8bf1a529cd
- Support for arm64 SME 2 and 2.1. SME2 introduces a new 512-bit architectural register (ZT0, for the look-up table feature) that Linux needs to save/restore. - Include TPIDR2 in the signal context and add the corresponding kselftests. - Perf updates: Arm SPEv1.2 support, HiSilicon uncore PMU updates, ACPI support to the Marvell DDR and TAD PMU drivers, reset DTM_PMU_CONFIG (ARM CMN) at probe time. - Support for DYNAMIC_FTRACE_WITH_CALL_OPS on arm64. - Permit EFI boot with MMU and caches on. Instead of cleaning the entire loaded kernel image to the PoC and disabling the MMU and caches before branching to the kernel bare metal entry point, leave the MMU and caches enabled and rely on EFI's cacheable 1:1 mapping of all of system RAM to populate the initial page tables. - Expose the AArch32 (compat) ELF_HWCAP features to user in an arm64 kernel (the arm32 kernel only defines the values). - Harden the arm64 shadow call stack pointer handling: stash the shadow stack pointer in the task struct on interrupt, load it directly from this structure. - Signal handling cleanups to remove redundant validation of size information and avoid reading the same data from userspace twice. - Refactor the hwcap macros to make use of the automatically generated ID registers. It should make new hwcaps writing less error prone. - Further arm64 sysreg conversion and some fixes. - arm64 kselftest fixes and improvements. - Pointer authentication cleanups: don't sign leaf functions, unify asm-arch manipulation. - Pseudo-NMI code generation optimisations. - Minor fixes for SME and TPIDR2 handling. - Miscellaneous updates: ARCH_FORCE_MAX_ORDER is now selectable, replace strtobool() to kstrtobool() in the cpufeature.c code, apply dynamic shadow call stack in two passes, intercept pfn changes in set_pte_at() without the required break-before-make sequence, attempt to dump all instructions on unhandled kernel faults. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmP0/QsACgkQa9axLQDI XvG+gA/+JDVEH9wRzAIZvbp9hSuohPc48xgAmIMP1eiVB0/5qeRjYAJwS33H0rXS BPC2kj9IBy/eQeM9ICg0nFd0zYznSVacITqe6NrqeJ1F+ftS4rrHdfxd+J7kIoCs V2L8e+BJvmHdhmNV2qMAgJdGlfxfQBA7fv2cy52HKYcouoOh1AUVR/x+yXVXAsCd qJP3+dlUKccgm/oc5unEC1eZ49u8O+EoasqOyfG6K5udMgzhEX3K6imT9J3hw0WT UjstYkx5uGS/prUrRCQAX96VCHoZmzEDKtQuHkHvQXEYXsYPF3ldbR2CziNJnHe7 QfSkjJlt8HAtExA+BkwEe9i0MQO/2VF5qsa2e4fA6l7uqGu3LOtS/jJd23C9n9fR Id8aBMeN6S8+MjqRA9L2uf4t6e4ISEHoG9ZRdc4WOwloxEEiJoIeun+7bHdOSZLj AFdHFCz4NXiiwC0UP0xPDI2YeCLqt5np7HmnrUqwzRpVO8UUagiJD8TIpcBSjBN9 J68eidenHUW7/SlIeaMKE2lmo8AUEAJs9AorDSugF19/ThJcQdx7vT2UAZjeVB3j 1dbbwajnlDOk/w8PQC4thFp5/MDlfst0htS3WRwa+vgkweE2EAdTU4hUZ8qEP7FQ smhYtlT1xUSTYDTqoaG/U2OWR6/UU79wP0jgcOsHXTuyYrtPI/Q= =VmXL -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - Support for arm64 SME 2 and 2.1. SME2 introduces a new 512-bit architectural register (ZT0, for the look-up table feature) that Linux needs to save/restore - Include TPIDR2 in the signal context and add the corresponding kselftests - Perf updates: Arm SPEv1.2 support, HiSilicon uncore PMU updates, ACPI support to the Marvell DDR and TAD PMU drivers, reset DTM_PMU_CONFIG (ARM CMN) at probe time - Support for DYNAMIC_FTRACE_WITH_CALL_OPS on arm64 - Permit EFI boot with MMU and caches on. Instead of cleaning the entire loaded kernel image to the PoC and disabling the MMU and caches before branching to the kernel bare metal entry point, leave the MMU and caches enabled and rely on EFI's cacheable 1:1 mapping of all of system RAM to populate the initial page tables - Expose the AArch32 (compat) ELF_HWCAP features to user in an arm64 kernel (the arm32 kernel only defines the values) - Harden the arm64 shadow call stack pointer handling: stash the shadow stack pointer in the task struct on interrupt, load it directly from this structure - Signal handling cleanups to remove redundant validation of size information and avoid reading the same data from userspace twice - Refactor the hwcap macros to make use of the automatically generated ID registers. It should make new hwcaps writing less error prone - Further arm64 sysreg conversion and some fixes - arm64 kselftest fixes and improvements - Pointer authentication cleanups: don't sign leaf functions, unify asm-arch manipulation - Pseudo-NMI code generation optimisations - Minor fixes for SME and TPIDR2 handling - Miscellaneous updates: ARCH_FORCE_MAX_ORDER is now selectable, replace strtobool() to kstrtobool() in the cpufeature.c code, apply dynamic shadow call stack in two passes, intercept pfn changes in set_pte_at() without the required break-before-make sequence, attempt to dump all instructions on unhandled kernel faults * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (130 commits) arm64: fix .idmap.text assertion for large kernels kselftest/arm64: Don't require FA64 for streaming SVE+ZA tests kselftest/arm64: Copy whole EXTRA context arm64: kprobes: Drop ID map text from kprobes blacklist perf: arm_spe: Print the version of SPE detected perf: arm_spe: Add support for SPEv1.2 inverted event filtering perf: Add perf_event_attr::config3 arm64/sme: Fix __finalise_el2 SMEver check drivers/perf: fsl_imx8_ddr_perf: Remove set-but-not-used variable arm64/signal: Only read new data when parsing the ZT context arm64/signal: Only read new data when parsing the ZA context arm64/signal: Only read new data when parsing the SVE context arm64/signal: Avoid rereading context frame sizes arm64/signal: Make interface for restore_fpsimd_context() consistent arm64/signal: Remove redundant size validation from parse_user_sigframe() arm64/signal: Don't redundantly verify FPSIMD magic arm64/cpufeature: Use helper macros to specify hwcaps arm64/cpufeature: Always use symbolic name for feature value in hwcaps arm64/sysreg: Initial unsigned annotations for ID registers arm64/sysreg: Initial annotation of signed ID registers ...
2447 lines
61 KiB
C
2447 lines
61 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "GICv3: " fmt
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpu_pm.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/kstrtox.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/refcount.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/irqchip.h>
|
|
#include <linux/irqchip/arm-gic-common.h>
|
|
#include <linux/irqchip/arm-gic-v3.h>
|
|
#include <linux/irqchip/irq-partition-percpu.h>
|
|
|
|
#include <asm/cputype.h>
|
|
#include <asm/exception.h>
|
|
#include <asm/smp_plat.h>
|
|
#include <asm/virt.h>
|
|
|
|
#include "irq-gic-common.h"
|
|
|
|
#define GICD_INT_NMI_PRI (GICD_INT_DEF_PRI & ~0x80)
|
|
|
|
#define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0)
|
|
#define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1)
|
|
|
|
#define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1)
|
|
|
|
struct redist_region {
|
|
void __iomem *redist_base;
|
|
phys_addr_t phys_base;
|
|
bool single_redist;
|
|
};
|
|
|
|
struct gic_chip_data {
|
|
struct fwnode_handle *fwnode;
|
|
void __iomem *dist_base;
|
|
struct redist_region *redist_regions;
|
|
struct rdists rdists;
|
|
struct irq_domain *domain;
|
|
u64 redist_stride;
|
|
u32 nr_redist_regions;
|
|
u64 flags;
|
|
bool has_rss;
|
|
unsigned int ppi_nr;
|
|
struct partition_desc **ppi_descs;
|
|
};
|
|
|
|
static struct gic_chip_data gic_data __read_mostly;
|
|
static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
|
|
|
|
#define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
|
|
#define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
|
|
#define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
|
|
|
|
/*
|
|
* The behaviours of RPR and PMR registers differ depending on the value of
|
|
* SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
|
|
* distributor and redistributors depends on whether security is enabled in the
|
|
* GIC.
|
|
*
|
|
* When security is enabled, non-secure priority values from the (re)distributor
|
|
* are presented to the GIC CPUIF as follow:
|
|
* (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
|
|
*
|
|
* If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
|
|
* EL1 are subject to a similar operation thus matching the priorities presented
|
|
* from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
|
|
* these values are unchanged by the GIC.
|
|
*
|
|
* see GICv3/GICv4 Architecture Specification (IHI0069D):
|
|
* - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
|
|
* priorities.
|
|
* - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
|
|
* interrupt.
|
|
*/
|
|
static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
|
|
|
|
DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
|
|
EXPORT_SYMBOL(gic_nonsecure_priorities);
|
|
|
|
/*
|
|
* When the Non-secure world has access to group 0 interrupts (as a
|
|
* consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
|
|
* return the Distributor's view of the interrupt priority.
|
|
*
|
|
* When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
|
|
* written by software is moved to the Non-secure range by the Distributor.
|
|
*
|
|
* If both are true (which is when gic_nonsecure_priorities gets enabled),
|
|
* we need to shift down the priority programmed by software to match it
|
|
* against the value returned by ICC_RPR_EL1.
