
| 	int i, j, err;
 | |
| 
 | |
| 	err = bpf_prog_calc_tag(env->prog);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	for (i = 0; i < insn_cnt; i++, insn++) {
 | |
| 		if (BPF_CLASS(insn->code) == BPF_LDX &&
 | |
| 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
 | |
| 			verbose(env, "BPF_LDX uses reserved fields\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (BPF_CLASS(insn->code) == BPF_STX &&
 | |
| 		    ((BPF_MODE(insn->code) != BPF_MEM &&
 | |
| 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
 | |
| 			verbose(env, "BPF_STX uses reserved fields\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
 | |
| 			struct bpf_insn_aux_data *aux;
 | |
| 			struct bpf_map *map;
 | |
| 			struct fd f;
 | |
| 			u64 addr;
 | |
| 
 | |
| 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
 | |
| 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
 | |
| 			    insn[1].off != 0) {
 | |
| 				verbose(env, "invalid bpf_ld_imm64 insn\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			if (insn[0].src_reg == 0)
 | |
| 				/* valid generic load 64-bit imm */
 | |
| 				goto next_insn;
 | |
| 
 | |
| 			/* In final convert_pseudo_ld_imm64() step, this is
 | |
| 			 * converted into regular 64-bit imm load insn.
 | |
| 			 */
 | |
| 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
 | |
| 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
 | |
| 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
 | |
| 			     insn[1].imm != 0)) {
 | |
| 				verbose(env,
 | |
| 					"unrecognized bpf_ld_imm64 insn\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			f = fdget(insn[0].imm);
 | |
| 			map = __bpf_map_get(f);
 | |
| 			if (IS_ERR(map)) {
 | |
| 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
 | |
| 					insn[0].imm);
 | |
| 				return PTR_ERR(map);
 | |
| 			}
 | |
| 
 | |
| 			err = check_map_prog_compatibility(env, map, env->prog);
 | |
| 			if (err) {
 | |
| 				fdput(f);
 | |
| 				return err;
 | |
| 			}
 | |
| 
 | |
| 			aux = &env->insn_aux_data[i];
 | |
| 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
 | |
| 				addr = (unsigned long)map;
 | |
| 			} else {
 | |
| 				u32 off = insn[1].imm;
 | |
| 
 | |
| 				if (off >= BPF_MAX_VAR_OFF) {
 | |
| 					verbose(env, "direct value offset of %u is not allowed\n", off);
 | |
| 					fdput(f);
 | |
| 					return -EINVAL;
 | |
| 				}
 | |
| 
 | |
| 				if (!map->ops->map_direct_value_addr) {
 | |
| 					verbose(env, "no direct value access support for this map type\n");
 | |
| 					fdput(f);
 | |
| 					return -EINVAL;
 | |
| 				}
 | |
| 
 | |
| 				err = map->ops->map_direct_value_addr(map, &addr, off);
 | |
| 				if (err) {
 | |
| 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
 | |
| 						map->value_size, off);
 | |
| 					fdput(f);
 | |
| 					return err;
 | |
| 				}
 | |
| 
 | |
| 				aux->map_off = off;
 | |
| 				addr += off;
 | |
| 			}
 | |
| 
 | |
| 			insn[0].imm = (u32)addr;
 | |
| 			insn[1].imm = addr >> 32;
 | |
| 
 | |
| 			/* check whether we recorded this map already */
 | |
| 			for (j = 0; j < env->used_map_cnt; j++) {
 | |
| 				if (env->used_maps[j] == map) {
 | |
| 					aux->map_index = j;
 | |
| 					fdput(f);
 | |
| 					goto next_insn;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (env->used_map_cnt >= MAX_USED_MAPS) {
 | |
| 				fdput(f);
 | |
| 				return -E2BIG;
 | |
| 			}
 | |
| 
 | |
| 			/* hold the map. If the program is rejected by verifier,
 | |
| 			 * the map will be released by release_maps() or it
 | |
| 			 * will be used by the valid program until it's unloaded
 | |
| 			 * and all maps are released in free_used_maps()
 | |
| 			 */
 | |
| 			bpf_map_inc(map);
 | |
| 
 | |
| 			aux->map_index = env->used_map_cnt;
 | |
| 			env->used_maps[env->used_map_cnt++] = map;
 | |
| 
 | |
| 			if (bpf_map_is_cgroup_storage(map) &&
 | |
| 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
 | |
| 				verbose(env, "only one cgroup storage of each type is allowed\n");
 | |
| 				fdput(f);
 | |
| 				return -EBUSY;
 | |
| 			}
 | |
| 
 | |
| 			fdput(f);
 | |
| next_insn:
 | |
| 			insn++;
 | |
| 			i++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Basic sanity check before we invest more work here. */
 | |
| 		if (!bpf_opcode_in_insntable(insn->code)) {
 | |
| 			verbose(env, "unknown opcode %02x\n", insn->code);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* now all pseudo BPF_LD_IMM64 instructions load valid
 | |
| 	 * 'struct bpf_map *' into a register instead of user map_fd.
 | |
| 	 * These pointers will be used later by verifier to validate map access.
 | |
| 	 */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* drop refcnt of maps used by the rejected program */
 | |
| static void release_maps(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
 | |
| 			     env->used_map_cnt);
 | |
| }
 | |
| 
 | |
| /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
 | |
| static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	struct bpf_insn *insn = env->prog->insnsi;
 | |
| 	int insn_cnt = env->prog->len;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < insn_cnt; i++, insn++)
 | |
| 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
 | |
| 			insn->src_reg = 0;
 | |
| }
 | |
| 
 | |
| /* single env->prog->insni[off] instruction was replaced with the range
 | |
|  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 | |
|  * [0, off) and [off, end) to new locations, so the patched range stays zero
 | |
|  */
 | |
| static int adjust_insn_aux_data(struct bpf_verifier_env *env,
 | |
| 				struct bpf_prog *new_prog, u32 off, u32 cnt)
 | |
| {
 | |
| 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
 | |
| 	struct bpf_insn *insn = new_prog->insnsi;
 | |
| 	u32 prog_len;
 | |
| 	int i;
 | |
| 
 | |
| 	/* aux info at OFF always needs adjustment, no matter fast path
 | |
| 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
 | |
| 	 * original insn at old prog.
 | |
| 	 */
 | |
| 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
 | |
| 
 | |
| 	if (cnt == 1)
 | |
| 		return 0;
 | |
| 	prog_len = new_prog->len;
 | |
| 	new_data = vzalloc(array_size(prog_len,
 | |
| 				      sizeof(struct bpf_insn_aux_data)));
 | |
| 	if (!new_data)
 | |
| 		return -ENOMEM;
 | |
| 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
 | |
| 	memcpy(new_data + off + cnt - 1, old_data + off,
 | |
| 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
 | |
| 	for (i = off; i < off + cnt - 1; i++) {
 | |
| 		new_data[i].seen = env->pass_cnt;
 | |
| 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
 | |
| 	}
 | |
| 	env->insn_aux_data = new_data;
 | |
| 	vfree(old_data);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (len == 1)
 | |
| 		return;
 | |
| 	/* NOTE: fake 'exit' subprog should be updated as well. */
 | |
| 	for (i = 0; i <= env->subprog_cnt; i++) {
 | |
| 		if (env->subprog_info[i].start <= off)
 | |
| 			continue;
 | |
| 		env->subprog_info[i].start += len - 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
 | |
| 					    const struct bpf_insn *patch, u32 len)
 | |
| {
 | |
| 	struct bpf_prog *new_prog;
 | |
| 
 | |
| 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
 | |
| 	if (IS_ERR(new_prog)) {
 | |
| 		if (PTR_ERR(new_prog) == -ERANGE)
 | |
| 			verbose(env,
 | |
| 				"insn %d cannot be patched due to 16-bit range\n",
 | |
| 				env->insn_aux_data[off].orig_idx);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (adjust_insn_aux_data(env, new_prog, off, len))
 | |
| 		return NULL;
 | |
| 	adjust_subprog_starts(env, off, len);
 | |
| 	return new_prog;
 | |
| }
 | |
| 
 | |
| static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
 | |
| 					      u32 off, u32 cnt)
 | |
| {
 | |
| 	int i, j;
 | |
| 
 | |
| 	/* find first prog starting at or after off (first to remove) */
 | |
| 	for (i = 0; i < env->subprog_cnt; i++)
 | |
| 		if (env->subprog_info[i].start >= off)
 | |
| 			break;
 | |
| 	/* find first prog starting at or after off + cnt (first to stay) */
 | |
| 	for (j = i; j < env->subprog_cnt; j++)
 | |
| 		if (env->subprog_info[j].start >= off + cnt)
 | |
| 			break;
 | |
| 	/* if j doesn't start exactly at off + cnt, we are just removing
 | |
| 	 * the front of previous prog
 | |
| 	 */
 | |
| 	if (env->subprog_info[j].start != off + cnt)
 | |
| 		j--;
 | |
| 
 | |
| 	if (j > i) {
 | |
| 		struct bpf_prog_aux *aux = env->prog->aux;
 | |
| 		int move;
 | |
| 
 | |
| 		/* move fake 'exit' subprog as well */
 | |
| 		move = env->subprog_cnt + 1 - j;
 | |
| 
 | |
| 		memmove(env->subprog_info + i,
 | |
| 			env->subprog_info + j,
 | |
| 			sizeof(*env->subprog_info) * move);
 | |
| 		env->subprog_cnt -= j - i;
 | |
| 
 | |
| 		/* remove func_info */
 | |
| 		if (aux->func_info) {
 | |
| 			move = aux->func_info_cnt - j;
 | |
| 
 | |
| 			memmove(aux->func_info + i,
 | |
| 				aux->func_info + j,
 | |
| 				sizeof(*aux->func_info) * move);
 | |
| 			aux->func_info_cnt -= j - i;
 | |
| 			/* func_info->insn_off is set after all code rewrites,
 | |
| 			 * in adjust_btf_func() - no need to adjust
 | |
| 			 */
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* convert i from "first prog to remove" to "first to adjust" */
 | |
| 		if (env->subprog_info[i].start == off)
 | |
| 			i++;
 | |
| 	}
 | |
| 
 | |
| 	/* update fake 'exit' subprog as well */
 | |
| 	for (; i <= env->subprog_cnt; i++)
 | |
| 		env->subprog_info[i].start -= cnt;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
 | |
| 				      u32 cnt)
 | |
| {
 | |
| 	struct bpf_prog *prog = env->prog;
 | |
| 	u32 i, l_off, l_cnt, nr_linfo;
 | |
| 	struct bpf_line_info *linfo;
 | |
| 
 | |
| 	nr_linfo = prog->aux->nr_linfo;
 | |
| 	if (!nr_linfo)
 | |
| 		return 0;
 | |
| 
 | |
| 	linfo = prog->aux->linfo;
 | |
| 
 | |
| 	/* find first line info to remove, count lines to be removed */
 | |
| 	for (i = 0; i < nr_linfo; i++)
 | |
| 		if (linfo[i].insn_off >= off)
 | |
| 			break;
 | |
| 
 | |
| 	l_off = i;
 | |
| 	l_cnt = 0;
 | |
| 	for (; i < nr_linfo; i++)
 | |
| 		if (linfo[i].insn_off < off + cnt)
 | |
| 			l_cnt++;
 | |
| 		else
 | |
| 			break;
 | |
| 
 | |
| 	/* First live insn doesn't match first live linfo, it needs to "inherit"
 | |
| 	 * last removed linfo.  prog is already modified, so prog->len == off
 | |
| 	 * means no live instructions after (tail of the program was removed).
