4ff8f2ca6c
Remove all headers, except the ones required to make this header build standalone. Also include stats.h in sched.h explicitly - dependencies already require this. Summary of the build speedup gained through the last ~15 scheduler build & header dependency patches: Cumulative scheduler (kernel/sched/) build time speedup on a Linux distribution's config, which enables all scheduler features, compared to the vanilla kernel: _____________________________________________________________________________ | | Vanilla kernel (v5.13-rc7): |_____________________________________________________________________________ | | Performance counter stats for 'make -j96 kernel/sched/' (3 runs): | | 126,975,564,374 instructions # 1.45 insn per cycle ( +- 0.00% ) | 87,637,847,671 cycles # 3.959 GHz ( +- 0.30% ) | 22,136.96 msec cpu-clock # 7.499 CPUs utilized ( +- 0.29% ) | | 2.9520 +- 0.0169 seconds time elapsed ( +- 0.57% ) |_____________________________________________________________________________ | | Patched kernel: |_____________________________________________________________________________ | | Performance counter stats for 'make -j96 kernel/sched/' (3 runs): | | 50,420,496,914 instructions # 1.47 insn per cycle ( +- 0.00% ) | 34,234,322,038 cycles # 3.946 GHz ( +- 0.31% ) | 8,675.81 msec cpu-clock # 3.053 CPUs utilized ( +- 0.45% ) | | 2.8420 +- 0.0181 seconds time elapsed ( +- 0.64% ) |_____________________________________________________________________________ Summary: - CPU time used to build the scheduler dropped by -60.9%, a reduction from 22.1 clock-seconds to 8.7 clock-seconds. - Wall-clock time to build the scheduler dropped by -3.9%, a reduction from 2.95 seconds to 2.84 seconds. Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Peter Zijlstra <peterz@infradead.org>
305 lines
9.0 KiB
C
305 lines
9.0 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _KERNEL_STATS_H
|
|
#define _KERNEL_STATS_H
|
|
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
|
|
extern struct static_key_false sched_schedstats;
|
|
|
|
/*
|
|
* Expects runqueue lock to be held for atomicity of update
|
|
*/
|
|
static inline void
|
|
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
|
|
{
|
|
if (rq) {
|
|
rq->rq_sched_info.run_delay += delta;
|
|
rq->rq_sched_info.pcount++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Expects runqueue lock to be held for atomicity of update
|
|
*/
|
|
static inline void
|
|
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
|
|
{
|
|
if (rq)
|
|
rq->rq_cpu_time += delta;
|
|
}
|
|
|
|
static inline void
|
|
rq_sched_info_dequeue(struct rq *rq, unsigned long long delta)
|
|
{
|
|
if (rq)
|
|
rq->rq_sched_info.run_delay += delta;
|
|
}
|
|
#define schedstat_enabled() static_branch_unlikely(&sched_schedstats)
|
|
#define __schedstat_inc(var) do { var++; } while (0)
|
|
#define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0)
|
|
#define __schedstat_add(var, amt) do { var += (amt); } while (0)
|
|
#define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0)
|
|
#define __schedstat_set(var, val) do { var = (val); } while (0)
|
|
#define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0)
|
|
#define schedstat_val(var) (var)
|
|
#define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0)
|
|
|
|
void __update_stats_wait_start(struct rq *rq, struct task_struct *p,
|
|
struct sched_statistics *stats);
|
|
|
|
void __update_stats_wait_end(struct rq *rq, struct task_struct *p,
|
|
struct sched_statistics *stats);
|
|
void __update_stats_enqueue_sleeper(struct rq *rq, struct task_struct *p,
|
|
struct sched_statistics *stats);
|
|
|
|
static inline void
|
|
check_schedstat_required(void)
|
|
{
|
|
if (schedstat_enabled())
