c8ed9fc9d2
Rationale: Reduces attack surface on kernel devs opening the links for MITM as HTTPS traffic is much harder to manipulate. Deterministic algorithm: For each file: If not .svg: For each line: If doesn't contain `\bxmlns\b`: For each link, `\bhttp://[^# \t\r\n]*(?:\w|/)`: If neither `\bgnu\.org/license`, nor `\bmozilla\.org/MPL\b`: If both the HTTP and HTTPS versions return 200 OK and serve the same content: Replace HTTP with HTTPS. Signed-off-by: Alexander A. Klimov <grandmaster@al2klimov.de> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200718103958.5455-1-grandmaster@al2klimov.de
752 lines
14 KiB
ArmAsm
752 lines
14 KiB
ArmAsm
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
/*
|
|
* Core of the accelerated CRC algorithm.
|
|
* In your file, define the constants and CRC_FUNCTION_NAME
|
|
* Then include this file.
|
|
*
|
|
* Calculate the checksum of data that is 16 byte aligned and a multiple of
|
|
* 16 bytes.
|
|
*
|
|
* The first step is to reduce it to 1024 bits. We do this in 8 parallel
|
|
* chunks in order to mask the latency of the vpmsum instructions. If we
|
|
* have more than 32 kB of data to checksum we repeat this step multiple
|
|
* times, passing in the previous 1024 bits.
|
|
*
|
|
* The next step is to reduce the 1024 bits to 64 bits. This step adds
|
|
* 32 bits of 0s to the end - this matches what a CRC does. We just
|
|
* calculate constants that land the data in this 32 bits.
|
|
*
|
|
* We then use fixed point Barrett reduction to compute a mod n over GF(2)
|
|
* for n = CRC using POWER8 instructions. We use x = 32.
|
|
*
|
|
* https://en.wikipedia.org/wiki/Barrett_reduction
|
|
*
|
|
* Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
|
|
*/
|
|
|
|
#include <asm/ppc_asm.h>
|
|
#include <asm/ppc-opcode.h>
|
|
|
|
#define MAX_SIZE 32768
|
|
|
|
.text
|
|
|
|
#if defined(__BIG_ENDIAN__) && defined(REFLECT)
|
|
#define BYTESWAP_DATA
|
|
#elif defined(__LITTLE_ENDIAN__) && !defined(REFLECT)
|
|
#define BYTESWAP_DATA
|
|
#else
|
|
#undef BYTESWAP_DATA
|
|
#endif
|
|
|
|
#define off16 r25
|
|
#define off32 r26
|
|
#define off48 r27
|
|
#define off64 r28
|
|
#define off80 r29
|
|
#define off96 r30
|
|
#define off112 r31
|
|
|
|
#define const1 v24
|
|
#define const2 v25
|
|
|
|
#define byteswap v26
|
|
#define mask_32bit v27
|
|
#define mask_64bit v28
|
|
#define zeroes v29
|
|
|
|
#ifdef BYTESWAP_DATA
|
|
#define VPERM(A, B, C, D) vperm A, B, C, D
|
|
#else
|
|
