linux/sound/soc/fsl/fsl_asrc_dma.c
Sascha Hauer 289a3ec0b5
ASoC: fsl_asrc_dma: Use dmaengine_terminate_async()
dmaengine_terminate_all() is deprecated and should no longer be used.
Use dmaengine_terminate_async() instead. This involves no functional change
since both functions do the same.
After dmaengine_terminate_async() dmaengine_synchronize() must be called
to make sure the channel has really stopped before the underlying memory
is freed. This is done implicitly by dma_release_channel() called from
the .hw_free hook.

Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
Link: https://lore.kernel.org/r/20220617120133.4011846-1-s.hauer@pengutronix.de
Signed-off-by: Mark Brown <broonie@kernel.org>
2022-06-20 11:35:45 +01:00

460 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// Freescale ASRC ALSA SoC Platform (DMA) driver
//
// Copyright (C) 2014 Freescale Semiconductor, Inc.
//
// Author: Nicolin Chen <nicoleotsuka@gmail.com>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/dma/imx-dma.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include "fsl_asrc_common.h"
#define FSL_ASRC_DMABUF_SIZE (256 * 1024)
static struct snd_pcm_hardware snd_imx_hardware = {
.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID,
.buffer_bytes_max = FSL_ASRC_DMABUF_SIZE,
.period_bytes_min = 128,
.period_bytes_max = 65535, /* Limited by SDMA engine */
.periods_min = 2,
.periods_max = 255,
.fifo_size = 0,
};
static bool filter(struct dma_chan *chan, void *param)
{
if (!imx_dma_is_general_purpose(chan))
return false;
chan->private = param;
return true;
}
static void fsl_asrc_dma_complete(void *arg)
{
struct snd_pcm_substream *substream = arg;
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
pair->pos += snd_pcm_lib_period_bytes(substream);
if (pair->pos >= snd_pcm_lib_buffer_bytes(substream))
pair->pos = 0;
snd_pcm_period_elapsed(substream);
}
static int fsl_asrc_dma_prepare_and_submit(struct snd_pcm_substream *substream,
struct snd_soc_component *component)
{
u8 dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? OUT : IN;
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
struct device *dev = component->dev;
unsigned long flags = DMA_CTRL_ACK;
/* Prepare and submit Front-End DMA channel */
if (!substream->runtime->no_period_wakeup)
flags |= DMA_PREP_INTERRUPT;
pair->pos = 0;
pair->desc[!dir] = dmaengine_prep_dma_cyclic(
pair->dma_chan[!dir], runtime->dma_addr,
snd_pcm_lib_buffer_bytes(substream),
snd_pcm_lib_period_bytes(substream),
dir == OUT ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, flags);
if (!pair->desc[!dir]) {
dev_err(dev, "failed to prepare slave DMA for Front-End\n");
return -ENOMEM;
}
pair->desc[!dir]->callback = fsl_asrc_dma_complete;
pair->desc[!dir]->callback_param = substream;
dmaengine_submit(pair->desc[!dir]);
/* Prepare and submit Back-End DMA channel */
pair->desc[dir] = dmaengine_prep_dma_cyclic(
pair->dma_chan[dir], 0xffff, 64, 64, DMA_DEV_TO_DEV, 0);
if (!pair->desc[dir]) {
dev_err(dev, "failed to prepare slave DMA for Back-End\n");
return -ENOMEM;
}
dmaengine_submit(pair->desc[dir]);
return 0;
}
static int fsl_asrc_dma_trigger(struct snd_soc_component *component,
struct snd_pcm_substream *substream, int cmd)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
int ret;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
ret = fsl_asrc_dma_prepare_and_submit(substream, component);
if (ret)
return ret;
dma_async_issue_pending(pair->dma_chan[IN]);
dma_async_issue_pending(pair->dma_chan[OUT]);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
dmaengine_terminate_async(pair->dma_chan[OUT]);
dmaengine_terminate_async(pair->dma_chan[IN]);
break;
default:
return -EINVAL;
}
return 0;
}
static int fsl_asrc_dma_hw_params(struct snd_soc_component *component,
struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
enum dma_slave_buswidth buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
enum sdma_peripheral_type be_peripheral_type = IMX_DMATYPE_SSI;
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
struct snd_dmaengine_dai_dma_data *dma_params_fe = NULL;
struct snd_dmaengine_dai_dma_data *dma_params_be = NULL;
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