|
|
return;
|
|
|
|
/* Force schedstat enabled if a dependent tracepoint is active */
|
|
if (trace_sched_stat_wait_enabled() ||
|
|
trace_sched_stat_sleep_enabled() ||
|
|
trace_sched_stat_iowait_enabled() ||
|
|
trace_sched_stat_blocked_enabled() ||
|
|
trace_sched_stat_runtime_enabled())
|
|
printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, stat_blocked and stat_runtime require the kernel parameter schedstats=enable or kernel.sched_schedstats=1\n");
|
|
}
|
|
|
|
#else /* !CONFIG_SCHEDSTATS: */
|
|
|
|
static inline void rq_sched_info_arrive (struct rq *rq, unsigned long long delta) { }
|
|
static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { }
|
|
static inline void rq_sched_info_depart (struct rq *rq, unsigned long long delta) { }
|
|
# define schedstat_enabled() 0
|
|
# define __schedstat_inc(var) do { } while (0)
|
|
# define schedstat_inc(var) do { } while (0)
|
|
# define __schedstat_add(var, amt) do { } while (0)
|
|
# define schedstat_add(var, amt) do { } while (0)
|
|
# define __schedstat_set(var, val) do { } while (0)
|
|
# define schedstat_set(var, val) do { } while (0)
|
|
# define schedstat_val(var) 0
|
|
# define schedstat_val_or_zero(var) 0
|
|
|
|
# define __update_stats_wait_start(rq, p, stats) do { } while (0)
|
|
# define __update_stats_wait_end(rq, p, stats) do { } while (0)
|
|
# define __update_stats_enqueue_sleeper(rq, p, stats) do { } while (0)
|
|
# define check_schedstat_required() do { } while (0)
|
|
|
|
#endif /* CONFIG_SCHEDSTATS */
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
struct sched_entity_stats {
|
|
struct sched_entity se;
|
|
struct sched_statistics stats;
|
|
} __no_randomize_layout;
|
|
#endif
|
|
|
|
static inline struct sched_statistics *
|
|
__schedstats_from_se(struct sched_entity *se)
|
|
{
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
if (!entity_is_task(se))
|
|
return &container_of(se, struct sched_entity_stats, se)->stats;
|
|
#endif
|
|
return &task_of(se)->stats;
|
|
}
|
|
|
|
#ifdef CONFIG_PSI
|
|
/*
|
|
* PSI tracks state that persists across sleeps, such as iowaits and
|
|
* memory stalls. As a result, it has to distinguish between sleeps,
|
|
* where a task's runnable state changes, and requeues, where a task
|
|
* and its state are being moved between CPUs and runqueues.
|
|
*/
|
|
static inline void psi_enqueue(struct task_struct *p, bool wakeup)
|
|
{
|
|
int clear = 0, set = TSK_RUNNING;
|
|
|
|
if (static_branch_likely(&psi_disabled))
|
|
return;
|
|
|
|
if (p->in_memstall)
|
|
set |= TSK_MEMSTALL_RUNNING;
|
|
|
|
if (!wakeup || p->sched_psi_wake_requeue) {
|
|
if (p->in_memstall)
|
|
set |= TSK_MEMSTALL;
|
|
if (p->sched_psi_wake_requeue)
|
|
p->sched_psi_wake_requeue = 0;
|
|
} else {
|
|
if (p->in_iowait)
|
|
clear |= TSK_IOWAIT;
|
|
}
|
|
|
|
psi_task_change(p, clear, set);
|
|
}
|
|
|
|
static inline void psi_dequeue(struct task_struct *p, bool sleep)
|
|
{
|
|
int clear = TSK_RUNNING;
|
|
|
|
if (static_branch_likely(&psi_disabled))
|
|
return;
|
|
|
|
/*
|
|
* A voluntary sleep is a dequeue followed by a task switch. To
|
|
* avoid walking all ancestors twice, psi_task_switch() handles
|
|
* TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
|
|
* Do nothing here.
|
|
*/
|
|
if (sleep)
|
|
return;
|
|
|
|
if (p->in_memstall)
|
|
clear |= (TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
|
|
|
|
psi_task_change(p, clear, 0);
|
|
}
|
|
|
|
static inline void psi_ttwu_dequeue(struct task_struct *p)
|
|
{
|
|
if (static_branch_likely(&psi_disabled))
|
|
return;
|
|
/*
|
|
* Is the task being migrated during a wakeup? Make sure to
|
|
* deregister its sleep-persistent psi states from the old
|
|
* queue, and let psi_enqueue() know it has to requeue.