|
|
*/
|
|
#define GICD_INT_RPR_PRI(priority) \
|
|
({ \
|
|
u32 __priority = (priority); \
|
|
if (static_branch_unlikely(&gic_nonsecure_priorities)) \
|
|
__priority = 0x80 | (__priority >> 1); \
|
|
\
|
|
__priority; \
|
|
})
|
|
|
|
/* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
|
|
static refcount_t *ppi_nmi_refs;
|
|
|
|
static struct gic_kvm_info gic_v3_kvm_info __initdata;
|
|
static DEFINE_PER_CPU(bool, has_rss);
|
|
|
|
#define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4)
|
|
#define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist))
|
|
#define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
|
|
#define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K)
|
|
|
|
/* Our default, arbitrary priority value. Linux only uses one anyway. */
|
|
#define DEFAULT_PMR_VALUE 0xf0
|
|
|
|
enum gic_intid_range {
|
|
SGI_RANGE,
|
|
PPI_RANGE,
|
|
SPI_RANGE,
|
|
EPPI_RANGE,
|
|
ESPI_RANGE,
|
|
LPI_RANGE,
|
|
__INVALID_RANGE__
|
|
};
|
|
|
|
static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
|
|
{
|
|
switch (hwirq) {
|
|
case 0 ... 15:
|
|
return SGI_RANGE;
|
|
case 16 ... 31:
|
|
return PPI_RANGE;
|
|
case 32 ... 1019:
|
|
return SPI_RANGE;
|
|
case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
|
|
return EPPI_RANGE;
|
|
case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
|
|
return ESPI_RANGE;
|
|
case 8192 ... GENMASK(23, 0):
|
|
return LPI_RANGE;
|
|
default:
|
|
return __INVALID_RANGE__;
|
|
}
|
|
}
|
|
|
|
static enum gic_intid_range get_intid_range(struct irq_data *d)
|
|
{
|
|
return __get_intid_range(d->hwirq);
|
|
}
|
|
|
|
static inline unsigned int gic_irq(struct irq_data *d)
|
|
{
|
|
return d->hwirq;
|
|
}
|
|
|
|
static inline bool gic_irq_in_rdist(struct irq_data *d)
|
|
{
|
|
switch (get_intid_range(d)) {
|
|
case SGI_RANGE:
|
|
case PPI_RANGE:
|
|
case EPPI_RANGE:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static inline void __iomem *gic_dist_base(struct irq_data *d)
|
|
{
|
|
switch (get_intid_range(d)) {
|
|
case SGI_RANGE:
|
|
case PPI_RANGE:
|
|
case EPPI_RANGE:
|
|
/* SGI+PPI -> SGI_base for this CPU */
|
|
return gic_data_rdist_sgi_base();
|
|
|
|
case SPI_RANGE:
|
|
case ESPI_RANGE:
|
|
/* SPI -> dist_base */
|
|
return gic_data.dist_base;
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
|
|
{
|
|
u32 count = 1000000; /* 1s! */
|
|
|
|
while (readl_relaxed(base + GICD_CTLR) & bit) {
|
|
count--;
|
|
if (!count) {
|
|
pr_err_ratelimited("RWP timeout, gone fishing\n");
|
|
return;
|
|
}
|
|
cpu_relax();
|
|
udelay(1);
|
|
}
|
|
}
|
|
|
|
/* Wait for completion of a distributor change */
|
|
static void gic_dist_wait_for_rwp(void)
|
|
{
|
|
gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
|
|
}
|
|
|
|
/* Wait for completion of a redistributor change */
|
|
static void gic_redist_wait_for_rwp(void)
|
|
{
|
|
gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64
|
|
|
|
static u64 __maybe_unused gic_read_iar(void)
|
|
{
|
|
if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
|
|
return gic_read_iar_cavium_thunderx();
|
|
else
|
|
return gic_read_iar_common();
|
|
}
|
|
#endif
|
|
|
|
static void gic_enable_redist(bool enable)
|
|
{
|
|
void __iomem *rbase;
|
|
u32 count = 1000000; /* 1s! */
|
|
u32 val;
|
|
|
|
if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
|
|
return;
|
|
|
|
rbase = gic_data_rdist_rd_base();
|
|
|
|
val = readl_relaxed(rbase + GICR_WAKER);
|
|
if (enable)
|
|
/* Wake up this CPU redistributor */
|
|
val &= ~GICR_WAKER_ProcessorSleep;
|
|
else
|
|
val |= GICR_WAKER_ProcessorSleep;
|
|
writel_relaxed(val, rbase + GICR_WAKER);
|
|
|
|
if (!enable) { /* Check that GICR_WAKER is writeable */
|
|
val = readl_relaxed(rbase + GICR_WAKER);
|
|
if (!(val & GICR_WAKER_ProcessorSleep))
|
|
return; /* No PM support in this redistributor */
|
|
}
|
|
|
|
while (--count) {
|
|
val = readl_relaxed(rbase + GICR_WAKER);
|
|
if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
|
|
break;
|
|
cpu_relax();
|
|
udelay(1);
|
|
}
|
|
if (!count)
|
|
pr_err_ratelimited("redistributor failed to %s...\n",
|
|
enable ? "wakeup" : "sleep");
|
|
}
|
|
|
|
/*
|
|
* Routines to disable, enable, EOI and route interrupts
|
|
*/
|
|
static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
|
|
{
|
|
switch (get_intid_range(d)) {
|
|
case SGI_RANGE:
|
|
case PPI_RANGE:
|
|
case SPI_RANGE:
|
|
*index = d->hwirq;
|
|
return offset;
|
|
case EPPI_RANGE:
|
|
/*
|
|
* Contrary to the ESPI range, the EPPI range is contiguous
|
|
* to the PPI range in the registers, so let's adjust the
|
|
* displacement accordingly. Consistency is overrated.
|
|
*/
|
|
*index = d->hwirq - EPPI_BASE_INTID + 32;
|
|
return offset;
|
|
case ESPI_RANGE:
|
|
*index = d->hwirq - ESPI_BASE_INTID;
|
|
switch (offset) {
|
|
case GICD_ISENABLER:
|
|
return GICD_ISENABLERnE;
|
|
case GICD_ICENABLER:
|
|
return GICD_ICENABLERnE;
|
|
case GICD_ISPENDR:
|
|
return GICD_ISPENDRnE;
|
|
case GICD_ICPENDR:
|
|
return GICD_ICPENDRnE;
|
|
case GICD_ISACTIVER:
|
|
return GICD_ISACTIVERnE;
|
|
case GICD_ICACTIVER:
|
|
return GICD_ICACTIVERnE;
|
|
case GICD_IPRIORITYR:
|
|
return GICD_IPRIORITYRnE;
|
|
case GICD_ICFGR:
|
|
return GICD_ICFGRnE;
|
|
case GICD_IROUTER:
|
|
return GICD_IROUTERnE;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
WARN_ON(1);
|
|
*index = d->hwirq;
|
|
return offset;
|
|
}
|
|
|
|
static int gic_peek_irq(struct irq_data *d, u32 offset)
|
|
{
|
|
void __iomem *base;
|
|
u32 index, mask;
|
|
|
|
offset = convert_offset_index(d, offset, &index);
|
|
mask = 1 << (index % 32);
|
|
|
|
if (gic_irq_in_rdist(d))
|
|
base = gic_data_rdist_sgi_base();
|
|
else
|
|
base = gic_data.dist_base;
|
|
|
|
return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
|
|
}
|
|
|
|
static void gic_poke_irq(struct irq_data *d, u32 offset)
|
|
{
|
|
void __iomem *base;
|
|
u32 index, mask;
|
|
|
|
offset = convert_offset_index(d, offset, &index);
|
|
mask = 1 << (index % 32);
|
|
|
|
if (gic_irq_in_rdist(d))
|
|
base = gic_data_rdist_sgi_base();
|
|
else
|
|
base = gic_data.dist_base;
|
|
|
|
writel_relaxed(mask, base + offset + (index / 32) * 4);
|
|
}
|
|
|
|
static void gic_mask_irq(struct irq_data *d)
|
|
{
|
|
gic_poke_irq(d, GICD_ICENABLER);
|
|
if (gic_irq_in_rdist(d))
|
|
gic_redist_wait_for_rwp();
|
|
else
|
|
gic_dist_wait_for_rwp();
|
|
}
|
|
|
|
static void gic_eoimode1_mask_irq(struct irq_data *d)
|
|
{
|
|
gic_mask_irq(d);
|
|
/*
|
|
* When masking a forwarded interrupt, make sure it is
|
|
* deactivated as well.
|
|
*
|
|
* This ensures that an interrupt that is getting
|
|
* disabled/masked will not get "stuck", because there is
|
|
* noone to deactivate it (guest is being terminated).
