linux/drivers/devfreq/governor_passive.c
Christian 'Ansuel' Marangi 0cca7e8dcf PM / devfreq: Fix cpufreq passive unregister erroring on PROBE_DEFER
With the passive governor, the cpu based scaling can PROBE_DEFER due to
the fact that CPU policy are not ready.
The cpufreq passive unregister notifier is called both from the
GOV_START errors and for the GOV_STOP and assume the notifier is
successfully registred every time. With GOV_START failing it's wrong to
loop over each possible CPU since the register path has failed for
some CPU policy not ready. Change the logic and unregister the notifer
based on the current allocated parent_cpu_data list to correctly handle
errors and the governor unregister path.

Fixes: a03dacb031 ("PM / devfreq: Add cpu based scaling support to passive governor")
Signed-off-by: Christian 'Ansuel' Marangi <ansuelsmth@gmail.com>
Signed-off-by: Chanwoo Choi <cw00.choi@samsung.com>
2022-06-30 05:11:17 +09:00

454 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/devfreq/governor_passive.c
*
* Copyright (C) 2016 Samsung Electronics
* Author: Chanwoo Choi <cw00.choi@samsung.com>
* Author: MyungJoo Ham <myungjoo.ham@samsung.com>
*/
#include <linux/module.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/devfreq.h>
#include "governor.h"
#define HZ_PER_KHZ 1000
static struct devfreq_cpu_data *
get_parent_cpu_data(struct devfreq_passive_data *p_data,
struct cpufreq_policy *policy)
{
struct devfreq_cpu_data *parent_cpu_data;
if (!p_data || !policy)
return NULL;
list_for_each_entry(parent_cpu_data, &p_data->cpu_data_list, node)
if (parent_cpu_data->first_cpu == cpumask_first(policy->related_cpus))
return parent_cpu_data;
return NULL;
}
static void delete_parent_cpu_data(struct devfreq_passive_data *p_data)
{
struct devfreq_cpu_data *parent_cpu_data, *tmp;
list_for_each_entry_safe(parent_cpu_data, tmp, &p_data->cpu_data_list, node) {
list_del(&parent_cpu_data->node);
if (parent_cpu_data->opp_table)
dev_pm_opp_put_opp_table(parent_cpu_data->opp_table);
kfree(parent_cpu_data);
}
}
static unsigned long get_target_freq_by_required_opp(struct device *p_dev,
struct opp_table *p_opp_table,
struct opp_table *opp_table,
unsigned long *freq)
{
struct dev_pm_opp *opp = NULL, *p_opp = NULL;
unsigned long target_freq;
if (!p_dev || !p_opp_table || !opp_table || !freq)
return 0;
p_opp = devfreq_recommended_opp(p_dev, freq, 0);
if (IS_ERR(p_opp))
return 0;
opp = dev_pm_opp_xlate_required_opp(p_opp_table, opp_table, p_opp);
dev_pm_opp_put(p_opp);
if (IS_ERR(opp))
return 0;
target_freq = dev_pm_opp_get_freq(opp);
dev_pm_opp_put(opp);
return target_freq;
}
static int get_target_freq_with_cpufreq(struct devfreq *devfreq,
unsigned long *target_freq)
{
struct devfreq_passive_data *p_data =
(struct devfreq_passive_data *)devfreq->data;
struct devfreq_cpu_data *parent_cpu_data;
struct cpufreq_policy *policy;
unsigned long cpu, cpu_cur, cpu_min, cpu_max, cpu_percent;
unsigned long dev_min, dev_max;
unsigned long freq = 0;
int ret = 0;
for_each_online_cpu(cpu) {
policy = cpufreq_cpu_get(cpu);
if (!policy) {
ret = -EINVAL;
continue;
}
parent_cpu_data = get_parent_cpu_data(p_data, policy);
if (!parent_cpu_data) {
cpufreq_cpu_put(policy);
continue;
}
/* Get target freq via required opps */
cpu_cur = parent_cpu_data->cur_freq * HZ_PER_KHZ;
freq = get_target_freq_by_required_opp(parent_cpu_data->dev,
parent_cpu_data->opp_table,
devfreq->opp_table, &cpu_cur);
if (freq) {
*target_freq = max(freq, *target_freq);
cpufreq_cpu_put(policy);
continue;
}
/* Use interpolation if required opps is not available */
devfreq_get_freq_range(devfreq, &dev_min, &dev_max);
cpu_min = parent_cpu_data->min_freq;
cpu_max = parent_cpu_data->max_freq;
cpu_cur = parent_cpu_data->cur_freq;
cpu_percent = ((cpu_cur - cpu_min) * 100) / (cpu_max - cpu_min);
freq = dev_min + mult_frac(dev_max - dev_min, cpu_percent, 100);
*target_freq = max(freq, *target_freq);
cpufreq_cpu_put(policy);
}
return ret;
}
static int get_target_freq_with_devfreq(struct devfreq *devfreq,
unsigned long *freq)
{
struct devfreq_passive_data *p_data
= (struct devfreq_passive_data *)devfreq->data;
struct devfreq *parent_devfreq = (struct devfreq *)p_data->parent;
unsigned long child_freq = ULONG_MAX;
int i, count;
/* Get target freq via required opps */
child_freq = get_target_freq_by_required_opp(parent_devfreq->dev.parent,
parent_devfreq->opp_table,
devfreq->opp_table, freq);
if (child_freq)
goto out;
/* Use interpolation if required opps is not available */
for (i = 0; i < parent_devfreq->profile->max_state; i++)
if (parent_devfreq->profile->freq_table[i] == *freq)
break;
if (i == parent_devfreq->profile->max_state)
return -EINVAL;
if (i < devfreq->profile->max_state) {
child_freq = devfreq->profile->freq_table[i];
} else {
count = devfreq->profile->max_state;
child_freq = devfreq->profile->freq_table[count - 1];
}
out:
*freq = child_freq;
return 0;
}
static int devfreq_passive_get_target_freq(struct devfreq *devfreq,
unsigned long *freq)
{
struct devfreq_passive_data *p_data =
(struct devfreq_passive_data *)devfreq->data;
int ret;
if (!p_data)
return -EINVAL;
/*
* If the devfreq device with passive governor has the specific method
* to determine the next frequency, should use the get_target_freq()
* of struct devfreq_passive_data.