|
|
*/
|
|
if (unlikely(p->in_iowait || p->in_memstall)) {
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
int clear = 0;
|
|
|
|
if (p->in_iowait)
|
|
clear |= TSK_IOWAIT;
|
|
if (p->in_memstall)
|
|
clear |= TSK_MEMSTALL;
|
|
|
|
rq = __task_rq_lock(p, &rf);
|
|
psi_task_change(p, clear, 0);
|
|
p->sched_psi_wake_requeue = 1;
|
|
__task_rq_unlock(rq, &rf);
|
|
}
|
|
}
|
|
|
|
static inline void psi_sched_switch(struct task_struct *prev,
|
|
struct task_struct *next,
|
|
bool sleep)
|
|
{
|
|
if (static_branch_likely(&psi_disabled))
|
|
return;
|
|
|
|
psi_task_switch(prev, next, sleep);
|
|
}
|
|
|
|
#else /* CONFIG_PSI */
|
|
static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
|
|
static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
|
|
static inline void psi_ttwu_dequeue(struct task_struct *p) {}
|
|
static inline void psi_sched_switch(struct task_struct *prev,
|
|
struct task_struct *next,
|
|
bool sleep) {}
|
|
#endif /* CONFIG_PSI */
|
|
|
|
#ifdef CONFIG_SCHED_INFO
|
|
/*
|
|
* We are interested in knowing how long it was from the *first* time a
|
|
* task was queued to the time that it finally hit a CPU, we call this routine
|
|
* from dequeue_task() to account for possible rq->clock skew across CPUs. The
|
|
* delta taken on each CPU would annul the skew.
|
|
*/
|
|
static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t)
|
|
{
|
|
unsigned long long delta = 0;
|
|
|
|
if (!t->sched_info.last_queued)
|
|
return;
|
|
|
|
delta = rq_clock(rq) - t->sched_info.last_queued;
|
|
t->sched_info.last_queued = 0;
|
|
t->sched_info.run_delay += delta;
|
|
|
|
rq_sched_info_dequeue(rq, delta);
|
|
}
|
|
|
|
/*
|
|
* Called when a task finally hits the CPU. We can now calculate how
|
|
* long it was waiting to run. We also note when it began so that we
|
|
* can keep stats on how long its timeslice is.
|
|
*/
|
|
static void sched_info_arrive(struct rq *rq, struct task_struct *t)
|
|
{
|
|
unsigned long long now, delta = 0;
|
|
|
|
if (!t->sched_info.last_queued)
|
|
return;
|
|
|
|
now = rq_clock(rq);
|
|
delta = now - t->sched_info.last_queued;
|
|
t->sched_info.last_queued = 0;
|
|
t->sched_info.run_delay += delta;
|
|
t->sched_info.last_arrival = now;
|
|
t->sched_info.pcount++;
|
|
|
|
rq_sched_info_arrive(rq, delta);
|
|
}
|
|
|
|
/*
|
|
* This function is only called from enqueue_task(), but also only updates
|
|
* the timestamp if it is already not set. It's assumed that
|
|
* sched_info_dequeue() will clear that stamp when appropriate.
|
|
*/
|
|
static inline void sched_info_enqueue(struct rq *rq, struct task_struct *t)
|
|
{
|
|
if (!t->sched_info.last_queued)
|
|
t->sched_info.last_queued = rq_clock(rq);
|
|
}
|
|
|
|
/*
|
|
* Called when a process ceases being the active-running process involuntarily
|
|
* due, typically, to expiring its time slice (this may also be called when
|
|
* switching to the idle task). Now we can calculate how long we ran.
|
|
* Also, if the process is still in the TASK_RUNNING state, call
|
|
* sched_info_enqueue() to mark that it has now again started waiting on
|
|
* the runqueue.
|
|
*/
|
|
static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
|
|
{
|
|
unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
|
|
|
|
rq_sched_info_depart(rq, delta);
|
|
|
|
if (task_is_running(t))
|
|
sched_info_enqueue(rq, t);
|
|
}
|
|
|
|
/*
|
|
* Called when tasks are switched involuntarily due, typically, to expiring
|
|
* their time slice. (This may also be called when switching to or from
|
|
* the idle task.) We are only called when prev != next.
|
|
*/
|
|
static inline void
|
|
sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
|
|
{
|
|
/*
|
|
* prev now departs the CPU. It's not interesting to record
|
|
* stats about how efficient we were at scheduling the idle
|
|
* process, however.
|
|
*/
|
|
if (prev != rq->idle)
|
|
sched_info_depart(rq, prev);
|
|
|
|
if (next != rq->idle)
|
|
sched_info_arrive(rq, next);
|
|
}
|
|
|
|
#else /* !CONFIG_SCHED_INFO: */
|
|
# define sched_info_enqueue(rq, t) do { } while (0)
|
|
# define sched_info_dequeue(rq, t) do { } while (0)
|
|
# define sched_info_switch(rq, t, next) do { } while (0)
|
|
#endif /* CONFIG_SCHED_INFO */
|
|
|
|
#endif /* _KERNEL_STATS_H */
|