#define VPERM(A, B, C, D)
|
|
#endif
|
|
|
|
/* unsigned int CRC_FUNCTION_NAME(unsigned int crc, void *p, unsigned long len) */
|
|
FUNC_START(CRC_FUNCTION_NAME)
|
|
std r31,-8(r1)
|
|
std r30,-16(r1)
|
|
std r29,-24(r1)
|
|
std r28,-32(r1)
|
|
std r27,-40(r1)
|
|
std r26,-48(r1)
|
|
std r25,-56(r1)
|
|
|
|
li off16,16
|
|
li off32,32
|
|
li off48,48
|
|
li off64,64
|
|
li off80,80
|
|
li off96,96
|
|
li off112,112
|
|
li r0,0
|
|
|
|
/* Enough room for saving 10 non volatile VMX registers */
|
|
subi r6,r1,56+10*16
|
|
subi r7,r1,56+2*16
|
|
|
|
stvx v20,0,r6
|
|
stvx v21,off16,r6
|
|
stvx v22,off32,r6
|
|
stvx v23,off48,r6
|
|
stvx v24,off64,r6
|
|
stvx v25,off80,r6
|
|
stvx v26,off96,r6
|
|
stvx v27,off112,r6
|
|
stvx v28,0,r7
|
|
stvx v29,off16,r7
|
|
|
|
mr r10,r3
|
|
|
|
vxor zeroes,zeroes,zeroes
|
|
vspltisw v0,-1
|
|
|
|
vsldoi mask_32bit,zeroes,v0,4
|
|
vsldoi mask_64bit,zeroes,v0,8
|
|
|
|
/* Get the initial value into v8 */
|
|
vxor v8,v8,v8
|
|
MTVRD(v8, R3)
|
|
#ifdef REFLECT
|
|
vsldoi v8,zeroes,v8,8 /* shift into bottom 32 bits */
|
|
#else
|
|
vsldoi v8,v8,zeroes,4 /* shift into top 32 bits */
|
|
#endif
|
|
|
|
#ifdef BYTESWAP_DATA
|
|
addis r3,r2,.byteswap_constant@toc@ha
|
|
addi r3,r3,.byteswap_constant@toc@l
|
|
|
|
lvx byteswap,0,r3
|
|
addi r3,r3,16
|
|
#endif
|
|
|
|
cmpdi r5,256
|
|
blt .Lshort
|
|
|
|
rldicr r6,r5,0,56
|
|
|
|
/* Checksum in blocks of MAX_SIZE */
|
|
1: lis r7,MAX_SIZE@h
|
|
ori r7,r7,MAX_SIZE@l
|
|
mr r9,r7
|
|
cmpd r6,r7
|
|
bgt 2f
|
|
mr r7,r6
|
|
2: subf r6,r7,r6
|
|
|
|
/* our main loop does 128 bytes at a time */
|
|
srdi r7,r7,7
|
|
|
|
/*
|
|
* Work out the offset into the constants table to start at. Each
|
|
* constant is 16 bytes, and it is used against 128 bytes of input
|
|
* data - 128 / 16 = 8
|
|
*/
|
|
sldi r8,r7,4
|
|
srdi r9,r9,3
|
|
subf r8,r8,r9
|
|
|
|
/* We reduce our final 128 bytes in a separate step */
|
|
addi r7,r7,-1
|
|
mtctr r7
|
|
|
|
addis r3,r2,.constants@toc@ha
|
|
addi r3,r3,.constants@toc@l
|
|
|
|
/* Find the start of our constants */
|
|
add r3,r3,r8
|
|
|
|
/* zero v0-v7 which will contain our checksums */
|
|
vxor v0,v0,v0
|
|
vxor v1,v1,v1
|
|
vxor v2,v2,v2
|
|
vxor v3,v3,v3
|
|
vxor v4,v4,v4
|
|
vxor v5,v5,v5
|
|
vxor v6,v6,v6
|
|
vxor v7,v7,v7
|
|
|
|
lvx const1,0,r3
|
|
|
|
/*
|
|
* If we are looping back to consume more data we use the values
|
|
* already in v16-v23.
|
|
*/
|
|
cmpdi r0,1
|
|
beq 2f
|
|
|
|
/* First warm up pass */
|
|