*/
if (p_data->get_target_freq)
return p_data->get_target_freq(devfreq, freq);
switch (p_data->parent_type) {
case DEVFREQ_PARENT_DEV:
ret = get_target_freq_with_devfreq(devfreq, freq);
break;
case CPUFREQ_PARENT_DEV:
ret = get_target_freq_with_cpufreq(devfreq, freq);
break;
default:
ret = -EINVAL;
dev_err(&devfreq->dev, "Invalid parent type\n");
break;
}
return ret;
}
static int cpufreq_passive_notifier_call(struct notifier_block *nb,
unsigned long event, void *ptr)
{
struct devfreq_passive_data *p_data =
container_of(nb, struct devfreq_passive_data, nb);
struct devfreq *devfreq = (struct devfreq *)p_data->this;
struct devfreq_cpu_data *parent_cpu_data;
struct cpufreq_freqs *freqs = ptr;
unsigned int cur_freq;
int ret;
if (event != CPUFREQ_POSTCHANGE || !freqs)
return 0;
parent_cpu_data = get_parent_cpu_data(p_data, freqs->policy);
if (!parent_cpu_data || parent_cpu_data->cur_freq == freqs->new)
return 0;
cur_freq = parent_cpu_data->cur_freq;
parent_cpu_data->cur_freq = freqs->new;
mutex_lock(&devfreq->lock);
ret = devfreq_update_target(devfreq, freqs->new);
mutex_unlock(&devfreq->lock);
if (ret) {
parent_cpu_data->cur_freq = cur_freq;
dev_err(&devfreq->dev, "failed to update the frequency.\n");
return ret;
}
return 0;
}
static int cpufreq_passive_unregister_notifier(struct devfreq *devfreq)
{
struct devfreq_passive_data *p_data
= (struct devfreq_passive_data *)devfreq->data;
int ret;
if (p_data->nb.notifier_call) {
ret = cpufreq_unregister_notifier(&p_data->nb,
CPUFREQ_TRANSITION_NOTIFIER);
if (ret < 0)
return ret;
}
delete_parent_cpu_data(p_data);
return 0;
}
static int cpufreq_passive_register_notifier(struct devfreq *devfreq)
{
struct devfreq_passive_data *p_data
= (struct devfreq_passive_data *)devfreq->data;
struct device *dev = devfreq->dev.parent;
struct opp_table *opp_table = NULL;
struct devfreq_cpu_data *parent_cpu_data;
struct cpufreq_policy *policy;
struct device *cpu_dev;
unsigned int cpu;
int ret;
p_data->cpu_data_list
= (struct list_head)LIST_HEAD_INIT(p_data->cpu_data_list);
p_data->nb.notifier_call = cpufreq_passive_notifier_call;
ret = cpufreq_register_notifier(&p_data->nb, CPUFREQ_TRANSITION_NOTIFIER);
if (ret) {
dev_err(dev, "failed to register cpufreq notifier\n");
p_data->nb.notifier_call = NULL;
goto err;
}
for_each_possible_cpu(cpu) {
policy = cpufreq_cpu_get(cpu);
if (!policy) {
ret = -EPROBE_DEFER;
goto err;
}
parent_cpu_data = get_parent_cpu_data(p_data, policy);
if (parent_cpu_data) {
cpufreq_cpu_put(policy);
continue;
}
parent_cpu_data = kzalloc(sizeof(*parent_cpu_data),
GFP_KERNEL);
if (!parent_cpu_data) {
ret = -ENOMEM;
goto err_put_policy;
}
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
dev_err(dev, "failed to get cpu device\n");
ret = -ENODEV;
goto err_free_cpu_data;
}
opp_table = dev_pm_opp_get_opp_table(cpu_dev);
if (IS_ERR(opp_table)) {
dev_err(dev, "failed to get opp_table of cpu%d\n", cpu);
ret = PTR_ERR(opp_table);
goto err_free_cpu_data;
}
parent_cpu_data->dev = cpu_dev;
parent_cpu_data->opp_table = opp_table;
parent_cpu_data->first_cpu = cpumask_first(policy->related_cpus);
parent_cpu_data->cur_freq = policy->cur;
parent_cpu_data->min_freq = policy->cpuinfo.min_freq;
parent_cpu_data->max_freq = policy->cpuinfo.max_freq;
list_add_tail(&parent_cpu_data->node, &p_data->cpu_data_list);
cpufreq_cpu_put(policy);
}
mutex_lock(&devfreq->lock);
ret = devfreq_update_target(devfreq, 0L);