|
|
*/
|
|
if (irqd_is_forwarded_to_vcpu(d))
|
|
gic_poke_irq(d, GICD_ICACTIVER);
|
|
}
|
|
|
|
static void gic_unmask_irq(struct irq_data *d)
|
|
{
|
|
gic_poke_irq(d, GICD_ISENABLER);
|
|
}
|
|
|
|
static inline bool gic_supports_nmi(void)
|
|
{
|
|
return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
|
|
static_branch_likely(&supports_pseudo_nmis);
|
|
}
|
|
|
|
static int gic_irq_set_irqchip_state(struct irq_data *d,
|
|
enum irqchip_irq_state which, bool val)
|
|
{
|
|
u32 reg;
|
|
|
|
if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
|
|
return -EINVAL;
|
|
|
|
switch (which) {
|
|
case IRQCHIP_STATE_PENDING:
|
|
reg = val ? GICD_ISPENDR : GICD_ICPENDR;
|
|
break;
|
|
|
|
case IRQCHIP_STATE_ACTIVE:
|
|
reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
|
|
break;
|
|
|
|
case IRQCHIP_STATE_MASKED:
|
|
if (val) {
|
|
gic_mask_irq(d);
|
|
return 0;
|
|
}
|
|
reg = GICD_ISENABLER;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
gic_poke_irq(d, reg);
|
|
return 0;
|
|
}
|
|
|
|
static int gic_irq_get_irqchip_state(struct irq_data *d,
|
|
enum irqchip_irq_state which, bool *val)
|
|
{
|
|
if (d->hwirq >= 8192) /* PPI/SPI only */
|
|
return -EINVAL;
|
|
|
|
switch (which) {
|
|
case IRQCHIP_STATE_PENDING:
|
|
*val = gic_peek_irq(d, GICD_ISPENDR);
|
|
break;
|
|
|
|
case IRQCHIP_STATE_ACTIVE:
|
|
*val = gic_peek_irq(d, GICD_ISACTIVER);
|
|
break;
|
|
|
|
case IRQCHIP_STATE_MASKED:
|
|
*val = !gic_peek_irq(d, GICD_ISENABLER);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gic_irq_set_prio(struct irq_data *d, u8 prio)
|
|
{
|
|
void __iomem *base = gic_dist_base(d);
|
|
u32 offset, index;
|
|
|
|
offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
|
|
|
|
writeb_relaxed(prio, base + offset + index);
|
|
}
|
|
|
|
static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
|
|
{
|
|
switch (__get_intid_range(hwirq)) {
|
|
case PPI_RANGE:
|
|
return hwirq - 16;
|
|
case EPPI_RANGE:
|
|
return hwirq - EPPI_BASE_INTID + 16;
|
|
default:
|
|
unreachable();
|
|
}
|
|
}
|
|
|
|
static u32 gic_get_ppi_index(struct irq_data *d)
|
|
{
|
|
return __gic_get_ppi_index(d->hwirq);
|
|
}
|
|
|
|
static int gic_irq_nmi_setup(struct irq_data *d)
|
|
{
|
|
struct irq_desc *desc = irq_to_desc(d->irq);
|
|
|
|
if (!gic_supports_nmi())
|
|
return -EINVAL;
|
|
|
|
if (gic_peek_irq(d, GICD_ISENABLER)) {
|
|
pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* A secondary irq_chip should be in charge of LPI request,
|
|
* it should not be possible to get there
|
|
*/
|
|
if (WARN_ON(gic_irq(d) >= 8192))
|
|
return -EINVAL;
|
|
|
|
/* desc lock should already be held */
|
|
if (gic_irq_in_rdist(d)) {
|
|
u32 idx = gic_get_ppi_index(d);
|
|
|
|
/* Setting up PPI as NMI, only switch handler for first NMI */
|
|
if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
|
|
refcount_set(&ppi_nmi_refs[idx], 1);
|
|
desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
|
|
}
|
|
} else {
|
|
desc->handle_irq = handle_fasteoi_nmi;
|
|
}
|
|
|
|
gic_irq_set_prio(d, GICD_INT_NMI_PRI);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gic_irq_nmi_teardown(struct irq_data *d)
|
|
{
|
|
struct irq_desc *desc = irq_to_desc(d->irq);
|
|
|
|
if (WARN_ON(!gic_supports_nmi()))
|
|
return;
|
|
|
|
if (gic_peek_irq(d, GICD_ISENABLER)) {
|
|
pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* A secondary irq_chip should be in charge of LPI request,
|
|
* it should not be possible to get there
|
|
*/
|
|
if (WARN_ON(gic_irq(d) >= 8192))
|
|
return;
|
|
|
|
/* desc lock should already be held */
|
|
if (gic_irq_in_rdist(d)) {
|
|
u32 idx = gic_get_ppi_index(d);
|
|
|
|
/* Tearing down NMI, only switch handler for last NMI */
|
|
if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
|
|
desc->handle_irq = handle_percpu_devid_irq;
|
|
} else {
|
|
desc->handle_irq = handle_fasteoi_irq;
|
|
}
|
|
|
|
gic_irq_set_prio(d, GICD_INT_DEF_PRI);
|
|
}
|
|
|
|
static void gic_eoi_irq(struct irq_data *d)
|
|
{
|
|
write_gicreg(gic_irq(d), ICC_EOIR1_EL1);
|
|
isb();
|
|
}
|
|
|
|
static void gic_eoimode1_eoi_irq(struct irq_data *d)
|
|
{
|
|
/*
|
|
* No need to deactivate an LPI, or an interrupt that
|
|
* is is getting forwarded to a vcpu.
|
|
*/
|
|
if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
|
|
return;
|
|
gic_write_dir(gic_irq(d));
|
|
}
|
|
|
|
static int gic_set_type(struct irq_data *d, unsigned int type)
|
|
{
|
|
enum gic_intid_range range;
|
|
unsigned int irq = gic_irq(d);
|
|
void __iomem *base;
|
|
u32 offset, index;
|
|
int ret;
|
|
|
|
range = get_intid_range(d);
|
|
|
|
/* Interrupt configuration for SGIs can't be changed */
|
|
if (range == SGI_RANGE)
|
|
return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
|
|
|
|
/* SPIs have restrictions on the supported types */
|
|
if ((range == SPI_RANGE || range == ESPI_RANGE) &&
|
|
type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
|
|
return -EINVAL;
|
|
|
|
if (gic_irq_in_rdist(d))
|
|
base = gic_data_rdist_sgi_base();
|
|
else
|
|
base = gic_data.dist_base;
|
|
|
|
offset = convert_offset_index(d, GICD_ICFGR, &index);
|
|
|
|
ret = gic_configure_irq(index, type, base + offset, NULL);
|
|
if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
|
|
/* Misconfigured PPIs are usually not fatal */
|
|
pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
|
|
{
|
|
if (get_intid_range(d) == SGI_RANGE)
|
|
return -EINVAL;
|
|
|
|
if (vcpu)
|
|
irqd_set_forwarded_to_vcpu(d);
|
|
else
|
|
irqd_clr_forwarded_to_vcpu(d);
|
|
return 0;
|
|
}
|
|
|
|
static u64 gic_mpidr_to_affinity(unsigned long mpidr)
|
|
{
|
|
u64 aff;
|
|
|
|
aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
|
|
MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
|
|
MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
|
|
MPIDR_AFFINITY_LEVEL(mpidr, 0));
|
|
|
|
return aff;
|
|
}
|
|
|
|
static void gic_deactivate_unhandled(u32 irqnr)
|
|
{
|
|
if (static_branch_likely(&supports_deactivate_key)) {
|
|
if (irqnr < 8192)
|
|
gic_write_dir(irqnr);
|
|
} else {
|
|
write_gicreg(irqnr, ICC_EOIR1_EL1);
|
|
isb();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Follow a read of the IAR with any HW maintenance that needs to happen prior
|
|
* to invoking the relevant IRQ handler. We must do two things:
|
|
*
|
|
* (1) Ensure instruction ordering between a read of IAR and subsequent
|
|
* instructions in the IRQ handler using an ISB.
|
|
*
|
|
* It is possible for the IAR to report an IRQ which was signalled *after*
|
|
* the CPU took an IRQ exception as multiple interrupts can race to be
|
|
* recognized by the GIC, earlier interrupts could be withdrawn, and/or
|
|
* later interrupts could be prioritized by the GIC.
|
|
*
|
|
* For devices which are tightly coupled to the CPU, such as PMUs, a
|
|
* context synchronization event is necessary to ensure that system
|
|
* register state is not stale, as these may have been indirectly written
|
|
* *after* exception entry.
|
|
*
|
|
* (2) Deactivate the interrupt when EOI mode 1 is in use.
|
|
*/
|
|
static inline void gic_complete_ack(u32 irqnr)
|
|
{
|
|
if (static_branch_likely(&supports_deactivate_key))
|
|
write_gicreg(irqnr, ICC_EOIR1_EL1);
|
|
|
|
isb();
|
|
}
|
|
|
|
static bool gic_rpr_is_nmi_prio(void)
|
|
{
|
|
if (!gic_supports_nmi())
|
|
return false;
|
|
|
|
return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI));
|
|
}
|
|
|
|
static bool gic_irqnr_is_special(u32 irqnr)
|
|
{
|
|
return irqnr >= 1020 && irqnr <= 1023;
|
|
}
|
|
|
|
static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
|
|
{
|
|
if (gic_irqnr_is_special(irqnr))
|
|
return;
|
|
|
|
gic_complete_ack(irqnr);
|
|
|
|
if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
|
|
WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
|
|
gic_deactivate_unhandled(irqnr);
|
|
}
|
|
}
|
|
|
|
static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
|
|
{
|
|
if (gic_irqnr_is_special(irqnr))
|
|
return;
|
|
|
|
gic_complete_ack(irqnr);
|
|
|
|
if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
|
|
WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
|
|
gic_deactivate_unhandled(irqnr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* An exception has been taken from a context with IRQs enabled, and this could
|
|
* be an IRQ or an NMI.
|
|
*
|
|
* The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
|
|
* DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
|
|
* after handling any NMI but before handling any IRQ.
|
|
*
|
|
* The entry code has performed IRQ entry, and if an NMI is detected we must
|
|
* perform NMI entry/exit around invoking the handler.
|
|
*/
|
|
static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
|
|
{
|
|
bool is_nmi;
|
|
u32 irqnr;
|
|
|
|
irqnr = gic_read_iar();
|
|
|
|
is_nmi = gic_rpr_is_nmi_prio();
|
|
|
|
if (is_nmi) {
|
|
nmi_enter();
|
|
__gic_handle_nmi(irqnr, regs);
|
|
nmi_exit();
|
|
}
|
|
|
|
if (gic_prio_masking_enabled()) {
|
|
gic_pmr_mask_irqs();
|
|
gic_arch_enable_irqs();
|
|
}
|
|
|
|
if (!is_nmi)
|
|
__gic_handle_irq(irqnr, regs);
|
|
}
|
|
|
|
/*
|
|
* An exception has been taken from a context with IRQs disabled, which can only
|
|
* be an NMI.
|
|
*
|
|
* The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
|
|
* DAIF.IF (and ICC_PMR_EL1) unchanged.
|
|
*
|
|
* The entry code has performed NMI entry.
|
|
*/
|
|
static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
|
|
{
|
|
u64 pmr;
|
|
u32 irqnr;
|
|
|
|
/*
|
|
* We were in a context with IRQs disabled. However, the
|
|
* entry code has set PMR to a value that allows any
|
|
* interrupt to be acknowledged, and not just NMIs. This can
|
|
* lead to surprising effects if the NMI has been retired in
|
|
* the meantime, and that there is an IRQ pending. The IRQ
|
|
* would then be taken in NMI context, something that nobody
|
|
* wants to debug twice.
|
|
*
|
|
* Until we sort this, drop PMR again to a level that will
|
|
* actually only allow NMIs before reading IAR, and then
|
|
* restore it to what it was.
|
|
*/
|
|
pmr = gic_read_pmr();
|
|
gic_pmr_mask_irqs();
|
|
isb();
|
|
irqnr = gic_read_iar();
|
|
gic_write_pmr(pmr);
|
|
|
|
__gic_handle_nmi(irqnr, regs);
|
|
}
|
|
|
|
static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
|
|
{
|
|
if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
|
|
__gic_handle_irq_from_irqsoff(regs);
|
|
else
|
|
__gic_handle_irq_from_irqson(regs);
|
|
}
|
|
|
|
static u32 gic_get_pribits(void)
|
|
{
|
|
u32 pribits;
|
|
|
|
pribits = gic_read_ctlr();
|
|
pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
|
|
pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
|
|
pribits++;
|
|
|
|
return pribits;
|
|
}
|
|
|
|
static bool gic_has_group0(void)
|
|
{
|
|
u32 val;
|
|
u32 old_pmr;
|
|
|
|
old_pmr = gic_read_pmr();
|
|
|
|
/*
|
|
* Let's find out if Group0 is under control of EL3 or not by
|
|
* setting the highest possible, non-zero priority in PMR.