 | |
| 	 */
 | |
| 	if (prog->len != off && l_cnt &&
 | |
| 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
 | |
| 		l_cnt--;
 | |
| 		linfo[--i].insn_off = off + cnt;
 | |
| 	}
 | |
| 
 | |
| 	/* remove the line info which refer to the removed instructions */
 | |
| 	if (l_cnt) {
 | |
| 		memmove(linfo + l_off, linfo + i,
 | |
| 			sizeof(*linfo) * (nr_linfo - i));
 | |
| 
 | |
| 		prog->aux->nr_linfo -= l_cnt;
 | |
| 		nr_linfo = prog->aux->nr_linfo;
 | |
| 	}
 | |
| 
 | |
| 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
 | |
| 	for (i = l_off; i < nr_linfo; i++)
 | |
| 		linfo[i].insn_off -= cnt;
 | |
| 
 | |
| 	/* fix up all subprogs (incl. 'exit') which start >= off */
 | |
| 	for (i = 0; i <= env->subprog_cnt; i++)
 | |
| 		if (env->subprog_info[i].linfo_idx > l_off) {
 | |
| 			/* program may have started in the removed region but
 | |
| 			 * may not be fully removed
 | |
| 			 */
 | |
| 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
 | |
| 				env->subprog_info[i].linfo_idx -= l_cnt;
 | |
| 			else
 | |
| 				env->subprog_info[i].linfo_idx = l_off;
 | |
| 		}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
 | |
| {
 | |
| 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
 | |
| 	unsigned int orig_prog_len = env->prog->len;
 | |
| 	int err;
 | |
| 
 | |
| 	if (bpf_prog_is_dev_bound(env->prog->aux))
 | |
| 		bpf_prog_offload_remove_insns(env, off, cnt);
 | |
| 
 | |
| 	err = bpf_remove_insns(env->prog, off, cnt);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = adjust_subprog_starts_after_remove(env, off, cnt);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = bpf_adj_linfo_after_remove(env, off, cnt);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	memmove(aux_data + off,	aux_data + off + cnt,
 | |
| 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* The verifier does more data flow analysis than llvm and will not
 | |
|  * explore branches that are dead at run time. Malicious programs can
 | |
|  * have dead code too. Therefore replace all dead at-run-time code
 | |
|  * with 'ja -1'.
 | |
|  *
 | |
|  * Just nops are not optimal, e.g. if they would sit at the end of the
 | |
|  * program and through another bug we would manage to jump there, then
 | |
|  * we'd execute beyond program memory otherwise. Returning exception
 | |
|  * code also wouldn't work since we can have subprogs where the dead
 | |
|  * code could be located.
 | |
|  */
 | |
| static void sanitize_dead_code(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
 | |
| 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
 | |
| 	struct bpf_insn *insn = env->prog->insnsi;
 | |
| 	const int insn_cnt = env->prog->len;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < insn_cnt; i++) {
 | |
| 		if (aux_data[i].seen)
 | |
| 			continue;
 | |
| 		memcpy(insn + i, &trap, sizeof(trap));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool insn_is_cond_jump(u8 code)
 | |
| {
 | |
| 	u8 op;
 | |
| 
 | |
| 	if (BPF_CLASS(code) == BPF_JMP32)
 | |
| 		return true;
 | |
| 
 | |
| 	if (BPF_CLASS(code) != BPF_JMP)
 | |
| 		return false;
 | |
| 
 | |
| 	op = BPF_OP(code);
 | |
| 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
 | |
| }
 | |
| 
 | |
| static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
 | |
| 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
 | |
| 	struct bpf_insn *insn = env->prog->insnsi;
 | |
| 	const int insn_cnt = env->prog->len;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < insn_cnt; i++, insn++) {
 | |
| 		if (!insn_is_cond_jump(insn->code))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!aux_data[i + 1].seen)
 | |
| 			ja.off = insn->off;
 | |
| 		else if (!aux_data[i + 1 + insn->off].seen)
 | |
| 			ja.off = 0;
 | |
| 		else
 | |
| 			continue;
 | |
| 
 | |
| 		if (bpf_prog_is_dev_bound(env->prog->aux))
 | |
| 			bpf_prog_offload_replace_insn(env, i, &ja);
 | |
| 
 | |
| 		memcpy(insn, &ja, sizeof(ja));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int opt_remove_dead_code(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
 | |
| 	int insn_cnt = env->prog->len;
 | |
| 	int i, err;
 | |
| 
 | |
| 	for (i = 0; i < insn_cnt; i++) {
 | |
| 		int j;
 | |
| 
 | |
| 		j = 0;
 | |
| 		while (i + j < insn_cnt && !aux_data[i + j].seen)
 | |
| 			j++;
 | |
| 		if (!j)
 | |
| 			continue;
 | |
| 
 | |
| 		err = verifier_remove_insns(env, i, j);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		insn_cnt = env->prog->len;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int opt_remove_nops(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
 | |
| 	struct bpf_insn *insn = env->prog->insnsi;
 | |
| 	int insn_cnt = env->prog->len;
 | |
| 	int i, err;
 | |
| 
 | |
| 	for (i = 0; i < insn_cnt; i++) {
 | |
| 		if (memcmp(&insn[i], &ja, sizeof(ja)))
 | |
| 			continue;
 | |
| 
 | |
| 		err = verifier_remove_insns(env, i, 1);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		insn_cnt--;
 | |
| 		i--;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
 | |
| 					 const union bpf_attr *attr)
 | |
| {
 | |
| 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
 | |
| 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
 | |
| 	int i, patch_len, delta = 0, len = env->prog->len;
 | |
| 	struct bpf_insn *insns = env->prog->insnsi;
 | |
| 	struct bpf_prog *new_prog;
 | |
| 	bool rnd_hi32;
 | |
| 
 | |
| 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
 | |
| 	zext_patch[1] = BPF_ZEXT_REG(0);
 | |
| 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
 | |
| 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
 | |
| 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 		int adj_idx = i + delta;
 | |
| 		struct bpf_insn insn;
 | |
| 
 | |
| 		insn = insns[adj_idx];
 | |
| 		if (!aux[adj_idx].zext_dst) {
 | |
| 			u8 code, class;
 | |
| 			u32 imm_rnd;
 | |
| 
 | |
| 			if (!rnd_hi32)
 | |
| 				continue;
 | |
| 
 | |
| 			code = insn.code;
 | |
| 			class = BPF_CLASS(code);
 | |
| 			if (insn_no_def(&insn))
 | |
| 				continue;
 | |
| 
 | |
| 			/* NOTE: arg "reg" (the fourth one) is only used for
 | |
| 			 *       BPF_STX which has been ruled out in above
 | |
| 			 *       check, it is safe to pass NULL here.