lvx v16,0,r4
|
|
lvx v17,off16,r4
|
|
VPERM(v16,v16,v16,byteswap)
|
|
VPERM(v17,v17,v17,byteswap)
|
|
lvx v18,off32,r4
|
|
lvx v19,off48,r4
|
|
VPERM(v18,v18,v18,byteswap)
|
|
VPERM(v19,v19,v19,byteswap)
|
|
lvx v20,off64,r4
|
|
lvx v21,off80,r4
|
|
VPERM(v20,v20,v20,byteswap)
|
|
VPERM(v21,v21,v21,byteswap)
|
|
lvx v22,off96,r4
|
|
lvx v23,off112,r4
|
|
VPERM(v22,v22,v22,byteswap)
|
|
VPERM(v23,v23,v23,byteswap)
|
|
addi r4,r4,8*16
|
|
|
|
/* xor in initial value */
|
|
vxor v16,v16,v8
|
|
|
|
2: bdz .Lfirst_warm_up_done
|
|
|
|
addi r3,r3,16
|
|
lvx const2,0,r3
|
|
|
|
/* Second warm up pass */
|
|
VPMSUMD(v8,v16,const1)
|
|
lvx v16,0,r4
|
|
VPERM(v16,v16,v16,byteswap)
|
|
ori r2,r2,0
|
|
|
|
VPMSUMD(v9,v17,const1)
|
|
lvx v17,off16,r4
|
|
VPERM(v17,v17,v17,byteswap)
|
|
ori r2,r2,0
|
|
|
|
VPMSUMD(v10,v18,const1)
|
|
lvx v18,off32,r4
|
|
VPERM(v18,v18,v18,byteswap)
|
|
ori r2,r2,0
|
|
|
|
VPMSUMD(v11,v19,const1)
|
|
lvx v19,off48,r4
|
|
VPERM(v19,v19,v19,byteswap)
|
|
ori r2,r2,0
|
|
|
|
VPMSUMD(v12,v20,const1)
|
|
lvx v20,off64,r4
|
|
VPERM(v20,v20,v20,byteswap)
|
|
ori r2,r2,0
|
|
|
|
VPMSUMD(v13,v21,const1)
|
|
lvx v21,off80,r4
|
|
VPERM(v21,v21,v21,byteswap)
|
|
ori r2,r2,0
|
|
|
|
VPMSUMD(v14,v22,const1)
|
|
lvx v22,off96,r4
|
|
VPERM(v22,v22,v22,byteswap)
|
|
ori r2,r2,0
|
|
|
|
VPMSUMD(v15,v23,const1)
|
|
lvx v23,off112,r4
|
|
VPERM(v23,v23,v23,byteswap)
|
|
|
|
addi r4,r4,8*16
|
|
|
|
bdz .Lfirst_cool_down
|
|
|
|
/*
|
|
* main loop. We modulo schedule it such that it takes three iterations
|
|
* to complete - first iteration load, second iteration vpmsum, third
|
|
* iteration xor.
|
|
*/
|
|
.balign 16
|
|
4: lvx const1,0,r3
|
|
addi r3,r3,16
|
|
ori r2,r2,0
|
|
|
|
vxor v0,v0,v8
|
|
VPMSUMD(v8,v16,const2)
|
|
lvx v16,0,r4
|
|
VPERM(v16,v16,v16,byteswap)
|
|
ori r2,r2,0
|
|
|
|
vxor v1,v1,v9
|
|
VPMSUMD(v9,v17,const2)
|
|
lvx v17,off16,r4
|
|
VPERM(v17,v17,v17,byteswap)
|
|
ori r2,r2,0
|
|
|
|
vxor v2,v2,v10
|
|
VPMSUMD(v10,v18,const2)
|
|
lvx v18,off32,r4
|
|
VPERM(v18,v18,v18,byteswap)
|
|
ori r2,r2,0
|
|
|
|
vxor v3,v3,v11
|
|
VPMSUMD(v11,v19,const2)
|
|
lvx v19,off48,r4
|
|
VPERM(v19,v19,v19,byteswap)
|
|
lvx const2,0,r3
|
|
ori r2,r2,0
|
|
|
|
vxor v4,v4,v12
|
|
VPMSUMD(v12,v20,const1)
|
|
lvx v20,off64,r4
|
|
VPERM(v20,v20,v20,byteswap)
|
|
ori r2,r2,0
|
|
|
|
vxor v5,v5,v13
|
|
VPMSUMD(v13,v21,const1)
|
|
lvx v21,off80,r4
|
|
VPERM(v21,v21,v21,byteswap)
|
|
ori r2,r2,0
|
|
|
|
vxor v6,v6,v14
|
|