struct dma_chan *tmp_chan = NULL, *be_chan = NULL;
struct snd_soc_component *component_be = NULL;
struct fsl_asrc *asrc = pair->asrc;
struct dma_slave_config config_fe, config_be;
struct sdma_peripheral_config audio_config;
enum asrc_pair_index index = pair->index;
struct device *dev = component->dev;
struct device_node *of_dma_node;
int stream = substream->stream;
struct imx_dma_data *tmp_data;
struct snd_soc_dpcm *dpcm;
struct device *dev_be;
u8 dir = tx ? OUT : IN;
dma_cap_mask_t mask;
int ret, width;
/* Fetch the Back-End dma_data from DPCM */
for_each_dpcm_be(rtd, stream, dpcm) {
struct snd_soc_pcm_runtime *be = dpcm->be;
struct snd_pcm_substream *substream_be;
struct snd_soc_dai *dai = asoc_rtd_to_cpu(be, 0);
if (dpcm->fe != rtd)
continue;
substream_be = snd_soc_dpcm_get_substream(be, stream);
dma_params_be = snd_soc_dai_get_dma_data(dai, substream_be);
dev_be = dai->dev;
break;
}
if (!dma_params_be) {
dev_err(dev, "failed to get the substream of Back-End\n");
return -EINVAL;
}
/* Override dma_data of the Front-End and config its dmaengine */
dma_params_fe = snd_soc_dai_get_dma_data(asoc_rtd_to_cpu(rtd, 0), substream);
dma_params_fe->addr = asrc->paddr + asrc->get_fifo_addr(!dir, index);
dma_params_fe->maxburst = dma_params_be->maxburst;
pair->dma_chan[!dir] = asrc->get_dma_channel(pair, !dir);
if (!pair->dma_chan[!dir]) {
dev_err(dev, "failed to request DMA channel\n");
return -EINVAL;
}
memset(&config_fe, 0, sizeof(config_fe));
ret = snd_dmaengine_pcm_prepare_slave_config(substream, params, &config_fe);
if (ret) {
dev_err(dev, "failed to prepare DMA config for Front-End\n");
return ret;
}
ret = dmaengine_slave_config(pair->dma_chan[!dir], &config_fe);
if (ret) {
dev_err(dev, "failed to config DMA channel for Front-End\n");
return ret;
}
/* Request and config DMA channel for Back-End */
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
dma_cap_set(DMA_CYCLIC, mask);
/*
* The Back-End device might have already requested a DMA channel,
* so try to reuse it first, and then request a new one upon NULL.
*/
component_be = snd_soc_lookup_component_nolocked(dev_be, SND_DMAENGINE_PCM_DRV_NAME);
if (component_be) {
be_chan = soc_component_to_pcm(component_be)->chan[substream->stream];
tmp_chan = be_chan;
}
if (!tmp_chan)
tmp_chan = dma_request_slave_channel(dev_be, tx ? "tx" : "rx");
/*
* An EDMA DEV_TO_DEV channel is fixed and bound with DMA event of each
* peripheral, unlike SDMA channel that is allocated dynamically. So no
* need to configure dma_request and dma_request2, but get dma_chan of
* Back-End device directly via dma_request_slave_channel.
*/
if (!asrc->use_edma) {
/* Get DMA request of Back-End */
tmp_data = tmp_chan->private;
pair->dma_data.dma_request = tmp_data->dma_request;
be_peripheral_type = tmp_data->peripheral_type;
if (!be_chan)
dma_release_channel(tmp_chan);
/* Get DMA request of Front-End */
tmp_chan = asrc->get_dma_channel(pair, dir);
tmp_data = tmp_chan->private;
pair->dma_data.dma_request2 = tmp_data->dma_request;
pair->dma_data.peripheral_type = tmp_data->peripheral_type;
pair->dma_data.priority = tmp_data->priority;
dma_release_channel(tmp_chan);
of_dma_node = pair->dma_chan[!dir]->device->dev->of_node;
pair->dma_chan[dir] =
__dma_request_channel(&mask, filter, &pair->dma_data,
of_dma_node);
pair->req_dma_chan = true;
} else {
pair->dma_chan[dir] = tmp_chan;
/* Do not flag to release if we are reusing the Back-End one */
pair->req_dma_chan = !be_chan;
}
if (!pair->dma_chan[dir]) {
dev_err(dev, "failed to request DMA channel for Back-End\n");
return -EINVAL;
}
width = snd_pcm_format_physical_width(asrc->asrc_format);
if (width < 8 || width > 64)
return -EINVAL;
else if (width == 8)
buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
else if (width == 16)
buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
else if (width == 24)
buswidth = DMA_SLAVE_BUSWIDTH_3_BYTES;
else if (width <= 32)
buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
else
buswidth = DMA_SLAVE_BUSWIDTH_8_BYTES;
config_be.direction = DMA_DEV_TO_DEV;
config_be.src_addr_width = buswidth;
config_be.src_maxburst = dma_params_be->maxburst;
config_be.dst_addr_width = buswidth;
config_be.dst_maxburst = dma_params_be->maxburst;
