linux/drivers/infiniband/ulp/rtrs/rtrs-clt-stats.c
Gioh Kim 0d8f2cfa23 RDMA/rtrs-clt: Fix counting inflight IO
There are mis-match at counting inflight IO after changing the multipath
policy.

For example, we started fio test with round-robin policy and then we
changed the policy to min-inflight. IOs created under the RR policy is
finished under the min-inflight policy and inflight counter only
decreased. So the counter would be negative value.  And also we started
fio test with min-inflight policy and changed the policy to the
round-robin. IOs created under the min-inflight policy increased the
inflight IO counter but the inflight IO counter was not decreased because
the policy was the round-robin when IO was finished.

So it should count IOs only if the IO is created under the min-inflight
policy. It should not care the policy when the IO is finished.

This patch adds a field mp_policy in struct rtrs_clt_io_req and stores the
multipath policy when an object of rtrs_clt_io_req is created. Then
rtrs-clt checks the mp_policy of only struct rtrs_clt_io_req instead of
the struct rtrs_clt.

Link: https://lore.kernel.org/r/20210806112112.124313-6-haris.iqbal@ionos.com
Signed-off-by: Gioh Kim <gi-oh.kim@ionos.com>
Signed-off-by: Jack Wang <jinpu.wang@ionos.com>
Reviewed-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: Md Haris Iqbal <haris.iqbal@ionos.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2021-08-22 19:22:59 -03:00

201 lines
4.8 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* RDMA Transport Layer
*
* Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
* Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
* Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
*/
#undef pr_fmt
#define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
#include "rtrs-clt.h"
void rtrs_clt_update_wc_stats(struct rtrs_clt_con *con)
{
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
struct rtrs_clt_stats *stats = sess->stats;
struct rtrs_clt_stats_pcpu *s;
int cpu;
cpu = raw_smp_processor_id();
s = this_cpu_ptr(stats->pcpu_stats);
if (con->cpu != cpu) {
s->cpu_migr.to++;
/* Careful here, override s pointer */
s = per_cpu_ptr(stats->pcpu_stats, con->cpu);
atomic_inc(&s->cpu_migr.from);
}
}
void rtrs_clt_inc_failover_cnt(struct rtrs_clt_stats *stats)
{
struct rtrs_clt_stats_pcpu *s;
s = this_cpu_ptr(stats->pcpu_stats);
s->rdma.failover_cnt++;
}
int rtrs_clt_stats_migration_cnt_to_str(struct rtrs_clt_stats *stats,
char *buf, size_t len)
{
struct rtrs_clt_stats_pcpu *s;
size_t used;
int cpu;
used = scnprintf(buf, len, " ");
for_each_possible_cpu(cpu)
used += scnprintf(buf + used, len - used, " CPU%u", cpu);
used += scnprintf(buf + used, len - used, "\nfrom:");
for_each_possible_cpu(cpu) {
s = per_cpu_ptr(stats->pcpu_stats, cpu);
used += scnprintf(buf + used, len - used, " %d",
atomic_read(&s->cpu_migr.from));
}
used += scnprintf(buf + used, len - used, "\nto :");
for_each_possible_cpu(cpu) {
s = per_cpu_ptr(stats->pcpu_stats, cpu);
used += scnprintf(buf + used, len - used, " %d",
s->cpu_migr.to);
}
used += scnprintf(buf + used, len - used, "\n");
return used;
}
int rtrs_clt_stats_reconnects_to_str(struct rtrs_clt_stats *stats, char *buf,
size_t len)
{
return scnprintf(buf, len, "%d %d\n",
stats->reconnects.successful_cnt,
stats->reconnects.fail_cnt);
}
ssize_t rtrs_clt_stats_rdma_to_str(struct rtrs_clt_stats *stats,
char *page, size_t len)
{
struct rtrs_clt_stats_rdma sum;
struct rtrs_clt_stats_rdma *r;
int cpu;
memset(&sum, 0, sizeof(sum));
for_each_possible_cpu(cpu) {
r = &per_cpu_ptr(stats->pcpu_stats, cpu)->rdma;
sum.dir[READ].cnt += r->dir[READ].cnt;
sum.dir[READ].size_total += r->dir[READ].size_total;
sum.dir[WRITE].cnt += r->dir[WRITE].cnt;
sum.dir[WRITE].size_total += r->dir[WRITE].size_total;
sum.failover_cnt += r->failover_cnt;
}
return scnprintf(page, len, "%llu %llu %llu %llu %u %llu\n",
sum.dir[READ].cnt, sum.dir[READ].size_total,
sum.dir[WRITE].cnt, sum.dir[WRITE].size_total,
atomic_read(&stats->inflight), sum.failover_cnt);
}
ssize_t rtrs_clt_reset_all_help(struct rtrs_clt_stats *s,
char *page, size_t len)
{
return scnprintf(page, len, "echo 1 to reset all statistics\n");
}
int rtrs_clt_reset_rdma_stats(struct rtrs_clt_stats *stats, bool enable)
{
struct rtrs_clt_stats_pcpu *s;
int cpu;
if (!enable)
return -EINVAL;
for_each_possible_cpu(cpu) {
s = per_cpu_ptr(stats->pcpu_stats, cpu);
memset(&s->rdma, 0, sizeof(s->rdma));
}
return 0;
}
int rtrs_clt_reset_cpu_migr_stats(struct rtrs_clt_stats *stats, bool enable)
{
struct rtrs_clt_stats_pcpu *s;
int cpu;
if (!enable)
return -EINVAL;
for_each_possible_cpu(cpu) {
s = per_cpu_ptr(stats->pcpu_stats, cpu);
memset(&s->cpu_migr, 0, sizeof(s->cpu_migr));
}
return 0;
}
int rtrs_clt_reset_reconnects_stat(struct rtrs_clt_stats *stats, bool enable)
{
if (!enable)
return -EINVAL;
memset(&stats->reconnects, 0, sizeof(stats->reconnects));
return 0;
}
int rtrs_clt_reset_all_stats(struct rtrs_clt_stats *s, bool enable)
{
if (enable) {
rtrs_clt_reset_rdma_stats(s, enable);
rtrs_clt_reset_cpu_migr_stats(s, enable);
rtrs_clt_reset_reconnects_stat(s, enable);
atomic_set(&s->inflight, 0);
return 0;
}
return -EINVAL;
}
static inline void rtrs_clt_update_rdma_stats(struct rtrs_clt_stats *stats,
size_t size, int d)
{
struct rtrs_clt_stats_pcpu *s;
s = this_cpu_ptr(stats->pcpu_stats);
s->rdma.dir[d].cnt++;
s->rdma.dir[d].size_total += size;
}
void rtrs_clt_update_all_stats(struct rtrs_clt_io_req *req, int dir)
{
struct rtrs_clt_con *con = req->con;
struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
struct rtrs_clt_stats *stats = sess->stats;
unsigned int len;
len = req->usr_len + req->data_len;
rtrs_clt_update_rdma_stats(stats, len, dir);
if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
atomic_inc(&stats->inflight);
}
int rtrs_clt_init_stats(struct rtrs_clt_stats *stats)
{
stats->pcpu_stats = alloc_percpu(typeof(*stats->pcpu_stats));
if (!stats->pcpu_stats)
return -ENOMEM;
/*
* successful_cnt will be set to 0 after session
* is established for the first time
*/
stats->reconnects.successful_cnt = -1;
return 0;
}