VPMSUMD(v14,v22,const1)
|
|
lvx v22,off96,r4
|
|
VPERM(v22,v22,v22,byteswap)
|
|
ori r2,r2,0
|
|
|
|
vxor v7,v7,v15
|
|
VPMSUMD(v15,v23,const1)
|
|
lvx v23,off112,r4
|
|
VPERM(v23,v23,v23,byteswap)
|
|
|
|
addi r4,r4,8*16
|
|
|
|
bdnz 4b
|
|
|
|
.Lfirst_cool_down:
|
|
/* First cool down pass */
|
|
lvx const1,0,r3
|
|
addi r3,r3,16
|
|
|
|
vxor v0,v0,v8
|
|
VPMSUMD(v8,v16,const1)
|
|
ori r2,r2,0
|
|
|
|
vxor v1,v1,v9
|
|
VPMSUMD(v9,v17,const1)
|
|
ori r2,r2,0
|
|
|
|
vxor v2,v2,v10
|
|
VPMSUMD(v10,v18,const1)
|
|
ori r2,r2,0
|
|
|
|
vxor v3,v3,v11
|
|
VPMSUMD(v11,v19,const1)
|
|
ori r2,r2,0
|
|
|
|
vxor v4,v4,v12
|
|
VPMSUMD(v12,v20,const1)
|
|
ori r2,r2,0
|
|
|
|
vxor v5,v5,v13
|
|
VPMSUMD(v13,v21,const1)
|
|
ori r2,r2,0
|
|
|
|
vxor v6,v6,v14
|
|
VPMSUMD(v14,v22,const1)
|
|
ori r2,r2,0
|
|
|
|
vxor v7,v7,v15
|
|
VPMSUMD(v15,v23,const1)
|
|
ori r2,r2,0
|
|
|
|
.Lsecond_cool_down:
|
|
/* Second cool down pass */
|
|
vxor v0,v0,v8
|
|
vxor v1,v1,v9
|
|
vxor v2,v2,v10
|
|
vxor v3,v3,v11
|
|
vxor v4,v4,v12
|
|
vxor v5,v5,v13
|
|
vxor v6,v6,v14
|
|
vxor v7,v7,v15
|
|
|
|
#ifdef REFLECT
|
|
/*
|
|
* vpmsumd produces a 96 bit result in the least significant bits
|
|
* of the register. Since we are bit reflected we have to shift it
|
|
* left 32 bits so it occupies the least significant bits in the
|
|
* bit reflected domain.
|
|
*/
|
|
vsldoi v0,v0,zeroes,4
|
|
vsldoi v1,v1,zeroes,4
|
|
vsldoi v2,v2,zeroes,4
|
|
vsldoi v3,v3,zeroes,4
|
|
vsldoi v4,v4,zeroes,4
|
|
vsldoi v5,v5,zeroes,4
|
|
vsldoi v6,v6,zeroes,4
|
|
vsldoi v7,v7,zeroes,4
|
|
#endif
|
|
|
|
/* xor with last 1024 bits */
|
|
lvx v8,0,r4
|
|
lvx v9,off16,r4
|
|
VPERM(v8,v8,v8,byteswap)
|
|
VPERM(v9,v9,v9,byteswap)
|
|
lvx v10,off32,r4
|
|
lvx v11,off48,r4
|
|
VPERM(v10,v10,v10,byteswap)
|
|
VPERM(v11,v11,v11,byteswap)
|
|
lvx v12,off64,r4
|
|
lvx v13,off80,r4
|
|
VPERM(v12,v12,v12,byteswap)
|
|
VPERM(v13,v13,v13,byteswap)
|
|
lvx v14,off96,r4
|
|
lvx v15,off112,r4
|
|
VPERM(v14,v14,v14,byteswap)
|
|
VPERM(v15,v15,v15,byteswap)
|
|
|
|
addi r4,r4,8*16
|
|
|
|
vxor v16,v0,v8
|
|
vxor v17,v1,v9
|
|
vxor v18,v2,v10
|
|
vxor v19,v3,v11
|
|
vxor v20,v4,v12
|
|
vxor v21,v5,v13
|
|
vxor v22,v6,v14
|
|
vxor v23,v7,v15
|
|
|
|
li r0,1
|
|
cmpdi r6,0
|
|
addi r6,r6,128
|
|
bne 1b
|
|
|
|
/* Work out how many bytes we have left */
|
|
andi. r5,r5,127
|
|
|
|
/* Calculate where in the constant table we need to start */
|
|
subfic r6,r5,128
|
|
add r3,r3,r6
|
|
|
|