|
|
*
|
|
* If SCR_EL3.FIQ is set, the priority gets shifted down in
|
|
* order for the CPU interface to set bit 7, and keep the
|
|
* actual priority in the non-secure range. In the process, it
|
|
* looses the least significant bit and the actual priority
|
|
* becomes 0x80. Reading it back returns 0, indicating that
|
|
* we're don't have access to Group0.
|
|
*/
|
|
gic_write_pmr(BIT(8 - gic_get_pribits()));
|
|
val = gic_read_pmr();
|
|
|
|
gic_write_pmr(old_pmr);
|
|
|
|
return val != 0;
|
|
}
|
|
|
|
static void __init gic_dist_init(void)
|
|
{
|
|
unsigned int i;
|
|
u64 affinity;
|
|
void __iomem *base = gic_data.dist_base;
|
|
u32 val;
|
|
|
|
/* Disable the distributor */
|
|
writel_relaxed(0, base + GICD_CTLR);
|
|
gic_dist_wait_for_rwp();
|
|
|
|
/*
|
|
* Configure SPIs as non-secure Group-1. This will only matter
|
|
* if the GIC only has a single security state. This will not
|
|
* do the right thing if the kernel is running in secure mode,
|
|
* but that's not the intended use case anyway.
|
|
*/
|
|
for (i = 32; i < GIC_LINE_NR; i += 32)
|
|
writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
|
|
|
|
/* Extended SPI range, not handled by the GICv2/GICv3 common code */
|
|
for (i = 0; i < GIC_ESPI_NR; i += 32) {
|
|
writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
|
|
writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
|
|
}
|
|
|
|
for (i = 0; i < GIC_ESPI_NR; i += 32)
|
|
writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
|
|
|
|
for (i = 0; i < GIC_ESPI_NR; i += 16)
|
|
writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
|
|
|
|
for (i = 0; i < GIC_ESPI_NR; i += 4)
|
|
writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
|
|
|
|
/* Now do the common stuff */
|
|
gic_dist_config(base, GIC_LINE_NR, NULL);
|
|
|
|
val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
|
|
if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
|
|
pr_info("Enabling SGIs without active state\n");
|
|
val |= GICD_CTLR_nASSGIreq;
|
|
}
|
|
|
|
/* Enable distributor with ARE, Group1, and wait for it to drain */
|
|
writel_relaxed(val, base + GICD_CTLR);
|
|
gic_dist_wait_for_rwp();
|
|
|
|
/*
|
|
* Set all global interrupts to the boot CPU only. ARE must be
|
|
* enabled.
|
|
*/
|
|
affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
|
|
for (i = 32; i < GIC_LINE_NR; i++)
|
|
gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
|
|
|
|
for (i = 0; i < GIC_ESPI_NR; i++)
|
|
gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
|
|
}
|
|
|
|
static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
|
|
{
|
|
int ret = -ENODEV;
|
|
int i;
|
|
|
|
for (i = 0; i < gic_data.nr_redist_regions; i++) {
|
|
void __iomem *ptr = gic_data.redist_regions[i].redist_base;
|
|
u64 typer;
|
|
u32 reg;
|
|
|
|
reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
|
|
if (reg != GIC_PIDR2_ARCH_GICv3 &&
|
|
reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
|
|
pr_warn("No redistributor present @%p\n", ptr);
|
|
break;
|
|
}
|
|
|
|
do {
|
|
typer = gic_read_typer(ptr + GICR_TYPER);
|
|
ret = fn(gic_data.redist_regions + i, ptr);
|
|
if (!ret)
|
|
return 0;
|
|
|
|
if (gic_data.redist_regions[i].single_redist)
|
|
break;
|
|
|
|
if (gic_data.redist_stride) {
|
|
ptr += gic_data.redist_stride;
|
|
} else {
|
|
ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
|
|
if (typer & GICR_TYPER_VLPIS)
|
|
ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
|
|
}
|
|
} while (!(typer & GICR_TYPER_LAST));
|
|
}
|
|
|
|
return ret ? -ENODEV : 0;
|
|
}
|
|
|
|
static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
|
|
{
|
|
unsigned long mpidr = cpu_logical_map(smp_processor_id());
|
|
u64 typer;
|
|
u32 aff;
|
|
|
|
/*
|
|
* Convert affinity to a 32bit value that can be matched to
|
|
* GICR_TYPER bits [63:32].
|
|
*/
|
|
aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
|
|
MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
|
|
MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
|
|
MPIDR_AFFINITY_LEVEL(mpidr, 0));
|
|
|
|
typer = gic_read_typer(ptr + GICR_TYPER);
|
|
if ((typer >> 32) == aff) {
|
|
u64 offset = ptr - region->redist_base;
|
|
raw_spin_lock_init(&gic_data_rdist()->rd_lock);
|
|
gic_data_rdist_rd_base() = ptr;
|
|
gic_data_rdist()->phys_base = region->phys_base + offset;
|
|
|
|
pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
|
|
smp_processor_id(), mpidr,
|
|
(int)(region - gic_data.redist_regions),
|
|
&gic_data_rdist()->phys_base);
|
|
return 0;
|
|
}
|
|
|
|
/* Try next one */
|
|
return 1;
|
|
}
|
|
|
|
static int gic_populate_rdist(void)
|
|
{
|
|
if (gic_iterate_rdists(__gic_populate_rdist) == 0)
|
|
return 0;
|
|
|
|
/* We couldn't even deal with ourselves... */
|
|
WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
|
|
smp_processor_id(),
|
|
(unsigned long)cpu_logical_map(smp_processor_id()));
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int __gic_update_rdist_properties(struct redist_region *region,
|
|
void __iomem *ptr)
|
|
{
|
|
u64 typer = gic_read_typer(ptr + GICR_TYPER);
|
|
u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
|
|
|
|
/* Boot-time cleanup */
|
|
if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
|
|
u64 val;
|
|
|
|
/* Deactivate any present vPE */
|
|
val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
|
|
if (val & GICR_VPENDBASER_Valid)
|
|
gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
|
|
ptr + SZ_128K + GICR_VPENDBASER);
|
|
|
|
/* Mark the VPE table as invalid */
|
|
val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
|
|
val &= ~GICR_VPROPBASER_4_1_VALID;
|
|
gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
|
|
}
|
|
|
|
gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
|
|
|
|
/*
|
|
* TYPER.RVPEID implies some form of DirectLPI, no matter what the
|
|
* doc says... :-/ And CTLR.IR implies another subset of DirectLPI
|
|
* that the ITS driver can make use of for LPIs (and not VLPIs).
|
|
*
|
|
* These are 3 different ways to express the same thing, depending
|
|
* on the revision of the architecture and its relaxations over
|
|
* time. Just group them under the 'direct_lpi' banner.
|
|
*/
|
|
gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
|
|
gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
|
|
!!(ctlr & GICR_CTLR_IR) |
|
|
gic_data.rdists.has_rvpeid);
|
|
gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
|
|
|
|
/* Detect non-sensical configurations */
|
|
if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
|
|
gic_data.rdists.has_direct_lpi = false;
|
|
gic_data.rdists.has_vlpis = false;
|
|
gic_data.rdists.has_rvpeid = false;
|
|
}
|
|
|
|
gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void gic_update_rdist_properties(void)
|
|
{
|
|
gic_data.ppi_nr = UINT_MAX;
|
|
gic_iterate_rdists(__gic_update_rdist_properties);
|
|
if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
|
|
gic_data.ppi_nr = 0;
|
|
pr_info("GICv3 features: %d PPIs%s%s\n",
|
|
gic_data.ppi_nr,
|
|
gic_data.has_rss ? ", RSS" : "",
|
|
gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
|
|
|
|
if (gic_data.rdists.has_vlpis)
|
|
pr_info("GICv4 features: %s%s%s\n",
|
|
gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
|
|
gic_data.rdists.has_rvpeid ? "RVPEID " : "",
|
|
gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
|
|
}
|
|
|
|
/* Check whether it's single security state view */
|
|
static inline bool gic_dist_security_disabled(void)
|
|
{
|
|
return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
|
|
}
|
|
|
|
static void gic_cpu_sys_reg_init(void)
|
|
{
|
|
int i, cpu = smp_processor_id();
|
|
u64 mpidr = cpu_logical_map(cpu);
|
|
u64 need_rss = MPIDR_RS(mpidr);
|
|
bool group0;
|
|
u32 pribits;
|
|
|
|
/*
|
|
* Need to check that the SRE bit has actually been set. If
|
|
* not, it means that SRE is disabled at EL2. We're going to
|
|
* die painfully, and there is nothing we can do about it.
|
|
*
|
|
* Kindly inform the luser.
|
|
*/
|
|
if (!gic_enable_sre())
|
|
pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
|
|
|
|
pribits = gic_get_pribits();
|
|
|
|
group0 = gic_has_group0();
|
|
|
|
/* Set priority mask register */
|
|
if (!gic_prio_masking_enabled()) {
|
|
write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
|
|
} else if (gic_supports_nmi()) {
|
|
/*
|
|
* Mismatch configuration with boot CPU, the system is likely
|
|
* to die as interrupt masking will not work properly on all
|
|
* CPUs
|
|
*
|
|
* The boot CPU calls this function before enabling NMI support,
|
|
* and as a result we'll never see this warning in the boot path
|
|
* for that CPU.
|
|
*/
|
|
if (static_branch_unlikely(&gic_nonsecure_priorities))
|
|
WARN_ON(!group0 || gic_dist_security_disabled());
|
|
else
|
|
WARN_ON(group0 && !gic_dist_security_disabled());
|
|
}
|
|
|
|
/*
|
|
* Some firmwares hand over to the kernel with the BPR changed from
|
|
* its reset value (and with a value large enough to prevent
|
|
* any pre-emptive interrupts from working at all). Writing a zero
|
|
* to BPR restores is reset value.