 | |
| 			 */
 | |
| 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
 | |
| 				if (class == BPF_LD &&
 | |
| 				    BPF_MODE(code) == BPF_IMM)
 | |
| 					i++;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* ctx load could be transformed into wider load. */
 | |
| 			if (class == BPF_LDX &&
 | |
| 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
 | |
| 				continue;
 | |
| 
 | |
| 			imm_rnd = get_random_int();
 | |
| 			rnd_hi32_patch[0] = insn;
 | |
| 			rnd_hi32_patch[1].imm = imm_rnd;
 | |
| 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
 | |
| 			patch = rnd_hi32_patch;
 | |
| 			patch_len = 4;
 | |
| 			goto apply_patch_buffer;
 | |
| 		}
 | |
| 
 | |
| 		if (!bpf_jit_needs_zext())
 | |
| 			continue;
 | |
| 
 | |
| 		zext_patch[0] = insn;
 | |
| 		zext_patch[1].dst_reg = insn.dst_reg;
 | |
| 		zext_patch[1].src_reg = insn.dst_reg;
 | |
| 		patch = zext_patch;
 | |
| 		patch_len = 2;
 | |
| apply_patch_buffer:
 | |
| 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
 | |
| 		if (!new_prog)
 | |
| 			return -ENOMEM;
 | |
| 		env->prog = new_prog;
 | |
| 		insns = new_prog->insnsi;
 | |
| 		aux = env->insn_aux_data;
 | |
| 		delta += patch_len - 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* convert load instructions that access fields of a context type into a
 | |
|  * sequence of instructions that access fields of the underlying structure:
 | |
|  *     struct __sk_buff    -> struct sk_buff
 | |
|  *     struct bpf_sock_ops -> struct sock
 | |
|  */
 | |
| static int convert_ctx_accesses(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	const struct bpf_verifier_ops *ops = env->ops;
 | |
| 	int i, cnt, size, ctx_field_size, delta = 0;
 | |
| 	const int insn_cnt = env->prog->len;
 | |
| 	struct bpf_insn insn_buf[16], *insn;
 | |
| 	u32 target_size, size_default, off;
 | |
| 	struct bpf_prog *new_prog;
 | |
| 	enum bpf_access_type type;
 | |
| 	bool is_narrower_load;
 | |
| 
 | |
| 	if (ops->gen_prologue || env->seen_direct_write) {
 | |
| 		if (!ops->gen_prologue) {
 | |
| 			verbose(env, "bpf verifier is misconfigured\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
 | |
| 					env->prog);
 | |
| 		if (cnt >= ARRAY_SIZE(insn_buf)) {
 | |
| 			verbose(env, "bpf verifier is misconfigured\n");
 | |
| 			return -EINVAL;
 | |
| 		} else if (cnt) {
 | |
| 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
 | |
| 			if (!new_prog)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			env->prog = new_prog;
 | |
| 			delta += cnt - 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (bpf_prog_is_dev_bound(env->prog->aux))
 | |
| 		return 0;
 | |
| 
 | |
| 	insn = env->prog->insnsi + delta;
 | |
| 
 | |
| 	for (i = 0; i < insn_cnt; i++, insn++) {
 | |
| 		bpf_convert_ctx_access_t convert_ctx_access;
 | |
| 
 | |
| 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
 | |
| 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
 | |
| 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
 | |
| 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
 | |
| 			type = BPF_READ;
 | |
| 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
 | |
| 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
 | |
| 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
 | |
| 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
 | |
| 			type = BPF_WRITE;
 | |
| 		else
 | |
| 			continue;
 | |
| 
 | |
| 		if (type == BPF_WRITE &&
 | |
| 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
 | |
| 			struct bpf_insn patch[] = {
 | |
| 				/* Sanitize suspicious stack slot with zero.
 | |
| 				 * There are no memory dependencies for this store,
 | |
| 				 * since it's only using frame pointer and immediate
 | |
| 				 * constant of zero
 | |
| 				 */
 | |
| 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
 | |
| 					   env->insn_aux_data[i + delta].sanitize_stack_off,
 | |
| 					   0),
 | |
| 				/* the original STX instruction will immediately
 | |
| 				 * overwrite the same stack slot with appropriate value
 | |
| 				 */
 | |
| 				*insn,
 | |
| 			};
 | |
| 
 | |
| 			cnt = ARRAY_SIZE(patch);
 | |
| 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
 | |
| 			if (!new_prog)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			delta    += cnt - 1;
 | |
| 			env->prog = new_prog;
 | |
| 			insn      = new_prog->insnsi + i + delta;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		switch (env->insn_aux_data[i + delta].ptr_type) {
 | |
| 		case PTR_TO_CTX:
 | |
| 			if (!ops->convert_ctx_access)
 | |
| 				continue;
 | |
| 			convert_ctx_access = ops->convert_ctx_access;
 | |
| 			break;
 | |
| 		case PTR_TO_SOCKET:
 | |
| 		case PTR_TO_SOCK_COMMON:
 | |
| 			convert_ctx_access = bpf_sock_convert_ctx_access;
 | |
| 			break;
 | |
| 		case PTR_TO_TCP_SOCK:
 | |
| 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
 | |
| 			break;
 | |
| 		case PTR_TO_XDP_SOCK:
 | |
| 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
 | |
| 			break;
 | |
| 		case PTR_TO_BTF_ID:
 | |
| 			if (type == BPF_READ) {
 | |
| 				insn->code = BPF_LDX | BPF_PROBE_MEM |
 | |
| 					BPF_SIZE((insn)->code);
 | |
| 				env->prog->aux->num_exentries++;
 | |
| 			} else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
 | |
| 				verbose(env, "Writes through BTF pointers are not allowed\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			continue;
 | |
| 		default:
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
 | |
| 		size = BPF_LDST_BYTES(insn);
 | |
| 
 | |
| 		/* If the read access is a narrower load of the field,
 | |
| 		 * convert to a 4/8-byte load, to minimum program type specific
 | |
| 		 * convert_ctx_access changes. If conversion is successful,
 | |
| 		 * we will apply proper mask to the result.
 | |
| 		 */
 | |
| 		is_narrower_load = size < ctx_field_size;
 | |
| 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
 | |
| 		off = insn->off;
 | |
| 		if (is_narrower_load) {
 | |
| 			u8 size_code;
 | |
| 
 | |
| 			if (type == BPF_WRITE) {
 | |
| 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			size_code = BPF_H;
 | |
| 			if (ctx_field_size == 4)
 | |
| 				size_code = BPF_W;
 | |
| 			else if (ctx_field_size == 8)
 | |
| 				size_code = BPF_DW;
 | |
| 
 | |
| 			insn->off = off & ~(size_default - 1);
 | |
| 			insn->code = BPF_LDX | BPF_MEM | size_code;
 | |
| 		}
 | |
| 
 | |
| 		target_size = 0;
 | |
| 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
 | |
| 					 &target_size);
 | |
| 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
 | |
| 		    (ctx_field_size && !target_size)) {
 | |
| 			verbose(env, "bpf verifier is misconfigured\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (is_narrower_load && size < target_size) {
 | |
| 			u8 shift = bpf_ctx_narrow_access_offset(
 | |
| 				off, size, size_default) * 8;
 | |
| 			if (ctx_field_size <= 4) {
 | |
| 				if (shift)
 | |
| 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
 | |
| 									insn->dst_reg,
 | |
| 									shift);
 | |
| 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
 | |
| 								(1 << size * 8) - 1);
 | |
| 			} else {
 | |
| 				if (shift)
 | |
| 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
 | |
| 									insn->dst_reg,
 | |
| 									shift);
 | |
| 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
 | |
| 								(1ULL << size * 8) - 1);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
 | |
| 		if (!new_prog)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		delta += cnt - 1;
 | |
| 
 | |
| 		/* keep walking new program and skip insns we just inserted */
 | |
| 		env->prog = new_prog;
 | |
| 		insn      = new_prog->insnsi + i + delta;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int jit_subprogs(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	struct bpf_prog *prog = env->prog, **func, *tmp;
 | |
| 	int i, j, subprog_start, subprog_end = 0, len, subprog;
 | |
| 	struct bpf_insn *insn;
 | |
| 	void *old_bpf_func;
 | |
| 	int err, num_exentries;
 | |
| 
 | |
| 	if (env->subprog_cnt <= 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
 | |
| 		if (insn->code != (BPF_JMP | BPF_CALL) ||
 | |
| 		    insn->src_reg != BPF_PSEUDO_CALL)
 | |
| 			continue;
 | |
| 		/* Upon error here we cannot fall back to interpreter but
 | |
| 		 * need a hard reject of the program. Thus -EFAULT is
 | |
| 		 * propagated in any case.
 | |
| 		 */
 | |
| 		subprog = find_subprog(env, i + insn->imm + 1);
 | |
| 		if (subprog < 0) {
 | |
| 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
 | |
| 				  i + insn->imm + 1);
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		/* temporarily remember subprog id inside insn instead of
 | |
| 		 * aux_data, since next loop will split up all insns into funcs
 | |
| 		 */
 | |
| 		insn->off = subprog;
 | |
| 		/* remember original imm in case JIT fails and fallback
 | |
| 		 * to interpreter will be needed
 | |
| 		 */
 | |
| 		env->insn_aux_data[i].call_imm = insn->imm;
 | |
| 		/* point imm to __bpf_call_base+1 from JITs point of view */
 | |
| 		insn->imm = 1;
 | |
| 	}
 | |
| 
 | |
| 	err = bpf_prog_alloc_jited_linfo(prog);
 | |
| 	if (err)
 | |
| 		goto out_undo_insn;
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
 | |
| 	if (!func)
 | |
| 		goto out_undo_insn;
 | |
| 
 | |
| 	for (i = 0; i < env->subprog_cnt; i++) {
 | |
| 		subprog_start = subprog_end;
 | |
| 		subprog_end = env->subprog_info[i + 1].start;
 | |
| 
 | |
| 		len = subprog_end - subprog_start;
 | |
| 		/* BPF_PROG_RUN doesn't call subprogs directly,
 | |
| 		 * hence main prog stats include the runtime of subprogs.