/* How many 16 byte chunks are in the tail */
|
|
srdi r7,r5,4
|
|
mtctr r7
|
|
|
|
/*
|
|
* Reduce the previously calculated 1024 bits to 64 bits, shifting
|
|
* 32 bits to include the trailing 32 bits of zeros
|
|
*/
|
|
lvx v0,0,r3
|
|
lvx v1,off16,r3
|
|
lvx v2,off32,r3
|
|
lvx v3,off48,r3
|
|
lvx v4,off64,r3
|
|
lvx v5,off80,r3
|
|
lvx v6,off96,r3
|
|
lvx v7,off112,r3
|
|
addi r3,r3,8*16
|
|
|
|
VPMSUMW(v0,v16,v0)
|
|
VPMSUMW(v1,v17,v1)
|
|
VPMSUMW(v2,v18,v2)
|
|
VPMSUMW(v3,v19,v3)
|
|
VPMSUMW(v4,v20,v4)
|
|
VPMSUMW(v5,v21,v5)
|
|
VPMSUMW(v6,v22,v6)
|
|
VPMSUMW(v7,v23,v7)
|
|
|
|
/* Now reduce the tail (0 - 112 bytes) */
|
|
cmpdi r7,0
|
|
beq 1f
|
|
|
|
lvx v16,0,r4
|
|
lvx v17,0,r3
|
|
VPERM(v16,v16,v16,byteswap)
|
|
VPMSUMW(v16,v16,v17)
|
|
vxor v0,v0,v16
|
|
bdz 1f
|
|
|
|
lvx v16,off16,r4
|
|
lvx v17,off16,r3
|
|
VPERM(v16,v16,v16,byteswap)
|
|
VPMSUMW(v16,v16,v17)
|
|
vxor v0,v0,v16
|
|
bdz 1f
|
|
|
|
lvx v16,off32,r4
|
|
lvx v17,off32,r3
|
|
VPERM(v16,v16,v16,byteswap)
|
|
VPMSUMW(v16,v16,v17)
|
|
vxor v0,v0,v16
|
|
bdz 1f
|
|
|
|
lvx v16,off48,r4
|
|
lvx v17,off48,r3
|
|
VPERM(v16,v16,v16,byteswap)
|
|
VPMSUMW(v16,v16,v17)
|
|
vxor v0,v0,v16
|
|
bdz 1f
|
|
|
|
lvx v16,off64,r4
|
|
lvx v17,off64,r3
|
|
VPERM(v16,v16,v16,byteswap)
|
|
VPMSUMW(v16,v16,v17)
|
|
vxor v0,v0,v16
|
|
bdz 1f
|
|
|
|
lvx v16,off80,r4
|
|
lvx v17,off80,r3
|
|
VPERM(v16,v16,v16,byteswap)
|
|
VPMSUMW(v16,v16,v17)
|
|
vxor v0,v0,v16
|
|
bdz 1f
|
|
|
|
lvx v16,off96,r4
|
|
lvx v17,off96,r3
|
|
VPERM(v16,v16,v16,byteswap)
|
|
VPMSUMW(v16,v16,v17)
|
|
vxor v0,v0,v16
|
|
|
|
/* Now xor all the parallel chunks together */
|
|
1: vxor v0,v0,v1
|
|
vxor v2,v2,v3
|
|
vxor v4,v4,v5
|
|
vxor v6,v6,v7
|
|
|
|
vxor v0,v0,v2
|
|
vxor v4,v4,v6
|
|
|
|
vxor v0,v0,v4
|
|
|
|
.Lbarrett_reduction:
|
|
/* Barrett constants */
|
|
addis r3,r2,.barrett_constants@toc@ha
|
|
addi r3,r3,.barrett_constants@toc@l
|
|
|
|
lvx const1,0,r3
|
|
lvx const2,off16,r3
|
|
|
|
vsldoi v1,v0,v0,8
|
|
vxor v0,v0,v1 /* xor two 64 bit results together */
|
|
|
|
#ifdef REFLECT
|
|
/* shift left one bit */
|
|
vspltisb v1,1
|
|
vsl v0,v0,v1
|
|
#endif
|
|
|
|
vand v0,v0,mask_64bit
|
|
#ifndef REFLECT
|
|
/*
|
|
* Now for the Barrett reduction algorithm. The idea is to calculate q,
|
|
* the multiple of our polynomial that we need to subtract. By
|
|
* doing the computation 2x bits higher (ie 64 bits) and shifting the
|
|
* result back down 2x bits, we round down to the nearest multiple.