memset(&audio_config, 0, sizeof(audio_config));
config_be.peripheral_config = &audio_config;
config_be.peripheral_size = sizeof(audio_config);
if (tx && (be_peripheral_type == IMX_DMATYPE_SSI_DUAL ||
be_peripheral_type == IMX_DMATYPE_SPDIF))
audio_config.n_fifos_dst = 2;
if (!tx && (be_peripheral_type == IMX_DMATYPE_SSI_DUAL ||
be_peripheral_type == IMX_DMATYPE_SPDIF))
audio_config.n_fifos_src = 2;
if (tx) {
config_be.src_addr = asrc->paddr + asrc->get_fifo_addr(OUT, index);
config_be.dst_addr = dma_params_be->addr;
} else {
config_be.dst_addr = asrc->paddr + asrc->get_fifo_addr(IN, index);
config_be.src_addr = dma_params_be->addr;
}
ret = dmaengine_slave_config(pair->dma_chan[dir], &config_be);
if (ret) {
dev_err(dev, "failed to config DMA channel for Back-End\n");
if (pair->req_dma_chan)
dma_release_channel(pair->dma_chan[dir]);
return ret;
}
return 0;
}
static int fsl_asrc_dma_hw_free(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
u8 dir = tx ? OUT : IN;
if (pair->dma_chan[!dir])
dma_release_channel(pair->dma_chan[!dir]);
/* release dev_to_dev chan if we aren't reusing the Back-End one */
if (pair->dma_chan[dir] && pair->req_dma_chan)
dma_release_channel(pair->dma_chan[dir]);
pair->dma_chan[!dir] = NULL;
pair->dma_chan[dir] = NULL;
return 0;
}
static int fsl_asrc_dma_startup(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_dmaengine_dai_dma_data *dma_data;
struct device *dev = component->dev;
struct fsl_asrc *asrc = dev_get_drvdata(dev);
struct fsl_asrc_pair *pair;
struct dma_chan *tmp_chan = NULL;
u8 dir = tx ? OUT : IN;
bool release_pair = true;
int ret = 0;
ret = snd_pcm_hw_constraint_integer(substream->runtime,
SNDRV_PCM_HW_PARAM_PERIODS);
if (ret < 0) {
dev_err(dev, "failed to set pcm hw params periods\n");
return ret;
}
pair = kzalloc(sizeof(*pair) + asrc->pair_priv_size, GFP_KERNEL);
if (!pair)
return -ENOMEM;
pair->asrc = asrc;
pair->private = (void *)pair + sizeof(struct fsl_asrc_pair);
runtime->private_data = pair;
/* Request a dummy pair, which will be released later.
* Request pair function needs channel num as input, for this
* dummy pair, we just request "1" channel temporarily.
*/
ret = asrc->request_pair(1, pair);
if (ret < 0) {
dev_err(dev, "failed to request asrc pair\n");
goto req_pair_err;
}
/* Request a dummy dma channel, which will be released later. */
tmp_chan = asrc->get_dma_channel(pair, dir);
if (!tmp_chan) {
dev_err(dev, "failed to get dma channel\n");
ret = -EINVAL;
goto dma_chan_err;
}
dma_data = snd_soc_dai_get_dma_data(asoc_rtd_to_cpu(rtd, 0), substream);
/* Refine the snd_imx_hardware according to caps of DMA. */
ret = snd_dmaengine_pcm_refine_runtime_hwparams(substream,
dma_data,
&snd_imx_hardware,
tmp_chan);
if (ret < 0) {
dev_err(dev, "failed to refine runtime hwparams\n");
goto out;
}
release_pair = false;
snd_soc_set_runtime_hwparams(substream, &snd_imx_hardware);
out:
dma_release_channel(tmp_chan);
dma_chan_err:
asrc->release_pair(pair);
req_pair_err:
if (release_pair)
kfree(pair);
return ret;
}
static int fsl_asrc_dma_shutdown(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
struct fsl_asrc *asrc;
if (!pair)
return 0;
asrc = pair->asrc;
if (asrc->pair[pair->index] == pair)
asrc->pair[pair->index] = NULL;
kfree(pair);
return 0;
}
static snd_pcm_uframes_t
fsl_asrc_dma_pcm_pointer(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
return bytes_to_frames(substream->runtime, pair->pos);
}
static int fsl_asrc_dma_pcm_new(struct snd_soc_component *component,
struct snd_soc_pcm_runtime *rtd)
{
struct snd_card *card = rtd->card->snd_card;
struct snd_pcm *pcm = rtd->pcm;
int ret;
ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(card->dev, "failed to set DMA mask\n");
return ret;
}
return snd_pcm_set_fixed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
card->dev, FSL_ASRC_DMABUF_SIZE);
}
struct snd_soc_component_driver fsl_asrc_component = {
.name = DRV_NAME,
.hw_params = fsl_asrc_dma_hw_params,
.hw_free = fsl_asrc_dma_hw_free,
.trigger = fsl_asrc_dma_trigger,
.open = fsl_asrc_dma_startup,
.close = fsl_asrc_dma_shutdown,
.pointer = fsl_asrc_dma_pcm_pointer,
.pcm_construct = fsl_asrc_dma_pcm_new,
};
EXPORT_SYMBOL_GPL(fsl_asrc_component);