 | |
| 		 * subprogs don't have IDs and not reachable via prog_get_next_id
 | |
| 		 * func[i]->aux->stats will never be accessed and stays NULL
 | |
| 		 */
 | |
| 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
 | |
| 		if (!func[i])
 | |
| 			goto out_free;
 | |
| 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
 | |
| 		       len * sizeof(struct bpf_insn));
 | |
| 		func[i]->type = prog->type;
 | |
| 		func[i]->len = len;
 | |
| 		if (bpf_prog_calc_tag(func[i]))
 | |
| 			goto out_free;
 | |
| 		func[i]->is_func = 1;
 | |
| 		func[i]->aux->func_idx = i;
 | |
| 		/* the btf and func_info will be freed only at prog->aux */
 | |
| 		func[i]->aux->btf = prog->aux->btf;
 | |
| 		func[i]->aux->func_info = prog->aux->func_info;
 | |
| 
 | |
| 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
 | |
| 		 * Long term would need debug info to populate names
 | |
| 		 */
 | |
| 		func[i]->aux->name[0] = 'F';
 | |
| 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
 | |
| 		func[i]->jit_requested = 1;
 | |
| 		func[i]->aux->linfo = prog->aux->linfo;
 | |
| 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
 | |
| 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
 | |
| 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
 | |
| 		num_exentries = 0;
 | |
| 		insn = func[i]->insnsi;
 | |
| 		for (j = 0; j < func[i]->len; j++, insn++) {
 | |
| 			if (BPF_CLASS(insn->code) == BPF_LDX &&
 | |
| 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
 | |
| 				num_exentries++;
 | |
| 		}
 | |
| 		func[i]->aux->num_exentries = num_exentries;
 | |
| 		func[i] = bpf_int_jit_compile(func[i]);
 | |
| 		if (!func[i]->jited) {
 | |
| 			err = -ENOTSUPP;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	/* at this point all bpf functions were successfully JITed
 | |
| 	 * now populate all bpf_calls with correct addresses and
 | |
| 	 * run last pass of JIT
 | |
| 	 */
 | |
| 	for (i = 0; i < env->subprog_cnt; i++) {
 | |
| 		insn = func[i]->insnsi;
 | |
| 		for (j = 0; j < func[i]->len; j++, insn++) {
 | |
| 			if (insn->code != (BPF_JMP | BPF_CALL) ||
 | |
| 			    insn->src_reg != BPF_PSEUDO_CALL)
 | |
| 				continue;
 | |
| 			subprog = insn->off;
 | |
| 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
 | |
| 				    __bpf_call_base;
 | |
| 		}
 | |
| 
 | |
| 		/* we use the aux data to keep a list of the start addresses
 | |
| 		 * of the JITed images for each function in the program
 | |
| 		 *
 | |
| 		 * for some architectures, such as powerpc64, the imm field
 | |
| 		 * might not be large enough to hold the offset of the start
 | |
| 		 * address of the callee's JITed image from __bpf_call_base
 | |
| 		 *
 | |
| 		 * in such cases, we can lookup the start address of a callee
 | |
| 		 * by using its subprog id, available from the off field of
 | |
| 		 * the call instruction, as an index for this list
 | |
| 		 */
 | |
| 		func[i]->aux->func = func;
 | |
| 		func[i]->aux->func_cnt = env->subprog_cnt;
 | |
| 	}
 | |
| 	for (i = 0; i < env->subprog_cnt; i++) {
 | |
| 		old_bpf_func = func[i]->bpf_func;
 | |
| 		tmp = bpf_int_jit_compile(func[i]);
 | |
| 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
 | |
| 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
 | |
| 			err = -ENOTSUPP;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	/* finally lock prog and jit images for all functions and
 | |
| 	 * populate kallsysm
 | |
| 	 */
 | |
| 	for (i = 0; i < env->subprog_cnt; i++) {
 | |
| 		bpf_prog_lock_ro(func[i]);
 | |
| 		bpf_prog_kallsyms_add(func[i]);
 | |
| 	}
 | |
| 
 | |
| 	/* Last step: make now unused interpreter insns from main
 | |
| 	 * prog consistent for later dump requests, so they can
 | |
| 	 * later look the same as if they were interpreted only.
 | |
| 	 */
 | |
| 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
 | |
| 		if (insn->code != (BPF_JMP | BPF_CALL) ||
 | |
| 		    insn->src_reg != BPF_PSEUDO_CALL)
 | |
| 			continue;
 | |
| 		insn->off = env->insn_aux_data[i].call_imm;
 | |
| 		subprog = find_subprog(env, i + insn->off + 1);
 | |
| 		insn->imm = subprog;
 | |
| 	}
 | |
| 
 | |
| 	prog->jited = 1;
 | |
| 	prog->bpf_func = func[0]->bpf_func;
 | |
| 	prog->aux->func = func;
 | |
| 	prog->aux->func_cnt = env->subprog_cnt;
 | |
| 	bpf_prog_free_unused_jited_linfo(prog);
 | |
| 	return 0;
 | |
| out_free:
 | |
| 	for (i = 0; i < env->subprog_cnt; i++)
 | |
| 		if (func[i])
 | |
| 			bpf_jit_free(func[i]);
 | |
| 	kfree(func);
 | |
| out_undo_insn:
 | |
| 	/* cleanup main prog to be interpreted */
 | |
| 	prog->jit_requested = 0;
 | |
| 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
 | |
| 		if (insn->code != (BPF_JMP | BPF_CALL) ||
 | |
| 		    insn->src_reg != BPF_PSEUDO_CALL)
 | |
| 			continue;
 | |
| 		insn->off = 0;
 | |
| 		insn->imm = env->insn_aux_data[i].call_imm;
 | |
| 	}
 | |
| 	bpf_prog_free_jited_linfo(prog);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int fixup_call_args(struct bpf_verifier_env *env)
 | |
| {
 | |
| #ifndef CONFIG_BPF_JIT_ALWAYS_ON
 | |
| 	struct bpf_prog *prog = env->prog;
 | |
| 	struct bpf_insn *insn = prog->insnsi;
 | |
| 	int i, depth;
 | |
| #endif
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (env->prog->jit_requested &&
 | |
| 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
 | |
| 		err = jit_subprogs(env);
 | |
| 		if (err == 0)
 | |
| 			return 0;
 | |
| 		if (err == -EFAULT)
 | |
| 			return err;
 | |
| 	}
 | |
| #ifndef CONFIG_BPF_JIT_ALWAYS_ON
 | |
| 	for (i = 0; i < prog->len; i++, insn++) {
 | |
| 		if (insn->code != (BPF_JMP | BPF_CALL) ||
 | |
| 		    insn->src_reg != BPF_PSEUDO_CALL)
 | |
| 			continue;
 | |
| 		depth = get_callee_stack_depth(env, insn, i);
 | |
| 		if (depth < 0)
 | |
| 			return depth;
 | |
| 		bpf_patch_call_args(insn, depth);
 | |
| 	}
 | |
| 	err = 0;
 | |
| #endif
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* fixup insn->imm field of bpf_call instructions
 | |
|  * and inline eligible helpers as explicit sequence of BPF instructions
 | |
|  *
 | |
|  * this function is called after eBPF program passed verification
 | |
|  */
 | |
| static int fixup_bpf_calls(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	struct bpf_prog *prog = env->prog;
 | |
| 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
 | |
| 	struct bpf_insn *insn = prog->insnsi;
 | |
| 	const struct bpf_func_proto *fn;
 | |
| 	const int insn_cnt = prog->len;
 | |
| 	const struct bpf_map_ops *ops;
 | |
| 	struct bpf_insn_aux_data *aux;
 | |
| 	struct bpf_insn insn_buf[16];
 | |
| 	struct bpf_prog *new_prog;
 | |
| 	struct bpf_map *map_ptr;
 | |
| 	int i, ret, cnt, delta = 0;
 | |
| 
 | |
| 	for (i = 0; i < insn_cnt; i++, insn++) {
 | |
| 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
 | |
| 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
 | |
| 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
 | |
| 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
 | |
| 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
 | |
| 			struct bpf_insn mask_and_div[] = {
 | |
| 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
 | |
| 				/* Rx div 0 -> 0 */
 | |
| 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
 | |
| 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
 | |
| 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
 | |
| 				*insn,
 | |
| 			};
 | |
| 			struct bpf_insn mask_and_mod[] = {
 | |
| 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
 | |
| 				/* Rx mod 0 -> Rx */
 | |
| 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
 | |
| 				*insn,
 | |
| 			};
 | |
| 			struct bpf_insn *patchlet;
 | |
| 
 | |
| 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
 | |
| 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
 | |
| 				patchlet = mask_and_div + (is64 ? 1 : 0);
 | |
| 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
 | |
| 			} else {
 | |
| 				patchlet = mask_and_mod + (is64 ? 1 : 0);
 | |
| 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
 | |
| 			}
 | |
| 
 | |
| 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
 | |
| 			if (!new_prog)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			delta    += cnt - 1;
 | |
| 			env->prog = prog = new_prog;
 | |
| 			insn      = new_prog->insnsi + i + delta;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (BPF_CLASS(insn->code) == BPF_LD &&
 | |
| 		    (BPF_MODE(insn->code) == BPF_ABS ||
 | |
| 		     BPF_MODE(insn->code) == BPF_IND)) {
 | |
| 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
 | |
| 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
 | |
| 				verbose(env, "bpf verifier is misconfigured\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
 | |
| 			if (!new_prog)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			delta    += cnt - 1;
 | |
| 			env->prog = prog = new_prog;
 | |
| 			insn      = new_prog->insnsi + i + delta;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
 | |
| 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
 | |
| 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
 | |
| 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
 | |
| 			struct bpf_insn insn_buf[16];
 | |
| 			struct bpf_insn *patch = &insn_buf[0];
 | |
| 			bool issrc, isneg;
 | |
| 			u32 off_reg;
 | |
| 
 | |
| 			aux = &env->insn_aux_data[i + delta];
 | |
| 			if (!aux->alu_state ||
 | |
| 			    aux->alu_state == BPF_ALU_NON_POINTER)
 | |
| 				continue;
 | |
| 
 | |
| 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
 | |
| 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
 | |
| 				BPF_ALU_SANITIZE_SRC;
 | |
| 
 | |
| 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
 | |
| 			if (isneg)
 | |
| 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
 | |
| 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
 | |
| 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
 | |
| 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
 | |
| 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
 | |
| 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
 | |
| 			if (issrc) {
 | |
| 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
 | |
| 							 off_reg);
 | |
| 				insn->src_reg = BPF_REG_AX;
 | |
| 			} else {
 | |
| 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
 | |
| 							 BPF_REG_AX);
 | |
| 			}
 | |
| 			if (isneg)
 | |
| 				insn->code = insn->code == code_add ?