|
|
*/
|
|
gic_write_bpr1(0);
|
|
|
|
if (static_branch_likely(&supports_deactivate_key)) {
|
|
/* EOI drops priority only (mode 1) */
|
|
gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
|
|
} else {
|
|
/* EOI deactivates interrupt too (mode 0) */
|
|
gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
|
|
}
|
|
|
|
/* Always whack Group0 before Group1 */
|
|
if (group0) {
|
|
switch(pribits) {
|
|
case 8:
|
|
case 7:
|
|
write_gicreg(0, ICC_AP0R3_EL1);
|
|
write_gicreg(0, ICC_AP0R2_EL1);
|
|
fallthrough;
|
|
case 6:
|
|
write_gicreg(0, ICC_AP0R1_EL1);
|
|
fallthrough;
|
|
case 5:
|
|
case 4:
|
|
write_gicreg(0, ICC_AP0R0_EL1);
|
|
}
|
|
|
|
isb();
|
|
}
|
|
|
|
switch(pribits) {
|
|
case 8:
|
|
case 7:
|
|
write_gicreg(0, ICC_AP1R3_EL1);
|
|
write_gicreg(0, ICC_AP1R2_EL1);
|
|
fallthrough;
|
|
case 6:
|
|
write_gicreg(0, ICC_AP1R1_EL1);
|
|
fallthrough;
|
|
case 5:
|
|
case 4:
|
|
write_gicreg(0, ICC_AP1R0_EL1);
|
|
}
|
|
|
|
isb();
|
|
|
|
/* ... and let's hit the road... */
|
|
gic_write_grpen1(1);
|
|
|
|
/* Keep the RSS capability status in per_cpu variable */
|
|
per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
|
|
|
|
/* Check all the CPUs have capable of sending SGIs to other CPUs */
|
|
for_each_online_cpu(i) {
|
|
bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
|
|
|
|
need_rss |= MPIDR_RS(cpu_logical_map(i));
|
|
if (need_rss && (!have_rss))
|
|
pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
|
|
cpu, (unsigned long)mpidr,
|
|
i, (unsigned long)cpu_logical_map(i));
|
|
}
|
|
|
|
/**
|
|
* GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
|
|
* writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
|
|
* UNPREDICTABLE choice of :
|
|
* - The write is ignored.
|
|
* - The RS field is treated as 0.
|
|
*/
|
|
if (need_rss && (!gic_data.has_rss))
|
|
pr_crit_once("RSS is required but GICD doesn't support it\n");
|
|
}
|
|
|
|
static bool gicv3_nolpi;
|
|
|
|
static int __init gicv3_nolpi_cfg(char *buf)
|
|
{
|
|
return kstrtobool(buf, &gicv3_nolpi);
|
|
}
|
|
early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
|
|
|
|
static int gic_dist_supports_lpis(void)
|
|
{
|
|
return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
|
|
!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
|
|
!gicv3_nolpi);
|
|
}
|
|
|
|
static void gic_cpu_init(void)
|
|
{
|
|
void __iomem *rbase;
|
|
int i;
|
|
|
|
/* Register ourselves with the rest of the world */
|
|
if (gic_populate_rdist())
|
|
return;
|
|
|
|
gic_enable_redist(true);
|
|
|
|
WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
|
|
!(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
|
|
"Distributor has extended ranges, but CPU%d doesn't\n",
|
|
smp_processor_id());
|
|
|
|
rbase = gic_data_rdist_sgi_base();
|
|
|
|
/* Configure SGIs/PPIs as non-secure Group-1 */
|
|
for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
|
|
writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
|
|
|
|
gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
|
|
|
|
/* initialise system registers */
|
|
gic_cpu_sys_reg_init();
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
#define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
|
|
#define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL)
|
|
|
|
static int gic_starting_cpu(unsigned int cpu)
|
|
{
|
|
gic_cpu_init();
|
|
|
|
if (gic_dist_supports_lpis())
|
|
its_cpu_init();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
|
|
unsigned long cluster_id)
|
|
{
|
|
int next_cpu, cpu = *base_cpu;
|
|
unsigned long mpidr = cpu_logical_map(cpu);
|
|
u16 tlist = 0;
|
|
|
|
while (cpu < nr_cpu_ids) {
|
|
tlist |= 1 << (mpidr & 0xf);
|
|
|
|
next_cpu = cpumask_next(cpu, mask);
|
|
if (next_cpu >= nr_cpu_ids)
|
|
goto out;
|
|
cpu = next_cpu;
|
|
|
|
mpidr = cpu_logical_map(cpu);
|
|
|
|
if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
|
|
cpu--;
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
*base_cpu = cpu;
|
|
return tlist;
|
|
}
|
|
|
|
#define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
|
|
(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
|
|
<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
|
|
|
|
static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
|
|
{
|
|
u64 val;
|
|
|
|
val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) |
|
|
MPIDR_TO_SGI_AFFINITY(cluster_id, 2) |
|
|
irq << ICC_SGI1R_SGI_ID_SHIFT |
|
|
MPIDR_TO_SGI_AFFINITY(cluster_id, 1) |
|
|
MPIDR_TO_SGI_RS(cluster_id) |
|
|
tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
|
|
|
|
pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
|
|
gic_write_sgi1r(val);
|
|
}
|
|
|
|
static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
|
|
{
|
|
int cpu;
|
|
|
|
if (WARN_ON(d->hwirq >= 16))
|
|
return;
|
|
|
|
/*
|
|
* Ensure that stores to Normal memory are visible to the
|
|
* other CPUs before issuing the IPI.
|
|
*/
|
|
dsb(ishst);
|
|
|
|
for_each_cpu(cpu, mask) {
|
|
u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
|
|
u16 tlist;
|
|
|
|
tlist = gic_compute_target_list(&cpu, mask, cluster_id);
|
|
gic_send_sgi(cluster_id, tlist, d->hwirq);
|
|
}
|
|
|
|
/* Force the above writes to ICC_SGI1R_EL1 to be executed */
|
|
isb();
|
|
}
|
|
|
|
static void __init gic_smp_init(void)
|
|
{
|
|
struct irq_fwspec sgi_fwspec = {
|
|
.fwnode = gic_data.fwnode,
|
|
.param_count = 1,
|
|
};
|
|
int base_sgi;
|
|
|
|
cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
|
|
"irqchip/arm/gicv3:starting",
|
|
gic_starting_cpu, NULL);
|
|
|
|
/* Register all 8 non-secure SGIs */
|
|
base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
|
|
if (WARN_ON(base_sgi <= 0))
|
|
return;
|
|
|
|
set_smp_ipi_range(base_sgi, 8);
|
|
}
|
|
|
|
static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
|
|
bool force)
|
|
{
|
|
unsigned int cpu;
|
|
u32 offset, index;
|
|
void __iomem *reg;
|
|
int enabled;
|
|
u64 val;
|
|
|
|
if (force)
|
|
cpu = cpumask_first(mask_val);
|
|
else
|
|
cpu = cpumask_any_and(mask_val, cpu_online_mask);
|
|
|
|
if (cpu >= nr_cpu_ids)
|
|
return -EINVAL;
|
|
|
|
if (gic_irq_in_rdist(d))
|
|
return -EINVAL;
|
|
|
|
/* If interrupt was enabled, disable it first */
|
|
enabled = gic_peek_irq(d, GICD_ISENABLER);
|
|
if (enabled)
|
|
gic_mask_irq(d);
|
|
|
|
offset = convert_offset_index(d, GICD_IROUTER, &index);
|
|
reg = gic_dist_base(d) + offset + (index * 8);
|
|
val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
|
|
|
|
gic_write_irouter(val, reg);
|
|
|
|
/*
|
|
* If the interrupt was enabled, enabled it again. Otherwise,
|
|
* just wait for the distributor to have digested our changes.
|
|
*/
|
|
if (enabled)
|
|
gic_unmask_irq(d);
|
|
|
|
irq_data_update_effective_affinity(d, cpumask_of(cpu));
|
|
|
|
return IRQ_SET_MASK_OK_DONE;
|
|
}
|
|
#else
|
|
#define gic_set_affinity NULL
|
|
#define gic_ipi_send_mask NULL
|
|
#define gic_smp_init() do { } while(0)
|
|
#endif
|
|
|
|
static int gic_retrigger(struct irq_data *data)
|
|
{
|
|
return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_PM
|
|
static int gic_cpu_pm_notifier(struct notifier_block *self,
|
|
unsigned long cmd, void *v)
|
|
{
|
|
if (cmd == CPU_PM_EXIT) {
|
|
if (gic_dist_security_disabled())
|
|
gic_enable_redist(true);
|
|
gic_cpu_sys_reg_init();
|
|
} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
|
|
gic_write_grpen1(0);
|
|
gic_enable_redist(false);
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block gic_cpu_pm_notifier_block = {
|
|
.notifier_call = gic_cpu_pm_notifier,
|
|
};
|
|
|
|
static void gic_cpu_pm_init(void)
|
|
{
|
|
cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
|
|
}
|
|
|
|
#else
|
|
static inline void gic_cpu_pm_init(void) { }
|
|
#endif /* CONFIG_CPU_PM */
|
|
|
|
static struct irq_chip gic_chip = {
|
|
.name = "GICv3",
|
|
.irq_mask = gic_mask_irq,
|
|
.irq_unmask = gic_unmask_irq,
|
|
.irq_eoi = gic_eoi_irq,
|
|
.irq_set_type = gic_set_type,
|
|
.irq_set_affinity = gic_set_affinity,
|
|
.irq_retrigger = gic_retrigger,
|
|
.irq_get_irqchip_state = gic_irq_get_irqchip_state,
|
|
.irq_set_irqchip_state = gic_irq_set_irqchip_state,
|
|
.irq_nmi_setup = gic_irq_nmi_setup,
|
|
.irq_nmi_teardown = gic_irq_nmi_teardown,
|
|
.ipi_send_mask = gic_ipi_send_mask,
|
|
.flags = IRQCHIP_SET_TYPE_MASKED |
|
|
IRQCHIP_SKIP_SET_WAKE |
|
|
IRQCHIP_MASK_ON_SUSPEND,
|
|
};
|
|
|
|
static struct irq_chip gic_eoimode1_chip = {
|
|
.name = "GICv3",
|
|
.irq_mask = gic_eoimode1_mask_irq,
|
|
.irq_unmask = gic_unmask_irq,
|
|
.irq_eoi = gic_eoimode1_eoi_irq,
|
|
.irq_set_type = gic_set_type,
|
|
.irq_set_affinity = gic_set_affinity,
|
|
.irq_retrigger = gic_retrigger,
|
|
.irq_get_irqchip_state = gic_irq_get_irqchip_state,
|
|
.irq_set_irqchip_state = gic_irq_set_irqchip_state,
|
|
.irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity,
|
|
.irq_nmi_setup = gic_irq_nmi_setup,
|
|
.irq_nmi_teardown = gic_irq_nmi_teardown,
|
|