|
|
*/
|
|
VPMSUMD(v1,v0,const1) /* ma */
|
|
vsldoi v1,zeroes,v1,8 /* q = floor(ma/(2^64)) */
|
|
VPMSUMD(v1,v1,const2) /* qn */
|
|
vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */
|
|
|
|
/*
|
|
* Get the result into r3. We need to shift it left 8 bytes:
|
|
* V0 [ 0 1 2 X ]
|
|
* V0 [ 0 X 2 3 ]
|
|
*/
|
|
vsldoi v0,v0,zeroes,8 /* shift result into top 64 bits */
|
|
#else
|
|
/*
|
|
* The reflected version of Barrett reduction. Instead of bit
|
|
* reflecting our data (which is expensive to do), we bit reflect our
|
|
* constants and our algorithm, which means the intermediate data in
|
|
* our vector registers goes from 0-63 instead of 63-0. We can reflect
|
|
* the algorithm because we don't carry in mod 2 arithmetic.
|
|
*/
|
|
vand v1,v0,mask_32bit /* bottom 32 bits of a */
|
|
VPMSUMD(v1,v1,const1) /* ma */
|
|
vand v1,v1,mask_32bit /* bottom 32bits of ma */
|
|
VPMSUMD(v1,v1,const2) /* qn */
|
|
vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */
|
|
|
|
/*
|
|
* Since we are bit reflected, the result (ie the low 32 bits) is in
|
|
* the high 32 bits. We just need to shift it left 4 bytes
|
|
* V0 [ 0 1 X 3 ]
|
|
* V0 [ 0 X 2 3 ]
|
|
*/
|
|
vsldoi v0,v0,zeroes,4 /* shift result into top 64 bits of */
|
|
#endif
|
|
|
|
/* Get it into r3 */
|
|
MFVRD(R3, v0)
|
|
|
|
.Lout:
|
|
subi r6,r1,56+10*16
|
|
subi r7,r1,56+2*16
|
|
|
|
lvx v20,0,r6
|
|
lvx v21,off16,r6
|
|
lvx v22,off32,r6
|
|
lvx v23,off48,r6
|
|
lvx v24,off64,r6
|
|
lvx v25,off80,r6
|
|
lvx v26,off96,r6
|
|
lvx v27,off112,r6
|
|
lvx v28,0,r7
|
|
lvx v29,off16,r7
|
|
|
|
ld r31,-8(r1)
|
|
ld r30,-16(r1)
|
|
ld r29,-24(r1)
|
|
ld r28,-32(r1)
|
|
ld r27,-40(r1)
|
|
ld r26,-48(r1)
|
|
ld r25,-56(r1)
|
|
|
|
blr
|
|
|
|
.Lfirst_warm_up_done:
|
|
lvx const1,0,r3
|
|
addi r3,r3,16
|
|
|
|
VPMSUMD(v8,v16,const1)
|
|
VPMSUMD(v9,v17,const1)
|
|
VPMSUMD(v10,v18,const1)
|
|
VPMSUMD(v11,v19,const1)
|
|
VPMSUMD(v12,v20,const1)
|
|
VPMSUMD(v13,v21,const1)
|
|
VPMSUMD(v14,v22,const1)
|
|
VPMSUMD(v15,v23,const1)
|
|
|
|
b .Lsecond_cool_down
|
|
|
|
.Lshort:
|
|
cmpdi r5,0
|
|
beq .Lzero
|
|
|
|
addis r3,r2,.short_constants@toc@ha
|
|
addi r3,r3,.short_constants@toc@l
|
|
|
|
/* Calculate where in the constant table we need to start */
|
|
subfic r6,r5,256
|
|
add r3,r3,r6
|
|
|
|
/* How many 16 byte chunks? */
|
|
srdi r7,r5,4
|
|
mtctr r7
|
|
|
|
vxor v19,v19,v19
|
|
vxor v20,v20,v20
|
|
|
|
lvx v0,0,r4
|