 | |
| 					     code_sub : code_add;
 | |
| 			*patch++ = *insn;
 | |
| 			if (issrc && isneg)
 | |
| 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
 | |
| 			cnt = patch - insn_buf;
 | |
| 
 | |
| 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
 | |
| 			if (!new_prog)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			delta    += cnt - 1;
 | |
| 			env->prog = prog = new_prog;
 | |
| 			insn      = new_prog->insnsi + i + delta;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (insn->code != (BPF_JMP | BPF_CALL))
 | |
| 			continue;
 | |
| 		if (insn->src_reg == BPF_PSEUDO_CALL)
 | |
| 			continue;
 | |
| 
 | |
| 		if (insn->imm == BPF_FUNC_get_route_realm)
 | |
| 			prog->dst_needed = 1;
 | |
| 		if (insn->imm == BPF_FUNC_get_prandom_u32)
 | |
| 			bpf_user_rnd_init_once();
 | |
| 		if (insn->imm == BPF_FUNC_override_return)
 | |
| 			prog->kprobe_override = 1;
 | |
| 		if (insn->imm == BPF_FUNC_tail_call) {
 | |
| 			/* If we tail call into other programs, we
 | |
| 			 * cannot make any assumptions since they can
 | |
| 			 * be replaced dynamically during runtime in
 | |
| 			 * the program array.
 | |
| 			 */
 | |
| 			prog->cb_access = 1;
 | |
| 			env->prog->aux->stack_depth = MAX_BPF_STACK;
 | |
| 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
 | |
| 
 | |
| 			/* mark bpf_tail_call as different opcode to avoid
 | |
| 			 * conditional branch in the interpeter for every normal
 | |
| 			 * call and to prevent accidental JITing by JIT compiler
 | |
| 			 * that doesn't support bpf_tail_call yet
 | |
| 			 */
 | |
| 			insn->imm = 0;
 | |
| 			insn->code = BPF_JMP | BPF_TAIL_CALL;
 | |
| 
 | |
| 			aux = &env->insn_aux_data[i + delta];
 | |
| 			if (env->bpf_capable && !expect_blinding &&
 | |
| 			    prog->jit_requested &&
 | |
| 			    !bpf_map_key_poisoned(aux) &&
 | |
| 			    !bpf_map_ptr_poisoned(aux) &&
 | |
| 			    !bpf_map_ptr_unpriv(aux)) {
 | |
| 				struct bpf_jit_poke_descriptor desc = {
 | |
| 					.reason = BPF_POKE_REASON_TAIL_CALL,
 | |
| 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
 | |
| 					.tail_call.key = bpf_map_key_immediate(aux),
 | |
| 				};
 | |
| 
 | |
| 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
 | |
| 				if (ret < 0) {
 | |
| 					verbose(env, "adding tail call poke descriptor failed\n");
 | |
| 					return ret;
 | |
| 				}
 | |
| 
 | |
| 				insn->imm = ret + 1;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (!bpf_map_ptr_unpriv(aux))
 | |
| 				continue;
 | |
| 
 | |
| 			/* instead of changing every JIT dealing with tail_call
 | |
| 			 * emit two extra insns:
 | |
| 			 * if (index >= max_entries) goto out;
 | |
| 			 * index &= array->index_mask;
 | |
| 			 * to avoid out-of-bounds cpu speculation
 | |
| 			 */
 | |
| 			if (bpf_map_ptr_poisoned(aux)) {
 | |
| 				verbose(env, "tail_call abusing map_ptr\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
 | |
| 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
 | |
| 						  map_ptr->max_entries, 2);
 | |
| 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
 | |
| 						    container_of(map_ptr,
 | |
| 								 struct bpf_array,
 | |
| 								 map)->index_mask);
 | |
| 			insn_buf[2] = *insn;
 | |
| 			cnt = 3;
 | |
| 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
 | |
| 			if (!new_prog)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			delta    += cnt - 1;
 | |
| 			env->prog = prog = new_prog;
 | |
| 			insn      = new_prog->insnsi + i + delta;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
 | |
| 		 * and other inlining handlers are currently limited to 64 bit
 | |
| 		 * only.
 | |
| 		 */
 | |
| 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
 | |
| 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
 | |
| 		     insn->imm == BPF_FUNC_map_update_elem ||
 | |
| 		     insn->imm == BPF_FUNC_map_delete_elem ||
 | |
| 		     insn->imm == BPF_FUNC_map_push_elem   ||
 | |
| 		     insn->imm == BPF_FUNC_map_pop_elem    ||
 | |
| 		     insn->imm == BPF_FUNC_map_peek_elem)) {
 | |
| 			aux = &env->insn_aux_data[i + delta];
 | |
| 			if (bpf_map_ptr_poisoned(aux))
 | |
| 				goto patch_call_imm;
 | |
| 
 | |
| 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
 | |
| 			ops = map_ptr->ops;
 | |
| 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
 | |
| 			    ops->map_gen_lookup) {
 | |
| 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
 | |
| 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
 | |
| 					verbose(env, "bpf verifier is misconfigured\n");
 | |
| 					return -EINVAL;
 | |
| 				}
 | |
| 
 | |
| 				new_prog = bpf_patch_insn_data(env, i + delta,
 | |
| 							       insn_buf, cnt);
 | |
| 				if (!new_prog)
 | |
| 					return -ENOMEM;
 | |
| 
 | |
| 				delta    += cnt - 1;
 | |
| 				env->prog = prog = new_prog;
 | |
| 				insn      = new_prog->insnsi + i + delta;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
 | |
| 				     (void *(*)(struct bpf_map *map, void *key))NULL));
 | |
| 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
 | |
| 				     (int (*)(struct bpf_map *map, void *key))NULL));
 | |
| 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
 | |
| 				     (int (*)(struct bpf_map *map, void *key, void *value,
 | |
| 					      u64 flags))NULL));
 | |
| 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
 | |
| 				     (int (*)(struct bpf_map *map, void *value,
 | |
| 					      u64 flags))NULL));
 | |
| 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
 | |
| 				     (int (*)(struct bpf_map *map, void *value))NULL));
 | |
| 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
 | |
| 				     (int (*)(struct bpf_map *map, void *value))NULL));
 | |
| 
 | |
| 			switch (insn->imm) {
 | |
| 			case BPF_FUNC_map_lookup_elem:
 | |
| 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
 | |
| 					    __bpf_call_base;
 | |
| 				continue;
 | |
| 			case BPF_FUNC_map_update_elem:
 | |
| 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
 | |
| 					    __bpf_call_base;
 | |
| 				continue;
 | |
| 			case BPF_FUNC_map_delete_elem:
 | |
| 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
 | |
| 					    __bpf_call_base;
 | |
| 				continue;
 | |
| 			case BPF_FUNC_map_push_elem:
 | |
| 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
 | |
| 					    __bpf_call_base;
 | |
| 				continue;
 | |
| 			case BPF_FUNC_map_pop_elem:
 | |
| 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
 | |
| 					    __bpf_call_base;
 | |
| 				continue;
 | |
| 			case BPF_FUNC_map_peek_elem:
 | |
| 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
 | |
| 					    __bpf_call_base;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			goto patch_call_imm;
 | |
| 		}
 | |
| 
 | |
| 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
 | |
| 		    insn->imm == BPF_FUNC_jiffies64) {
 | |
| 			struct bpf_insn ld_jiffies_addr[2] = {
 | |
| 				BPF_LD_IMM64(BPF_REG_0,
 | |
| 					     (unsigned long)&jiffies),
 | |
| 			};
 | |
| 
 | |
| 			insn_buf[0] = ld_jiffies_addr[0];
 | |
| 			insn_buf[1] = ld_jiffies_addr[1];
 | |
| 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
 | |
| 						  BPF_REG_0, 0);
 | |
| 			cnt = 3;
 | |
| 
 | |
| 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
 | |
| 						       cnt);
 | |
| 			if (!new_prog)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			delta    += cnt - 1;
 | |
| 			env->prog = prog = new_prog;
 | |
| 			insn      = new_prog->insnsi + i + delta;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| patch_call_imm:
 | |
| 		fn = env->ops->get_func_proto(insn->imm, env->prog);
 | |
| 		/* all functions that have prototype and verifier allowed
 | |
| 		 * programs to call them, must be real in-kernel functions
 | |
| 		 */
 | |
| 		if (!fn->func) {
 | |
| 			verbose(env,
 | |
| 				"kernel subsystem misconfigured func %s#%d\n",
 | |
| 				func_id_name(insn->imm), insn->imm);
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		insn->imm = fn->func - __bpf_call_base;
 | |
| 	}
 | |
| 
 | |
| 	/* Since poke tab is now finalized, publish aux to tracker. */
 | |
| 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
 | |
| 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
 | |
| 		if (!map_ptr->ops->map_poke_track ||
 | |
| 		    !map_ptr->ops->map_poke_untrack ||
 | |
| 		    !map_ptr->ops->map_poke_run) {
 | |
| 			verbose(env, "bpf verifier is misconfigured\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
 | |
| 		if (ret < 0) {
 | |
| 			verbose(env, "tracking tail call prog failed\n");
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void free_states(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	struct bpf_verifier_state_list *sl, *sln;
 | |
| 	int i;
 | |
| 
 | |
| 	sl = env->free_list;
 | |
| 	while (sl) {
 | |
| 		sln = sl->next;
 | |
| 		free_verifier_state(&sl->state, false);
 | |
| 		kfree(sl);
 | |
| 		sl = sln;
 | |
| 	}
 | |
| 	env->free_list = NULL;
 | |
| 
 | |
| 	if (!env->explored_states)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < state_htab_size(env); i++) {
 | |
| 		sl = env->explored_states[i];
 | |
| 
 | |
| 		while (sl) {
 | |
| 			sln = sl->next;
 | |
| 			free_verifier_state(&sl->state, false);
 | |
| 			kfree(sl);
 | |
| 			sl = sln;
 | |
| 		}
 | |
| 		env->explored_states[i] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* The verifier is using insn_aux_data[] to store temporary data during
 | |
|  * verification and to store information for passes that run after the
 | |
|  * verification like dead code sanitization. do_check_common() for subprogram N
 | |
|  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
 | |
|  * temporary data after do_check_common() finds that subprogram N cannot be
 | |
|  * verified independently. pass_cnt counts the number of times
 | |
|  * do_check_common() was run and insn->aux->seen tells the pass number
 | |
|  * insn_aux_data was touched. These variables are compared to clear temporary
 | |
|  * data from failed pass. For testing and experiments do_check_common() can be
 | |
|  * run multiple times even when prior attempt to verify is unsuccessful.