.ipi_send_mask = gic_ipi_send_mask,
|
|
.flags = IRQCHIP_SET_TYPE_MASKED |
|
|
IRQCHIP_SKIP_SET_WAKE |
|
|
IRQCHIP_MASK_ON_SUSPEND,
|
|
};
|
|
|
|
static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
|
|
irq_hw_number_t hw)
|
|
{
|
|
struct irq_chip *chip = &gic_chip;
|
|
struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
|
|
|
|
if (static_branch_likely(&supports_deactivate_key))
|
|
chip = &gic_eoimode1_chip;
|
|
|
|
switch (__get_intid_range(hw)) {
|
|
case SGI_RANGE:
|
|
case PPI_RANGE:
|
|
case EPPI_RANGE:
|
|
irq_set_percpu_devid(irq);
|
|
irq_domain_set_info(d, irq, hw, chip, d->host_data,
|
|
handle_percpu_devid_irq, NULL, NULL);
|
|
break;
|
|
|
|
case SPI_RANGE:
|
|
case ESPI_RANGE:
|
|
irq_domain_set_info(d, irq, hw, chip, d->host_data,
|
|
handle_fasteoi_irq, NULL, NULL);
|
|
irq_set_probe(irq);
|
|
irqd_set_single_target(irqd);
|
|
break;
|
|
|
|
case LPI_RANGE:
|
|
if (!gic_dist_supports_lpis())
|
|
return -EPERM;
|
|
irq_domain_set_info(d, irq, hw, chip, d->host_data,
|
|
handle_fasteoi_irq, NULL, NULL);
|
|
break;
|
|
|
|
default:
|
|
return -EPERM;
|
|
}
|
|
|
|
/* Prevents SW retriggers which mess up the ACK/EOI ordering */
|
|
irqd_set_handle_enforce_irqctx(irqd);
|
|
return 0;
|
|
}
|
|
|
|
static int gic_irq_domain_translate(struct irq_domain *d,
|
|
struct irq_fwspec *fwspec,
|
|
unsigned long *hwirq,
|
|
unsigned int *type)
|
|
{
|
|
if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
|
|
*hwirq = fwspec->param[0];
|
|
*type = IRQ_TYPE_EDGE_RISING;
|
|
return 0;
|
|
}
|
|
|
|
if (is_of_node(fwspec->fwnode)) {
|
|
if (fwspec->param_count < 3)
|
|
return -EINVAL;
|
|
|
|
switch (fwspec->param[0]) {
|
|
case 0: /* SPI */
|
|
*hwirq = fwspec->param[1] + 32;
|
|
break;
|
|
case 1: /* PPI */
|
|
*hwirq = fwspec->param[1] + 16;
|
|
break;
|
|
case 2: /* ESPI */
|
|
*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
|
|
break;
|
|
case 3: /* EPPI */
|
|
*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
|
|
break;
|
|
case GIC_IRQ_TYPE_LPI: /* LPI */
|
|
*hwirq = fwspec->param[1];
|
|
break;
|
|
case GIC_IRQ_TYPE_PARTITION:
|
|
*hwirq = fwspec->param[1];
|
|
if (fwspec->param[1] >= 16)
|
|
*hwirq += EPPI_BASE_INTID - 16;
|
|
else
|
|
*hwirq += 16;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
|
|
|
|
/*
|
|
* Make it clear that broken DTs are... broken.
|
|
* Partitioned PPIs are an unfortunate exception.
|
|
*/
|
|
WARN_ON(*type == IRQ_TYPE_NONE &&
|
|
fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
|
|
return 0;
|
|
}
|
|
|
|
if (is_fwnode_irqchip(fwspec->fwnode)) {
|
|
if(fwspec->param_count != 2)
|
|
return -EINVAL;
|
|
|
|
if (fwspec->param[0] < 16) {
|
|
pr_err(FW_BUG "Illegal GSI%d translation request\n",
|
|
fwspec->param[0]);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*hwirq = fwspec->param[0];
|
|
*type = fwspec->param[1];
|
|
|
|
WARN_ON(*type == IRQ_TYPE_NONE);
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
|
|
unsigned int nr_irqs, void *arg)
|
|
{
|
|
int i, ret;
|
|
irq_hw_number_t hwirq;
|
|
unsigned int type = IRQ_TYPE_NONE;
|
|
struct irq_fwspec *fwspec = arg;
|
|
|
|
ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
|
|
unsigned int nr_irqs)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
|
|
irq_set_handler(virq + i, NULL);
|
|
irq_domain_reset_irq_data(d);
|
|
}
|
|
}
|
|
|
|
static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
|
|
irq_hw_number_t hwirq)
|
|
{
|
|
enum gic_intid_range range;
|
|
|
|
if (!gic_data.ppi_descs)
|
|
return false;
|
|
|
|
if (!is_of_node(fwspec->fwnode))
|
|
return false;
|
|
|
|
if (fwspec->param_count < 4 || !fwspec->param[3])
|
|
return false;
|
|
|
|
range = __get_intid_range(hwirq);
|
|
if (range != PPI_RANGE && range != EPPI_RANGE)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int gic_irq_domain_select(struct irq_domain *d,
|
|
struct irq_fwspec *fwspec,
|
|
enum irq_domain_bus_token bus_token)
|
|
{
|
|
unsigned int type, ret, ppi_idx;
|
|
irq_hw_number_t hwirq;
|
|
|
|
/* Not for us */
|
|
if (fwspec->fwnode != d->fwnode)
|
|
return 0;
|
|
|
|
/* If this is not DT, then we have a single domain */
|
|
if (!is_of_node(fwspec->fwnode))
|
|
return 1;
|
|
|
|
ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
|
|
if (WARN_ON_ONCE(ret))
|
|
return 0;
|
|
|
|
if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
|
|
return d == gic_data.domain;
|
|
|
|
/*
|
|
* If this is a PPI and we have a 4th (non-null) parameter,
|
|
* then we need to match the partition domain.
|
|
*/
|
|
ppi_idx = __gic_get_ppi_index(hwirq);
|
|
return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
|
|
}
|
|
|
|
static const struct irq_domain_ops gic_irq_domain_ops = {
|
|
.translate = gic_irq_domain_translate,
|
|
.alloc = gic_irq_domain_alloc,
|
|
.free = gic_irq_domain_free,
|
|
.select = gic_irq_domain_select,
|
|
};
|
|
|
|
static int partition_domain_translate(struct irq_domain *d,
|
|
struct irq_fwspec *fwspec,
|
|
unsigned long *hwirq,
|
|
unsigned int *type)
|
|
{
|
|
unsigned long ppi_intid;
|
|
struct device_node *np;
|
|
unsigned int ppi_idx;
|
|
int ret;
|
|
|
|
if (!gic_data.ppi_descs)
|
|
return -ENOMEM;
|
|
|
|
np = of_find_node_by_phandle(fwspec->param[3]);
|
|
if (WARN_ON(!np))
|
|
return -EINVAL;
|
|
|
|
ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
|
|
if (WARN_ON_ONCE(ret))
|
|
return 0;
|
|
|
|
ppi_idx = __gic_get_ppi_index(ppi_intid);
|
|
ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
|
|
of_node_to_fwnode(np));
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*hwirq = ret;
|
|
*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct irq_domain_ops partition_domain_ops = {
|
|
.translate = partition_domain_translate,
|
|
.select = gic_irq_domain_select,
|
|
};
|
|
|
|
static bool gic_enable_quirk_msm8996(void *data)
|
|
{
|
|
struct gic_chip_data *d = data;
|
|
|
|
d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool gic_enable_quirk_cavium_38539(void *data)
|
|
{
|
|
struct gic_chip_data *d = data;
|
|
|
|
d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool gic_enable_quirk_hip06_07(void *data)
|
|
{
|
|
struct gic_chip_data *d = data;
|
|
|
|
/*
|
|
* HIP06 GICD_IIDR clashes with GIC-600 product number (despite
|
|
* not being an actual ARM implementation). The saving grace is
|
|
* that GIC-600 doesn't have ESPI, so nothing to do in that case.
|
|
* HIP07 doesn't even have a proper IIDR, and still pretends to
|
|
* have ESPI. In both cases, put them right.
|
|
*/
|
|
if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
|
|
/* Zero both ESPI and the RES0 field next to it... */
|
|
d->rdists.gicd_typer &= ~GENMASK(9, 8);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static const struct gic_quirk gic_quirks[] = {
|
|
{
|
|
.desc = "GICv3: Qualcomm MSM8996 broken firmware",
|
|
.compatible = "qcom,msm8996-gic-v3",
|
|
.init = gic_enable_quirk_msm8996,
|
|
},
|
|
{
|
|
.desc = "GICv3: HIP06 erratum 161010803",
|
|
.iidr = 0x0204043b,
|
|
.mask = 0xffffffff,
|
|
.init = gic_enable_quirk_hip06_07,
|
|
},
|
|
{
|
|
.desc = "GICv3: HIP07 erratum 161010803",
|
|
.iidr = 0x00000000,
|
|
.mask = 0xffffffff,
|
|
.init = gic_enable_quirk_hip06_07,
|
|
},
|
|
{
|
|
/*
|
|
* Reserved register accesses generate a Synchronous
|
|
* External Abort. This erratum applies to:
|
|
* - ThunderX: CN88xx
|
|
* - OCTEON TX: CN83xx, CN81xx
|
|
* - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
|
|
*/
|
|
.desc = "GICv3: Cavium erratum 38539",
|
|
.iidr = 0xa000034c,
|
|
.mask = 0xe8f00fff,
|
|
.init = gic_enable_quirk_cavium_38539,
|
|
},
|
|
{
|
|
}
|
|
};
|
|
|
|
static void gic_enable_nmi_support(void)
|
|
{
|
|
int i;
|
|
|
|
if (!gic_prio_masking_enabled())
|
|
return;
|
|
|
|
ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
|
|
if (!ppi_nmi_refs)
|
|
return;
|
|
|
|
for (i = 0; i < gic_data.ppi_nr; i++)
|
|
refcount_set(&ppi_nmi_refs[i], 0);
|
|
|
|
pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
|
|
gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
|
|
|
|
/*
|
|
* How priority values are used by the GIC depends on two things:
|
|
* the security state of the GIC (controlled by the GICD_CTRL.DS bit)
|
|
* and if Group 0 interrupts can be delivered to Linux in the non-secure
|
|
* world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
|
|
* ICC_PMR_EL1 register and the priority that software assigns to
|
|
* interrupts:
|
|
*
|
|
* GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
|
|
* -----------------------------------------------------------
|
|
* 1 | - | unchanged | unchanged
|
|
* -----------------------------------------------------------
|
|
* 0 | 1 | non-secure | non-secure
|
|
* -----------------------------------------------------------
|
|
* 0 | 0 | unchanged | non-secure
|
|
*
|
|
* where non-secure means that the value is right-shifted by one and the
|
|
* MSB bit set, to make it fit in the non-secure priority range.
