8f5b5f7811
The most notable change is the drop of the 'alloc' in-tree fork. This is nicely reflected in the diffstat as a ~10k lines drop. In turn, this makes the version upgrades way simpler and smaller in the future, e.g. the latest one in commit 56f64b370612 ("rust: upgrade to Rust 1.78.0"). More importantly, this increases the chances that a newer compiler version just works, which in turn means supporting several compiler versions is easier now. Thus we will look into finally setting a minimum version in the near future. Toolchain and infrastructure: - Upgrade to Rust 1.78.0. This time around, due to how the kernel and Rust schedules have aligned, there are two upgrades in fact. These allow us to remove one more unstable feature ('offset_of') from the list, among other improvements. - Drop 'alloc' in-tree fork of the standard library crate, which means all the unstable features used by 'alloc' (~30 language ones, ~60 library ones) are not a concern anymore. - Support DWARFv5 via the '-Zdwarf-version' flag. - Support zlib and zstd debuginfo compression via the '-Zdebuginfo-compression' flag. 'kernel' crate: - Support allocation flags ('GFP_*'), particularly in 'Box' (via 'BoxExt'), 'Vec' (via 'VecExt'), 'Arc' and 'UniqueArc', as well as in the 'init' module APIs. - Remove usage of the 'allocator_api' unstable feature. - Remove 'try_' prefix in allocation APIs' names. - Add 'VecExt' (an extension trait) to be able to drop the 'alloc' fork. - Add the '{make,to}_{upper,lower}case()' methods to 'CStr'/'CString'. - Add the 'as_ptr' method to 'ThisModule'. - Add the 'from_raw' method to 'ArcBorrow'. - Add the 'into_unique_or_drop' method to 'Arc'. - Display column number in the 'dbg!' macro output by applying the equivalent change done to the standard library one. - Migrate 'Work' to '#[pin_data]' thanks to the changes in the 'macros' crate, which allows to remove an unsafe call in its 'new' associated function. - Prevent namespacing issues when using the '[try_][pin_]init!' macros by changing the generated name of guard variables. - Make the 'get' method in 'Opaque' const. - Implement the 'Default' trait for 'LockClassKey'. - Remove unneeded 'kernel::prelude' imports from doctests. - Remove redundant imports. 'macros' crate: - Add 'decl_generics' to 'parse_generics()' to support default values, and use that to allow them in '#[pin_data]'. Helpers: - Trivial English grammar fix. Documentation: - Add section on Rust Kselftests to the "Testing" document. - Expand the "Abstractions vs. bindings" section of the "General Information" document. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEPjU5OPd5QIZ9jqqOGXyLc2htIW0FAmZBIzoACgkQGXyLc2ht IW2/7hAAz5fRsx1M1b/JU3P3lc3XKUaFCmAWJX6F+sNHp8vNeFYNzVZ3ylk6Z4zB idkTq0Y5Rlc8ejryHiEMaY3X7Zrh0yt3G/AzKZqZx54IAPUp59BRSvG3+SJanQ7p Gjy+cCXweLtYjF79Au5Ejt52gV+JAwPtGLkbl1skNs0jPr4rqm+Zg4bPhE5Sr0Eh mh2VxcHf3rbIVhBYJTYGNpsnQYZNwfPDJ+bRudYp1BymLYOG8A328ocvU19BM63+ 6FFQBLgB3N8OS+Mw0c8AeFVNkeCw4NesmIkBMco8wm8QXyLz1zjg948LT9ogPCgB 5eC41yAxa83uPdt8L034YNfJa+IgFleZp339QKW2+vXHks43M8IMLq9WP7GU84M1 Axu5ekl5sR6awOk0265Zc1ghkOTQREIi0kiqtNBh9wc/qILAD2DyYoy1td9ch1Qi BBNxyKYaMx9z+7mhK4ksTbRb+VrdDmFPDhXOIJD5zg4yrLZOM6Mb/O+BnSD2pxa3 6cUGwfQTv0hbBTeY4ZgdNgFu2YJ/9rqACKtULoaT0AID/d8I3fxc7J35AWnqeC/x nALHTa2JMkBvN03Afn0wCVuXbdLW0/9DCGnuuhYMn0DhFC/uuKicsvwfjcGSKnPN iaRJoRCYKjlc0AJSYHhavgyp2R9HnVM0E53PC3ubjiKz5DsaRDU= =j6/D -----END PGP SIGNATURE----- Merge tag 'rust-6.10' of