 | |
|  */
 | |
| static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	struct bpf_insn *insn = env->prog->insnsi;
 | |
| 	struct bpf_insn_aux_data *aux;
 | |
| 	int i, class;
 | |
| 
 | |
| 	for (i = 0; i < env->prog->len; i++) {
 | |
| 		class = BPF_CLASS(insn[i].code);
 | |
| 		if (class != BPF_LDX && class != BPF_STX)
 | |
| 			continue;
 | |
| 		aux = &env->insn_aux_data[i];
 | |
| 		if (aux->seen != env->pass_cnt)
 | |
| 			continue;
 | |
| 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int do_check_common(struct bpf_verifier_env *env, int subprog)
 | |
| {
 | |
| 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
 | |
| 	struct bpf_verifier_state *state;
 | |
| 	struct bpf_reg_state *regs;
 | |
| 	int ret, i;
 | |
| 
 | |
| 	env->prev_linfo = NULL;
 | |
| 	env->pass_cnt++;
 | |
| 
 | |
| 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
 | |
| 	if (!state)
 | |
| 		return -ENOMEM;
 | |
| 	state->curframe = 0;
 | |
| 	state->speculative = false;
 | |
| 	state->branches = 1;
 | |
| 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
 | |
| 	if (!state->frame[0]) {
 | |
| 		kfree(state);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	env->cur_state = state;
 | |
| 	init_func_state(env, state->frame[0],
 | |
| 			BPF_MAIN_FUNC /* callsite */,
 | |
| 			0 /* frameno */,
 | |
| 			subprog);
 | |
| 
 | |
| 	regs = state->frame[state->curframe]->regs;
 | |
| 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
 | |
| 		ret = btf_prepare_func_args(env, subprog, regs);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
 | |
| 			if (regs[i].type == PTR_TO_CTX)
 | |
| 				mark_reg_known_zero(env, regs, i);
 | |
| 			else if (regs[i].type == SCALAR_VALUE)
 | |
| 				mark_reg_unknown(env, regs, i);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* 1st arg to a function */
 | |
| 		regs[BPF_REG_1].type = PTR_TO_CTX;
 | |
| 		mark_reg_known_zero(env, regs, BPF_REG_1);
 | |
| 		ret = btf_check_func_arg_match(env, subprog, regs);
 | |
| 		if (ret == -EFAULT)
 | |
| 			/* unlikely verifier bug. abort.
 | |
| 			 * ret == 0 and ret < 0 are sadly acceptable for
 | |
| 			 * main() function due to backward compatibility.
 | |
| 			 * Like socket filter program may be written as:
 | |
| 			 * int bpf_prog(struct pt_regs *ctx)
 | |
| 			 * and never dereference that ctx in the program.
 | |
| 			 * 'struct pt_regs' is a type mismatch for socket
 | |
| 			 * filter that should be using 'struct __sk_buff'.
 | |
| 			 */
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = do_check(env);
 | |
| out:
 | |
| 	/* check for NULL is necessary, since cur_state can be freed inside
 | |
| 	 * do_check() under memory pressure.
 | |
| 	 */
 | |
| 	if (env->cur_state) {
 | |
| 		free_verifier_state(env->cur_state, true);
 | |
| 		env->cur_state = NULL;
 | |
| 	}
 | |
| 	while (!pop_stack(env, NULL, NULL, false));
 | |
| 	if (!ret && pop_log)
 | |
| 		bpf_vlog_reset(&env->log, 0);
 | |
| 	free_states(env);
 | |
| 	if (ret)
 | |
| 		/* clean aux data in case subprog was rejected */
 | |
| 		sanitize_insn_aux_data(env);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Verify all global functions in a BPF program one by one based on their BTF.
 | |
|  * All global functions must pass verification. Otherwise the whole program is rejected.
 | |
|  * Consider:
 | |
|  * int bar(int);
 | |
|  * int foo(int f)
 | |
|  * {
 | |
|  *    return bar(f);
 | |
|  * }
 | |
|  * int bar(int b)
 | |
|  * {
 | |
|  *    ...
 | |
|  * }
 | |
|  * foo() will be verified first for R1=any_scalar_value. During verification it
 | |
|  * will be assumed that bar() already verified successfully and call to bar()
 | |
|  * from foo() will be checked for type match only. Later bar() will be verified
 | |
|  * independently to check that it's safe for R1=any_scalar_value.