|
|
*
|
|
* In the first two cases, where ICC_PMR_EL1 and the interrupt priority
|
|
* are both either modified or unchanged, we can use the same set of
|
|
* priorities.
|
|
*
|
|
* In the last case, where only the interrupt priorities are modified to
|
|
* be in the non-secure range, we use a different PMR value to mask IRQs
|
|
* and the rest of the values that we use remain unchanged.
|
|
*/
|
|
if (gic_has_group0() && !gic_dist_security_disabled())
|
|
static_branch_enable(&gic_nonsecure_priorities);
|
|
|
|
static_branch_enable(&supports_pseudo_nmis);
|
|
|
|
if (static_branch_likely(&supports_deactivate_key))
|
|
gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
|
|
else
|
|
gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
|
|
}
|
|
|
|
static int __init gic_init_bases(void __iomem *dist_base,
|
|
struct redist_region *rdist_regs,
|
|
u32 nr_redist_regions,
|
|
u64 redist_stride,
|
|
struct fwnode_handle *handle)
|
|
{
|
|
u32 typer;
|
|
int err;
|
|
|
|
if (!is_hyp_mode_available())
|
|
static_branch_disable(&supports_deactivate_key);
|
|
|
|
if (static_branch_likely(&supports_deactivate_key))
|
|
pr_info("GIC: Using split EOI/Deactivate mode\n");
|
|
|
|
gic_data.fwnode = handle;
|
|
gic_data.dist_base = dist_base;
|
|
gic_data.redist_regions = rdist_regs;
|
|
gic_data.nr_redist_regions = nr_redist_regions;
|
|
gic_data.redist_stride = redist_stride;
|
|
|
|
/*
|
|
* Find out how many interrupts are supported.
|
|
*/
|
|
typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
|
|
gic_data.rdists.gicd_typer = typer;
|
|
|
|
gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
|
|
gic_quirks, &gic_data);
|
|
|
|
pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
|
|
pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
|
|
|
|
/*
|
|
* ThunderX1 explodes on reading GICD_TYPER2, in violation of the
|
|
* architecture spec (which says that reserved registers are RES0).
|
|
*/
|
|
if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
|
|
gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
|
|
|
|
gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
|
|
&gic_data);
|
|
gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
|
|
gic_data.rdists.has_rvpeid = true;
|
|
gic_data.rdists.has_vlpis = true;
|
|
gic_data.rdists.has_direct_lpi = true;
|
|
gic_data.rdists.has_vpend_valid_dirty = true;
|
|
|
|
if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
|
|
err = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
|
|
|
|
gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
|
|
|
|
if (typer & GICD_TYPER_MBIS) {
|
|
err = mbi_init(handle, gic_data.domain);
|
|
if (err)
|
|
pr_err("Failed to initialize MBIs\n");
|
|
}
|
|
|
|
set_handle_irq(gic_handle_irq);
|
|
|
|
gic_update_rdist_properties();
|
|
|
|
gic_dist_init();
|
|
gic_cpu_init();
|
|
gic_smp_init();
|
|
gic_cpu_pm_init();
|
|
|
|
if (gic_dist_supports_lpis()) {
|
|
its_init(handle, &gic_data.rdists, gic_data.domain);
|
|
its_cpu_init();
|
|
its_lpi_memreserve_init();
|
|
} else {
|
|
if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
|
|
gicv2m_init(handle, gic_data.domain);
|
|
}
|
|
|
|
gic_enable_nmi_support();
|
|
|
|
return 0;
|
|
|
|
out_free:
|
|
if (gic_data.domain)
|
|
irq_domain_remove(gic_data.domain);
|
|
free_percpu(gic_data.rdists.rdist);
|
|
return err;
|
|
}
|
|
|
|
static int __init gic_validate_dist_version(void __iomem *dist_base)
|
|
{
|
|
u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
|
|
|
|
if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
|
|
return -ENODEV;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Create all possible partitions at boot time */
|
|
static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
|
|
{
|
|
struct device_node *parts_node, *child_part;
|
|
int part_idx = 0, i;
|
|
int nr_parts;
|
|
struct partition_affinity *parts;
|
|
|
|
parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
|
|
if (!parts_node)
|
|
return;
|
|
|
|
gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
|
|
if (!gic_data.ppi_descs)
|
|
goto out_put_node;
|
|
|
|
nr_parts = of_get_child_count(parts_node);
|
|
|
|
if (!nr_parts)
|
|
goto out_put_node;
|
|
|
|
parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
|
|
if (WARN_ON(!parts))
|
|
goto out_put_node;
|
|
|
|
for_each_child_of_node(parts_node, child_part) {
|
|
struct partition_affinity *part;
|
|
int n;
|
|
|
|
part = &parts[part_idx];
|
|
|
|
part->partition_id = of_node_to_fwnode(child_part);
|
|
|
|
pr_info("GIC: PPI partition %pOFn[%d] { ",
|
|
child_part, part_idx);
|
|
|
|
n = of_property_count_elems_of_size(child_part, "affinity",
|
|
sizeof(u32));
|
|
WARN_ON(n <= 0);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
int err, cpu;
|
|
u32 cpu_phandle;
|
|
struct device_node *cpu_node;
|
|
|
|
err = of_property_read_u32_index(child_part, "affinity",
|
|
i, &cpu_phandle);
|
|
if (WARN_ON(err))
|
|
continue;
|
|
|
|
cpu_node = of_find_node_by_phandle(cpu_phandle);
|
|
if (WARN_ON(!cpu_node))
|
|
continue;
|
|
|
|
cpu = of_cpu_node_to_id(cpu_node);
|
|
if (WARN_ON(cpu < 0)) {
|
|
of_node_put(cpu_node);
|
|
continue;
|
|
}
|
|
|
|
pr_cont("%pOF[%d] ", cpu_node, cpu);
|
|
|
|
cpumask_set_cpu(cpu, &part->mask);
|
|
of_node_put(cpu_node);
|
|
}
|
|
|
|
pr_cont("}\n");
|
|
part_idx++;
|
|
}
|
|
|
|
for (i = 0; i < gic_data.ppi_nr; i++) {
|
|
unsigned int irq;
|
|
struct partition_desc *desc;
|
|
struct irq_fwspec ppi_fwspec = {
|
|
.fwnode = gic_data.fwnode,
|
|
.param_count = 3,
|
|
.param = {
|
|
[0] = GIC_IRQ_TYPE_PARTITION,
|
|
[1] = i,
|
|
[2] = IRQ_TYPE_NONE,
|
|
},
|
|
};
|
|
|
|
irq = irq_create_fwspec_mapping(&ppi_fwspec);
|
|
if (WARN_ON(!irq))
|
|
continue;
|
|
desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
|
|
irq, &partition_domain_ops);
|
|
if (WARN_ON(!desc))
|
|
continue;
|
|
|
|
gic_data.ppi_descs[i] = desc;
|
|
}
|
|
|
|
out_put_node:
|
|
of_node_put(parts_node);
|
|
}
|
|
|
|
static void __init gic_of_setup_kvm_info(struct device_node *node)
|
|
{
|
|
int ret;
|
|
struct resource r;
|
|
u32 gicv_idx;
|
|
|
|
gic_v3_kvm_info.type = GIC_V3;
|
|
|
|
gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
|
|
if (!gic_v3_kvm_info.maint_irq)
|
|
return;
|
|
|
|
if (of_property_read_u32(node, "#redistributor-regions",
|
|
&gicv_idx))
|
|
gicv_idx = 1;
|
|
|
|
gicv_idx += 3; /* Also skip GICD, GICC, GICH */
|
|
ret = of_address_to_resource(node, gicv_idx, &r);
|
|
if (!ret)
|
|
gic_v3_kvm_info.vcpu = r;
|
|
|
|
gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
|
|
gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
|
|
vgic_set_kvm_info(&gic_v3_kvm_info);
|
|
}
|
|
|
|
static void gic_request_region(resource_size_t base, resource_size_t size,
|
|
const char *name)
|
|
{
|
|
if (!request_mem_region(base, size, name))
|
|
pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
|
|
name, &base);
|
|
}
|
|
|
|
static void __iomem *gic_of_iomap(struct device_node *node, int idx,
|
|
const char *name, struct resource *res)
|
|
{
|
|
void __iomem *base;
|
|
int ret;
|
|
|
|
ret = of_address_to_resource(node, idx, res);
|
|
if (ret)
|
|
return IOMEM_ERR_PTR(ret);
|
|
|
|
gic_request_region(res->start, resource_size(res), name);
|
|
base = of_iomap(node, idx);
|
|
|
|
return base ?: IOMEM_ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
static int __init gic_of_init(struct device_node *node, struct device_node *parent)
|
|
{
|
|
void __iomem *dist_base;
|
|
struct redist_region *rdist_regs;
|
|
struct resource res;
|
|
u64 redist_stride;
|
|
u32 nr_redist_regions;
|
|
int err, i;
|
|
|
|
dist_base = gic_of_iomap(node, 0, "GICD", &res);
|
|
if (IS_ERR(dist_base)) {
|
|
pr_err("%pOF: unable to map gic dist registers\n", node);
|
|
return PTR_ERR(dist_base);
|
|
}
|
|
|
|
err = gic_validate_dist_version(dist_base);
|
|
if (err) {
|
|
pr_err("%pOF: no distributor detected, giving up\n", node);
|
|
goto out_unmap_dist;
|
|
}
|
|
|
|
if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
|
|
nr_redist_regions = 1;
|
|
|
|
rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
|
|
GFP_KERNEL);
|
|
if (!rdist_regs) {
|
|
err = -ENOMEM;
|
|
goto out_unmap_dist;
|
|
}
|
|
|
|
for (i = 0; i < nr_redist_regions; i++) {
|
|
rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
|
|
if (IS_ERR(rdist_regs[i].redist_base)) {
|
|
pr_err("%pOF: couldn't map region %d\n", node, i);
|
|
err = -ENODEV;
|
|
goto out_unmap_rdist;
|
|
}
|
|
rdist_regs[i].phys_base = res.start;
|
|
}
|
|
|
|
if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
|
|
redist_stride = 0;
|
|
|
|
gic_enable_of_quirks(node, gic_quirks, &gic_data);
|
|
|
|
err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
|
|
redist_stride, &node->fwnode);
|
|
if (err)
|
|
goto out_unmap_rdist;
|
|
|
|
gic_populate_ppi_partitions(node);
|
|
|
|
if (static_branch_likely(&supports_deactivate_key))
|
|
gic_of_setup_kvm_info(node);
|
|
return 0;
|
|
|
|
out_unmap_rdist:
|
|
for (i = 0; i < nr_redist_regions; i++)
|
|
if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
|
|
iounmap(rdist_regs[i].redist_base);
|
|
kfree(rdist_regs);
|
|
out_unmap_dist:
|
|
iounmap(dist_base);
|
|
return err;