mutex_unlock(&devfreq->lock);
if (ret)
dev_err(dev, "failed to update the frequency\n");
return ret;
err_free_cpu_data:
kfree(parent_cpu_data);
err_put_policy:
cpufreq_cpu_put(policy);
err:
WARN_ON(cpufreq_passive_unregister_notifier(devfreq));
return ret;
}
static int devfreq_passive_notifier_call(struct notifier_block *nb,
unsigned long event, void *ptr)
{
struct devfreq_passive_data *data
= container_of(nb, struct devfreq_passive_data, nb);
struct devfreq *devfreq = (struct devfreq *)data->this;
struct devfreq *parent = (struct devfreq *)data->parent;
struct devfreq_freqs *freqs = (struct devfreq_freqs *)ptr;
unsigned long freq = freqs->new;
int ret = 0;
mutex_lock_nested(&devfreq->lock, SINGLE_DEPTH_NESTING);
switch (event) {
case DEVFREQ_PRECHANGE:
if (parent->previous_freq > freq)
ret = devfreq_update_target(devfreq, freq);
break;
case DEVFREQ_POSTCHANGE:
if (parent->previous_freq < freq)
ret = devfreq_update_target(devfreq, freq);
break;
}
mutex_unlock(&devfreq->lock);
if (ret < 0)
dev_warn(&devfreq->dev,
"failed to update devfreq using passive governor\n");
return NOTIFY_DONE;
}
static int devfreq_passive_unregister_notifier(struct devfreq *devfreq)
{
struct devfreq_passive_data *p_data
= (struct devfreq_passive_data *)devfreq->data;
struct devfreq *parent = (struct devfreq *)p_data->parent;
struct notifier_block *nb = &p_data->nb;
return devfreq_unregister_notifier(parent, nb, DEVFREQ_TRANSITION_NOTIFIER);
}
static int devfreq_passive_register_notifier(struct devfreq *devfreq)
{
struct devfreq_passive_data *p_data
= (struct devfreq_passive_data *)devfreq->data;
struct devfreq *parent = (struct devfreq *)p_data->parent;
struct notifier_block *nb = &p_data->nb;
if (!parent)
return -EPROBE_DEFER;
nb->notifier_call = devfreq_passive_notifier_call;
return devfreq_register_notifier(parent, nb, DEVFREQ_TRANSITION_NOTIFIER);
}
static int devfreq_passive_event_handler(struct devfreq *devfreq,
unsigned int event, void *data)
{
struct devfreq_passive_data *p_data
= (struct devfreq_passive_data *)devfreq->data;
int ret = 0;
if (!p_data)
return -EINVAL;
p_data->this = devfreq;
switch (event) {
case DEVFREQ_GOV_START:
if (p_data->parent_type == DEVFREQ_PARENT_DEV)
ret = devfreq_passive_register_notifier(devfreq);
else if (p_data->parent_type == CPUFREQ_PARENT_DEV)
ret = cpufreq_passive_register_notifier(devfreq);
break;
case DEVFREQ_GOV_STOP:
if (p_data->parent_type == DEVFREQ_PARENT_DEV)
WARN_ON(devfreq_passive_unregister_notifier(devfreq));
else if (p_data->parent_type == CPUFREQ_PARENT_DEV)
WARN_ON(cpufreq_passive_unregister_notifier(devfreq));
break;
default:
break;
}
return ret;
}
static struct devfreq_governor devfreq_passive = {
.name = DEVFREQ_GOV_PASSIVE,
.flags = DEVFREQ_GOV_FLAG_IMMUTABLE,
.get_target_freq = devfreq_passive_get_target_freq,
.event_handler = devfreq_passive_event_handler,
};
static int __init devfreq_passive_init(void)
{
return devfreq_add_governor(&devfreq_passive);
}
subsys_initcall(devfreq_passive_init);
static void __exit devfreq_passive_exit(void)
{
int ret;
ret = devfreq_remove_governor(&devfreq_passive);
if (ret)
pr_err("%s: failed remove governor %d\n", __func__, ret);
}
module_exit(devfreq_passive_exit);
MODULE_AUTHOR("Chanwoo Choi <cw00.choi@samsung.com>");
MODULE_AUTHOR("MyungJoo Ham <myungjoo.ham@samsung.com>");
MODULE_DESCRIPTION("DEVFREQ Passive governor");
MODULE_LICENSE("GPL v2");