 | |
|  */
 | |
| static int do_check_subprogs(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	struct bpf_prog_aux *aux = env->prog->aux;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	if (!aux->func_info)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 1; i < env->subprog_cnt; i++) {
 | |
| 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
 | |
| 			continue;
 | |
| 		env->insn_idx = env->subprog_info[i].start;
 | |
| 		WARN_ON_ONCE(env->insn_idx == 0);
 | |
| 		ret = do_check_common(env, i);
 | |
| 		if (ret) {
 | |
| 			return ret;
 | |
| 		} else if (env->log.level & BPF_LOG_LEVEL) {
 | |
| 			verbose(env,
 | |
| 				"Func#%d is safe for any args that match its prototype\n",
 | |
| 				i);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int do_check_main(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	env->insn_idx = 0;
 | |
| 	ret = do_check_common(env, 0);
 | |
| 	if (!ret)
 | |
| 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void print_verification_stats(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (env->log.level & BPF_LOG_STATS) {
 | |
| 		verbose(env, "verification time %lld usec\n",
 | |
| 			div_u64(env->verification_time, 1000));
 | |
| 		verbose(env, "stack depth ");
 | |
| 		for (i = 0; i < env->subprog_cnt; i++) {
 | |
| 			u32 depth = env->subprog_info[i].stack_depth;
 | |
| 
 | |
| 			verbose(env, "%d", depth);
 | |
| 			if (i + 1 < env->subprog_cnt)
 | |
| 				verbose(env, "+");
 | |
| 		}
 | |
| 		verbose(env, "\n");
 | |
| 	}
 | |
| 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
 | |
| 		"total_states %d peak_states %d mark_read %d\n",
 | |
| 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
 | |
| 		env->max_states_per_insn, env->total_states,
 | |
| 		env->peak_states, env->longest_mark_read_walk);
 | |
| }
 | |
| 
 | |
| static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	const struct btf_type *t, *func_proto;
 | |
| 	const struct bpf_struct_ops *st_ops;
 | |
| 	const struct btf_member *member;
 | |
| 	struct bpf_prog *prog = env->prog;
 | |
| 	u32 btf_id, member_idx;
 | |
| 	const char *mname;
 | |
| 
 | |
| 	btf_id = prog->aux->attach_btf_id;
 | |
| 	st_ops = bpf_struct_ops_find(btf_id);
 | |
| 	if (!st_ops) {
 | |
| 		verbose(env, "attach_btf_id %u is not a supported struct\n",
 | |
| 			btf_id);
 | |
| 		return -ENOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	t = st_ops->type;
 | |
| 	member_idx = prog->expected_attach_type;
 | |
| 	if (member_idx >= btf_type_vlen(t)) {
 | |
| 		verbose(env, "attach to invalid member idx %u of struct %s\n",
 | |
| 			member_idx, st_ops->name);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	member = &btf_type_member(t)[member_idx];
 | |
| 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
 | |
| 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
 | |
| 					       NULL);
 | |
| 	if (!func_proto) {
 | |
| 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
 | |
| 			mname, member_idx, st_ops->name);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (st_ops->check_member) {
 | |
| 		int err = st_ops->check_member(t, member);
 | |
| 
 | |
| 		if (err) {
 | |
| 			verbose(env, "attach to unsupported member %s of struct %s\n",
 | |
| 				mname, st_ops->name);
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	prog->aux->attach_func_proto = func_proto;
 | |
| 	prog->aux->attach_func_name = mname;
 | |
| 	env->ops = st_ops->verifier_ops;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #define SECURITY_PREFIX "security_"
 | |
| 
 | |
| static int check_attach_modify_return(struct bpf_prog *prog, unsigned long addr)
 | |
| {
 | |
| 	if (within_error_injection_list(addr) ||
 | |
| 	    !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name,
 | |
| 		     sizeof(SECURITY_PREFIX) - 1))
 | |
| 		return 0;
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int check_attach_btf_id(struct bpf_verifier_env *env)
 | |
| {
 | |
| 	struct bpf_prog *prog = env->prog;
 | |
| 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
 | |
| 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
 | |
| 	u32 btf_id = prog->aux->attach_btf_id;
 | |
| 	const char prefix[] = "btf_trace_";
 | |
| 	struct btf_func_model fmodel;
 | |
| 	int ret = 0, subprog = -1, i;
 | |
| 	struct bpf_trampoline *tr;
 | |
| 	const struct btf_type *t;
 | |
| 	bool conservative = true;
 | |
| 	const char *tname;
 | |
| 	struct btf *btf;
 | |
| 	long addr;
 | |
| 	u64 key;
 | |
| 
 | |
| 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
 | |
| 		return check_struct_ops_btf_id(env);
 | |
| 
 | |
| 	if (prog->type != BPF_PROG_TYPE_TRACING &&
 | |
| 	    prog->type != BPF_PROG_TYPE_LSM &&
 | |
| 	    !prog_extension)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!btf_id) {
 | |
| 		verbose(env, "Tracing programs must provide btf_id\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	btf = bpf_prog_get_target_btf(prog);
 | |
| 	if (!btf) {
 | |
| 		verbose(env,
 | |
| 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	t = btf_type_by_id(btf, btf_id);
 | |
| 	if (!t) {
 | |
| 		verbose(env, "attach_btf_id %u is invalid\n", btf_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	tname = btf_name_by_offset(btf, t->name_off);
 | |
| 	if (!tname) {
 | |
| 		verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (tgt_prog) {
 | |
| 		struct bpf_prog_aux *aux = tgt_prog->aux;
 | |
| 
 | |
| 		for (i = 0; i < aux->func_info_cnt; i++)
 | |
| 			if (aux->func_info[i].type_id == btf_id) {
 | |
| 				subprog = i;
 | |
| 				break;
 | |
| 			}
 | |
| 		if (subprog == -1) {
 | |
| 			verbose(env, "Subprog %s doesn't exist\n", tname);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		conservative = aux->func_info_aux[subprog].unreliable;
 | |
| 		if (prog_extension) {
 | |
| 			if (conservative) {
 | |
| 				verbose(env,
 | |
| 					"Cannot replace static functions\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			if (!prog->jit_requested) {
 | |
| 				verbose(env,
 | |
| 					"Extension programs should be JITed\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			env->ops = bpf_verifier_ops[tgt_prog->type];
 | |
| 			prog->expected_attach_type = tgt_prog->expected_attach_type;
 | |
| 		}
 | |
| 		if (!tgt_prog->jited) {
 | |
| 			verbose(env, "Can attach to only JITed progs\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (tgt_prog->type == prog->type) {
 | |
| 			/* Cannot fentry/fexit another fentry/fexit program.
 | |
| 			 * Cannot attach program extension to another extension.
 | |
| 			 * It's ok to attach fentry/fexit to extension program.
 | |
| 			 */
 | |
| 			verbose(env, "Cannot recursively attach\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
 | |
| 		    prog_extension &&
 | |
| 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
 | |
| 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
 | |
| 			/* Program extensions can extend all program types
 | |
| 			 * except fentry/fexit. The reason is the following.
 | |
| 			 * The fentry/fexit programs are used for performance
 | |
| 			 * analysis, stats and can be attached to any program
 | |
| 			 * type except themselves. When extension program is
 | |
| 			 * replacing XDP function it is necessary to allow
 | |
| 			 * performance analysis of all functions. Both original
 | |
| 			 * XDP program and its program extension. Hence
 | |
| 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
 | |
| 			 * allowed. If extending of fentry/fexit was allowed it
 | |
| 			 * would be possible to create long call chain
 | |
| 			 * fentry->extension->fentry->extension beyond
 | |
| 			 * reasonable stack size. Hence extending fentry is not
 | |
| 			 * allowed.
 | |
| 			 */
 | |
| 			verbose(env, "Cannot extend fentry/fexit\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		key = ((u64)aux->id) << 32 | btf_id;
 | |
| 	} else {
 | |
| 		if (prog_extension) {
 | |
| 			verbose(env, "Cannot replace kernel functions\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		key = btf_id;
 | |
| 	}
 | |
| 
 | |
| 	switch (prog->expected_attach_type) {
 | |
| 	case BPF_TRACE_RAW_TP:
 | |
| 		if (tgt_prog) {
 | |
| 			verbose(env,
 | |
| 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (!btf_type_is_typedef(t)) {
 | |
| 			verbose(env, "attach_btf_id %u is not a typedef\n",
 | |
| 				btf_id);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
 | |
| 			verbose(env, "attach_btf_id %u points to wrong type name %s\n",
 | |
| 				btf_id, tname);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		tname += sizeof(prefix) - 1;
 | |
| 		t = btf_type_by_id(btf, t->type);
 | |
| 		if (!btf_type_is_ptr(t))
 | |
| 			/* should never happen in valid vmlinux build */
 | |
| 			return -EINVAL;
 | |
| 		t = btf_type_by_id(btf, t->type);
 | |
| 		if (!btf_type_is_func_proto(t))
 | |
| 			/* should never happen in valid vmlinux build */
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/* remember two read only pointers that are valid for
 | |
| 		 * the life time of the kernel
 | |
| 		 */
 | |
| 		prog->aux->attach_func_name = tname;
 | |
| 		prog->aux->attach_func_proto = t;
 | |
| 		prog->aux->attach_btf_trace = true;
 | |
| 		return 0;
 | |
| 	case BPF_TRACE_ITER:
 | |
| 		if (!btf_type_is_func(t)) {
 | |
| 			verbose(env, "attach_btf_id %u is not a function\n",
 | |
| 				btf_id);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		t = btf_type_by_id(btf, t->type);
 | |
| 		if (!btf_type_is_func_proto(t))
 | |
| 			return -EINVAL;
 | |