|
|
}
|
|
|
|
IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
|
|
|
|
#ifdef CONFIG_ACPI
|
|
static struct
|
|
{
|
|
void __iomem *dist_base;
|
|
struct redist_region *redist_regs;
|
|
u32 nr_redist_regions;
|
|
bool single_redist;
|
|
int enabled_rdists;
|
|
u32 maint_irq;
|
|
int maint_irq_mode;
|
|
phys_addr_t vcpu_base;
|
|
} acpi_data __initdata;
|
|
|
|
static void __init
|
|
gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
|
|
{
|
|
static int count = 0;
|
|
|
|
acpi_data.redist_regs[count].phys_base = phys_base;
|
|
acpi_data.redist_regs[count].redist_base = redist_base;
|
|
acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
|
|
count++;
|
|
}
|
|
|
|
static int __init
|
|
gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_madt_generic_redistributor *redist =
|
|
(struct acpi_madt_generic_redistributor *)header;
|
|
void __iomem *redist_base;
|
|
|
|
redist_base = ioremap(redist->base_address, redist->length);
|
|
if (!redist_base) {
|
|
pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
|
|
return -ENOMEM;
|
|
}
|
|
gic_request_region(redist->base_address, redist->length, "GICR");
|
|
|
|
gic_acpi_register_redist(redist->base_address, redist_base);
|
|
return 0;
|
|
}
|
|
|
|
static int __init
|
|
gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_madt_generic_interrupt *gicc =
|
|
(struct acpi_madt_generic_interrupt *)header;
|
|
u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
|
|
u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
|
|
void __iomem *redist_base;
|
|
|
|
/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
|
|
if (!(gicc->flags & ACPI_MADT_ENABLED))
|
|
return 0;
|
|
|
|
redist_base = ioremap(gicc->gicr_base_address, size);
|
|
if (!redist_base)
|
|
return -ENOMEM;
|
|
gic_request_region(gicc->gicr_base_address, size, "GICR");
|
|
|
|
gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
|
|
return 0;
|
|
}
|
|
|
|
static int __init gic_acpi_collect_gicr_base(void)
|
|
{
|
|
acpi_tbl_entry_handler redist_parser;
|
|
enum acpi_madt_type type;
|
|
|
|
if (acpi_data.single_redist) {
|
|
type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
|
|
redist_parser = gic_acpi_parse_madt_gicc;
|
|
} else {
|
|
type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
|
|
redist_parser = gic_acpi_parse_madt_redist;
|
|
}
|
|
|
|
/* Collect redistributor base addresses in GICR entries */
|
|
if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
|
|
return 0;
|
|
|
|
pr_info("No valid GICR entries exist\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
|
|
const unsigned long end)
|
|
{
|
|
/* Subtable presence means that redist exists, that's it */
|
|
return 0;
|
|
}
|
|
|
|
static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_madt_generic_interrupt *gicc =
|
|
(struct acpi_madt_generic_interrupt *)header;
|
|
|
|
/*
|
|
* If GICC is enabled and has valid gicr base address, then it means
|
|
* GICR base is presented via GICC
|
|
*/
|
|
if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
|
|
acpi_data.enabled_rdists++;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It's perfectly valid firmware can pass disabled GICC entry, driver
|
|
* should not treat as errors, skip the entry instead of probe fail.
|
|
*/
|
|
if (!(gicc->flags & ACPI_MADT_ENABLED))
|
|
return 0;
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int __init gic_acpi_count_gicr_regions(void)
|
|
{
|
|
int count;
|
|
|
|
/*
|
|
* Count how many redistributor regions we have. It is not allowed
|
|
* to mix redistributor description, GICR and GICC subtables have to be
|
|
* mutually exclusive.
|
|
*/
|
|
count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
|
|
gic_acpi_match_gicr, 0);
|
|
if (count > 0) {
|
|
acpi_data.single_redist = false;
|
|
return count;
|
|
}
|
|
|
|
count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
|
|
gic_acpi_match_gicc, 0);
|
|
if (count > 0) {
|
|
acpi_data.single_redist = true;
|
|
count = acpi_data.enabled_rdists;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
|
|
struct acpi_probe_entry *ape)
|
|
{
|
|
struct acpi_madt_generic_distributor *dist;
|
|
int count;
|
|
|
|
dist = (struct acpi_madt_generic_distributor *)header;
|
|
if (dist->version != ape->driver_data)
|
|
return false;
|
|
|
|
/* We need to do that exercise anyway, the sooner the better */
|
|
count = gic_acpi_count_gicr_regions();
|
|
if (count <= 0)
|
|
return false;
|
|
|
|
acpi_data.nr_redist_regions = count;
|
|
return true;
|
|
}
|
|
|
|
static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_madt_generic_interrupt *gicc =
|
|
(struct acpi_madt_generic_interrupt *)header;
|
|
int maint_irq_mode;
|
|
static int first_madt = true;
|
|
|
|
/* Skip unusable CPUs */
|
|
if (!(gicc->flags & ACPI_MADT_ENABLED))
|
|
return 0;
|
|
|
|
maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
|
|
ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
|
|
|
|
if (first_madt) {
|
|
first_madt = false;
|
|
|
|
acpi_data.maint_irq = gicc->vgic_interrupt;
|
|
acpi_data.maint_irq_mode = maint_irq_mode;
|
|
acpi_data.vcpu_base = gicc->gicv_base_address;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The maintenance interrupt and GICV should be the same for every CPU
|
|
*/
|
|
if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
|
|
(acpi_data.maint_irq_mode != maint_irq_mode) ||
|
|
(acpi_data.vcpu_base != gicc->gicv_base_address))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool __init gic_acpi_collect_virt_info(void)
|
|
{
|
|
int count;
|
|
|
|
count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
|
|
gic_acpi_parse_virt_madt_gicc, 0);
|
|
|
|
return (count > 0);
|
|
}
|
|
|
|
#define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
|
|
#define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K)
|
|
#define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K)
|
|
|
|
static void __init gic_acpi_setup_kvm_info(void)
|
|
{
|
|
int irq;
|
|
|
|
if (!gic_acpi_collect_virt_info()) {
|
|
pr_warn("Unable to get hardware information used for virtualization\n");
|
|
return;
|
|
}
|
|
|
|
gic_v3_kvm_info.type = GIC_V3;
|
|
|
|
irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
|
|
acpi_data.maint_irq_mode,
|
|
ACPI_ACTIVE_HIGH);
|
|
if (irq <= 0)
|
|
return;
|
|
|
|
gic_v3_kvm_info.maint_irq = irq;
|
|
|
|
if (acpi_data.vcpu_base) {
|
|
struct resource *vcpu = &gic_v3_kvm_info.vcpu;
|
|
|
|
vcpu->flags = IORESOURCE_MEM;
|
|
vcpu->start = acpi_data.vcpu_base;
|
|
vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
|
|
}
|
|
|
|
gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
|
|
gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
|
|
vgic_set_kvm_info(&gic_v3_kvm_info);
|
|
}
|
|
|
|
static struct fwnode_handle *gsi_domain_handle;
|
|
|
|
static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
|
|
{
|
|
return gsi_domain_handle;
|
|
}
|
|
|
|
static int __init
|
|
gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
|
|
{
|
|
struct acpi_madt_generic_distributor *dist;
|
|
size_t size;
|
|
int i, err;
|
|
|
|
/* Get distributor base address */
|
|
dist = (struct acpi_madt_generic_distributor *)header;
|
|
acpi_data.dist_base = ioremap(dist->base_address,
|
|
ACPI_GICV3_DIST_MEM_SIZE);
|
|
if (!acpi_data.dist_base) {
|
|
pr_err("Unable to map GICD registers\n");
|
|
return -ENOMEM;
|
|
}
|
|
gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
|
|
|
|
err = gic_validate_dist_version(acpi_data.dist_base);
|
|
if (err) {
|
|
pr_err("No distributor detected at @%p, giving up\n",
|
|
acpi_data.dist_base);
|
|
goto out_dist_unmap;
|
|
}
|
|
|
|
size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
|
|
acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
|
|
if (!acpi_data.redist_regs) {
|
|
err = -ENOMEM;
|
|
goto out_dist_unmap;
|
|
}
|
|
|
|
err = gic_acpi_collect_gicr_base();
|
|
if (err)
|
|
goto out_redist_unmap;
|
|
|
|
gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
|
|
if (!gsi_domain_handle) {
|
|
err = -ENOMEM;
|
|
goto out_redist_unmap;
|
|
}
|
|
|
|
err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
|
|
acpi_data.nr_redist_regions, 0, gsi_domain_handle);
|
|
if (err)
|
|
goto out_fwhandle_free;
|
|
|
|
acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
|
|
|
|
if (static_branch_likely(&supports_deactivate_key))
|
|
gic_acpi_setup_kvm_info();
|
|
|
|
return 0;
|
|
|
|
out_fwhandle_free:
|
|
irq_domain_free_fwnode(gsi_domain_handle);
|
|
out_redist_unmap:
|
|
for (i = 0; i < acpi_data.nr_redist_regions; i++)
|
|
if (acpi_data.redist_regs[i].redist_base)
|
|
iounmap(acpi_data.redist_regs[i].redist_base);
|
|
kfree(acpi_data.redist_regs);
|
|
out_dist_unmap:
|
|
iounmap(acpi_data.dist_base);
|
|
return err;
|
|
}
|
|
IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
|
|
acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
|
|
gic_acpi_init);
|
|
IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
|
|
acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
|
|
gic_acpi_init);
|
|
IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
|
|
acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
|
|
gic_acpi_init);
|
|
#endif
|