|
lvx v16,0,r3
|
|
VPERM(v0,v0,v16,byteswap)
|
|
vxor v0,v0,v8 /* xor in initial value */
|
|
VPMSUMW(v0,v0,v16)
|
|
bdz .Lv0
|
|
|
|
lvx v1,off16,r4
|
|
lvx v17,off16,r3
|
|
VPERM(v1,v1,v17,byteswap)
|
|
VPMSUMW(v1,v1,v17)
|
|
bdz .Lv1
|
|
|
|
lvx v2,off32,r4
|
|
lvx v16,off32,r3
|
|
VPERM(v2,v2,v16,byteswap)
|
|
VPMSUMW(v2,v2,v16)
|
|
bdz .Lv2
|
|
|
|
lvx v3,off48,r4
|
|
lvx v17,off48,r3
|
|
VPERM(v3,v3,v17,byteswap)
|
|
VPMSUMW(v3,v3,v17)
|
|
bdz .Lv3
|
|
|
|
lvx v4,off64,r4
|
|
lvx v16,off64,r3
|
|
VPERM(v4,v4,v16,byteswap)
|
|
VPMSUMW(v4,v4,v16)
|
|
bdz .Lv4
|
|
|
|
lvx v5,off80,r4
|
|
lvx v17,off80,r3
|
|
VPERM(v5,v5,v17,byteswap)
|
|
VPMSUMW(v5,v5,v17)
|
|
bdz .Lv5
|
|
|
|
lvx v6,off96,r4
|
|
lvx v16,off96,r3
|
|
VPERM(v6,v6,v16,byteswap)
|
|
VPMSUMW(v6,v6,v16)
|
|
bdz .Lv6
|
|
|
|
lvx v7,off112,r4
|
|
lvx v17,off112,r3
|
|
VPERM(v7,v7,v17,byteswap)
|
|
VPMSUMW(v7,v7,v17)
|
|
bdz .Lv7
|
|
|
|
addi r3,r3,128
|
|
addi r4,r4,128
|
|
|
|
lvx v8,0,r4
|
|
lvx v16,0,r3
|
|
VPERM(v8,v8,v16,byteswap)
|
|
VPMSUMW(v8,v8,v16)
|
|
bdz .Lv8
|
|
|
|
lvx v9,off16,r4
|
|
lvx v17,off16,r3
|
|
VPERM(v9,v9,v17,byteswap)
|
|
VPMSUMW(v9,v9,v17)
|
|
bdz .Lv9
|
|
|
|
lvx v10,off32,r4
|
|
lvx v16,off32,r3
|
|
VPERM(v10,v10,v16,byteswap)
|
|
VPMSUMW(v10,v10,v16)
|
|
bdz .Lv10
|
|
|
|
lvx v11,off48,r4
|
|
lvx v17,off48,r3
|
|
VPERM(v11,v11,v17,byteswap)
|
|
VPMSUMW(v11,v11,v17)
|
|
bdz .Lv11
|
|
|
|
lvx v12,off64,r4
|
|
lvx v16,off64,r3
|
|
VPERM(v12,v12,v16,byteswap)
|
|
VPMSUMW(v12,v12,v16)
|
|
bdz .Lv12
|
|
|
|
lvx v13,off80,r4
|
|
lvx v17,off80,r3
|
|
VPERM(v13,v13,v17,byteswap)
|
|
VPMSUMW(v13,v13,v17)
|
|
bdz .Lv13
|
|
|
|
lvx v14,off96,r4
|
|
lvx v16,off96,r3
|
|
VPERM(v14,v14,v16,byteswap)
|
|
VPMSUMW(v14,v14,v16)
|
|
bdz .Lv14
|
|
|
|
lvx v15,off112,r4
|
|
lvx v17,off112,r3
|
|
VPERM(v15,v15,v17,byteswap)
|
|
VPMSUMW(v15,v15,v17)
|
|
|
|
.Lv15: vxor v19,v19,v15
|
|
.Lv14: vxor v20,v20,v14
|
|
.Lv13: vxor v19,v19,v13
|
|
.Lv12: vxor v20,v20,v12
|
|
.Lv11: vxor v19,v19,v11
|
|
.Lv10: vxor v20,v20,v10
|
|
.Lv9: vxor v19,v19,v9
|
|
.Lv8: vxor v20,v20,v8
|
|
.Lv7: vxor v19,v19,v7
|
|
.Lv6: vxor v20,v20,v6
|
|
.Lv5: vxor v19,v19,v5
|
|
.Lv4: vxor v20,v20,v4
|
|
.Lv3: vxor v19,v19,v3
|
|
.Lv2: vxor v20,v20,v2
|
|
.Lv1: vxor v19,v19,v1
|
|
.Lv0: vxor v20,v20,v0
|
|
|
|
vxor v0,v19,v20
|
|
|
|
b .Lbarrett_reduction
|
|
|
|
.Lzero:
|
|
mr r3,r10
|
|
b .Lout
|
|
|
|
FUNC_END(CRC_FUNCTION_NAME)
|