| 		prog->aux->attach_func_name = tname;
 | |
| 		prog->aux->attach_func_proto = t;
 | |
| 		if (!bpf_iter_prog_supported(prog))
 | |
| 			return -EINVAL;
 | |
| 		ret = btf_distill_func_proto(&env->log, btf, t,
 | |
| 					     tname, &fmodel);
 | |
| 		return ret;
 | |
| 	default:
 | |
| 		if (!prog_extension)
 | |
| 			return -EINVAL;
 | |
| 		/* fallthrough */
 | |
| 	case BPF_MODIFY_RETURN:
 | |
| 	case BPF_LSM_MAC:
 | |
| 	case BPF_TRACE_FENTRY:
 | |
| 	case BPF_TRACE_FEXIT:
 | |
| 		prog->aux->attach_func_name = tname;
 | |
| 		if (prog->type == BPF_PROG_TYPE_LSM) {
 | |
| 			ret = bpf_lsm_verify_prog(&env->log, prog);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 		}
 | |
| 
 | |
| 		if (!btf_type_is_func(t)) {
 | |
| 			verbose(env, "attach_btf_id %u is not a function\n",
 | |
| 				btf_id);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (prog_extension &&
 | |
| 		    btf_check_type_match(env, prog, btf, t))
 | |
| 			return -EINVAL;
 | |
| 		t = btf_type_by_id(btf, t->type);
 | |
| 		if (!btf_type_is_func_proto(t))
 | |
| 			return -EINVAL;
 | |
| 		tr = bpf_trampoline_lookup(key);
 | |
| 		if (!tr)
 | |
| 			return -ENOMEM;
 | |
| 		/* t is either vmlinux type or another program's type */
 | |
| 		prog->aux->attach_func_proto = t;
 | |
| 		mutex_lock(&tr->mutex);
 | |
| 		if (tr->func.addr) {
 | |
| 			prog->aux->trampoline = tr;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (tgt_prog && conservative) {
 | |
| 			prog->aux->attach_func_proto = NULL;
 | |
| 			t = NULL;
 | |
| 		}
 | |
| 		ret = btf_distill_func_proto(&env->log, btf, t,
 | |
| 					     tname, &tr->func.model);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 		if (tgt_prog) {
 | |
| 			if (subprog == 0)
 | |
| 				addr = (long) tgt_prog->bpf_func;
 | |
| 			else
 | |
| 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
 | |
| 		} else {
 | |
| 			addr = kallsyms_lookup_name(tname);
 | |
| 			if (!addr) {
 | |
| 				verbose(env,
 | |
| 					"The address of function %s cannot be found\n",
 | |
| 					tname);
 | |
| 				ret = -ENOENT;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
 | |
| 			ret = check_attach_modify_return(prog, addr);
 | |
| 			if (ret)
 | |
| 				verbose(env, "%s() is not modifiable\n",
 | |
| 					prog->aux->attach_func_name);
 | |
| 		}
 | |
| 
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 		tr->func.addr = (void *)addr;
 | |
| 		prog->aux->trampoline = tr;
 | |
| out:
 | |
| 		mutex_unlock(&tr->mutex);
 | |
| 		if (ret)
 | |
| 			bpf_trampoline_put(tr);
 | |
| 		return ret;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
 | |
| 	      union bpf_attr __user *uattr)
 | |
| {
 | |
| 	u64 start_time = ktime_get_ns();
 | |
| 	struct bpf_verifier_env *env;
 | |
| 	struct bpf_verifier_log *log;
 | |
| 	int i, len, ret = -EINVAL;
 | |
| 	bool is_priv;
 | |
| 
 | |
| 	/* no program is valid */
 | |
| 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
 | |
| 	 * allocate/free it every time bpf_check() is called
 | |
| 	 */
 | |
| 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
 | |
| 	if (!env)
 | |
| 		return -ENOMEM;
 | |
| 	log = &env->log;
 | |
| 
 | |
| 	len = (*prog)->len;
 | |
| 	env->insn_aux_data =
 | |
| 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
 | |
| 	ret = -ENOMEM;
 | |
| 	if (!env->insn_aux_data)
 | |
| 		goto err_free_env;
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		env->insn_aux_data[i].orig_idx = i;
 | |
| 	env->prog = *prog;
 | |
| 	env->ops = bpf_verifier_ops[env->prog->type];
 | |
| 	is_priv = bpf_capable();
 | |
| 
 | |
| 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
 | |
| 		mutex_lock(&bpf_verifier_lock);
 | |
| 		if (!btf_vmlinux)
 | |
| 			btf_vmlinux = btf_parse_vmlinux();
 | |
| 		mutex_unlock(&bpf_verifier_lock);
 | |
| 	}
 | |
| 
 | |
| 	/* grab the mutex to protect few globals used by verifier */
 | |
| 	if (!is_priv)
 | |
| 		mutex_lock(&bpf_verifier_lock);
 | |
| 
 | |
| 	if (attr->log_level || attr->log_buf || attr->log_size) {
 | |
| 		/* user requested verbose verifier output
 | |
| 		 * and supplied buffer to store the verification trace
 | |
| 		 */
 | |
| 		log->level = attr->log_level;
 | |
| 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
 | |
| 		log->len_total = attr->log_size;
 | |
| 
 | |
| 		ret = -EINVAL;
 | |
| 		/* log attributes have to be sane */
 | |
| 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
 | |
| 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
 | |
| 			goto err_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (IS_ERR(btf_vmlinux)) {
 | |
| 		/* Either gcc or pahole or kernel are broken. */
 | |
| 		verbose(env, "in-kernel BTF is malformed\n");
 | |
| 		ret = PTR_ERR(btf_vmlinux);
 | |
| 		goto skip_full_check;
 | |
| 	}
 | |
| 
 | |
| 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
 | |
| 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
 | |
| 		env->strict_alignment = true;
 | |
| 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
 | |
| 		env->strict_alignment = false;
 | |
| 
 | |
| 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
 | |
| 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
 | |
| 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
 | |
| 	env->bpf_capable = bpf_capable();
 | |
| 
 | |
| 	if (is_priv)
 | |
| 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
 | |
| 
 | |
| 	ret = replace_map_fd_with_map_ptr(env);
 | |
| 	if (ret < 0)
 | |
| 		goto skip_full_check;
 | |
| 
 | |
| 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
 | |
| 		ret = bpf_prog_offload_verifier_prep(env->prog);
 | |
| 		if (ret)
 | |
| 			goto skip_full_check;
 | |
| 	}
 | |
| 
 | |
| 	env->explored_states = kvcalloc(state_htab_size(env),
 | |
| 				       sizeof(struct bpf_verifier_state_list *),
 | |
| 				       GFP_USER);
 | |
| 	ret = -ENOMEM;
 | |
| 	if (!env->explored_states)
 | |
| 		goto skip_full_check;
 | |
| 
 | |
| 	ret = check_subprogs(env);
 | |
| 	if (ret < 0)
 | |
| 		goto skip_full_check;
 | |
| 
 | |
| 	ret = check_btf_info(env, attr, uattr);
 | |
| 	if (ret < 0)
 | |
| 		goto skip_full_check;
 | |
| 
 | |
| 	ret = check_attach_btf_id(env);
 | |
| 	if (ret)
 | |
| 		goto skip_full_check;
 | |
| 
 | |
| 	ret = check_cfg(env);
 | |
| 	if (ret < 0)
 | |
| 		goto skip_full_check;
 | |
| 
 | |
| 	ret = do_check_subprogs(env);
 | |
| 	ret = ret ?: do_check_main(env);
 | |
| 
 | |
| 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
 | |
| 		ret = bpf_prog_offload_finalize(env);
 | |
| 
 | |
| skip_full_check:
 | |
| 	kvfree(env->explored_states);
 | |
| 
 | |
| 	if (ret == 0)
 | |
| 		ret = check_max_stack_depth(env);
 | |
| 
 | |
| 	/* instruction rewrites happen after this point */
 | |
| 	if (is_priv) {
 | |
| 		if (ret == 0)
 | |
| 			opt_hard_wire_dead_code_branches(env);
 | |
| 		if (ret == 0)
 | |
| 			ret = opt_remove_dead_code(env);
 | |
| 		if (ret == 0)
 | |
| 			ret = opt_remove_nops(env);
 | |
| 	} else {
 | |
| 		if (ret == 0)
 | |
| 			sanitize_dead_code(env);
 | |
| 	}
 | |
| 
 | |
| 	if (ret == 0)
 | |
| 		/* program is valid, convert *(u32*)(ctx + off) accesses */
 | |
| 		ret = convert_ctx_accesses(env);
 | |
| 
 | |
| 	if (ret == 0)
 | |
| 		ret = fixup_bpf_calls(env);
 | |
| 
 | |
| 	/* do 32-bit optimization after insn patching has done so those patched
 | |
| 	 * insns could be handled correctly.
 | |
| 	 */
 | |
| 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
 | |
| 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
 | |
| 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
 | |
| 								     : false;
 | |
| 	}
 | |
| 
 | |
| 	if (ret == 0)
 | |
| 		ret = fixup_call_args(env);
 | |
| 
 | |
| 	env->verification_time = ktime_get_ns() - start_time;
 | |
| 	print_verification_stats(env);
 | |
| 
 | |
| 	if (log->level && bpf_verifier_log_full(log))
 | |
| 		ret = -ENOSPC;
 | |
| 	if (log->level && !log->ubuf) {
 | |
| 		ret = -EFAULT;
 | |
| 		goto err_release_maps;
 | |
| 	}
 | |
| 
 | |
| 	if (ret == 0 && env->used_map_cnt) {
 | |
| 		/* if program passed verifier, update used_maps in bpf_prog_info */
 | |
| 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
 | |
| 							  sizeof(env->used_maps[0]),
 | |
| 							  GFP_KERNEL);
 | |
| 
 | |
| 		if (!env->prog->aux->used_maps) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto err_release_maps;
 | |
| 		}
 | |
| 
 | |
| 		memcpy(env->prog->aux->used_maps, env->used_maps,
 | |
| 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
 | |
| 		env->prog->aux->used_map_cnt = env->used_map_cnt;
 | |
| 
 | |
| 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
 | |
| 		 * bpf_ld_imm64 instructions
 | |
| 		 */
 | |
| 		convert_pseudo_ld_imm64(env);
 | |
| 	}
 | |
| 
 | |
| 	if (ret == 0)
 | |
| 		adjust_btf_func(env);
 | |
| 
 | |
| err_release_maps:
 | |
| 	if (!env->prog->aux->used_maps)
 | |
| 		/* if we didn't copy map pointers into bpf_prog_info, release
 | |
| 		 * them now. Otherwise free_used_maps() will release them.
 | |
| 		 */
 | |
| 		release_maps(env);
 | |
| 
 | |
| 	/* extension progs temporarily inherit the attach_type of their targets
 | |
| 	   for verification purposes, so set it back to zero before returning
 | |
| 	 */
 | |
| 	if (env->prog->type == BPF_PROG_TYPE_EXT)
 | |
| 		env->prog->expected_attach_type = 0;
 | |
| 
 | |
| 	*prog = env->prog;
 | |
| err_unlock:
 | |
| 	if (!is_priv)
 | |
| 		mutex_unlock(&bpf_verifier_lock);
 | |
| 	vfree(env->insn_aux_data);
 | |
| err_free_env:
 | |
| 	kfree(env);
 | |
| 	return ret;
 | |
| }
 |