https://github.com/Rust-for-Linux/linux Pull Rust updates from Miguel Ojeda: "The most notable change is the drop of the 'alloc' in-tree fork. This is nicely reflected in the diffstat as a ~10k lines drop. In turn, this makes the version upgrades way simpler and smaller in the future, e.g. the latest one in commit 56f64b370612 ("rust: upgrade to Rust 1.78.0"). More importantly, this increases the chances that a newer compiler version just works, which in turn means supporting several compiler versions is easier now. Thus we will look into finally setting a minimum version in the near future. Toolchain and infrastructure: - Upgrade to Rust 1.78.0 This time around, due to how the kernel and Rust schedules have aligned, there are two upgrades in fact. These allow us to remove one more unstable feature ('offset_of') from the list, among other improvements - Drop 'alloc' in-tree fork of the standard library crate, which means all the unstable features used by 'alloc' (~30 language ones, ~60 library ones) are not a concern anymore - Support DWARFv5 via the '-Zdwarf-version' flag - Support zlib and zstd debuginfo compression via the '-Zdebuginfo-compression' flag 'kernel' crate: - Support allocation flags ('GFP_*'), particularly in 'Box' (via 'BoxExt'), 'Vec' (via 'VecExt'), 'Arc' and 'UniqueArc', as well as in the 'init' module APIs - Remove usage of the 'allocator_api' unstable feature - Remove 'try_' prefix in allocation APIs' names - Add 'VecExt' (an extension trait) to be able to drop the 'alloc' fork - Add the '{make,to}_{upper,lower}case()' methods to 'CStr'/'CString' - Add the 'as_ptr' method to 'ThisModule' - Add the 'from_raw' method to 'ArcBorrow' - Add the 'into_unique_or_drop' method to 'Arc' - Display column number in the 'dbg!' macro output by applying the equivalent change done to the standard library one - Migrate 'Work' to '#[pin_data]' thanks to the changes in the 'macros' crate, which allows to remove an unsafe call in its 'new' associated function - Prevent namespacing issues when using the '[try_][pin_]init!' macros by changing the generated name of guard variables - Make the 'get' method in 'Opaque' const - Implement the 'Default' trait for 'LockClassKey' - Remove unneeded 'kernel::prelude' imports from doctests - Remove redundant imports 'macros' crate: - Add 'decl_generics' to 'parse_generics()' to support default values, and use that to allow them in '#[pin_data]' Helpers: - Trivial English grammar fix Documentation: - Add section on Rust Kselftests to the 'Testing' document - Expand the 'Abstractions vs. bindings' section of the 'General Information' document" * tag 'rust-6.10' of https://github.com/Rust-for-Linux/linux: (31 commits) rust: alloc: fix dangling pointer in VecExt<T>::reserve() rust: upgrade to Rust 1.78.0 rust: kernel: remove redundant imports rust: sync: implement `Default` for `LockClassKey` docs: rust: extend abstraction and binding documentation docs: rust: Add instructions for the Rust kselftest rust: remove unneeded `kernel::prelude` imports from doctests rust: update `dbg!()` to format column number rust: helpers: Fix grammar in comment rust: init: change the generated name of guard variables rust: sync: add `Arc::into_unique_or_drop` rust: sync: add `ArcBorrow::from_raw` rust: types: Make Opaque::get const rust: kernel: remove usage of `allocator_api` unstable feature rust: init: update `init` module to take allocation flags rust: sync: update `Arc` and `UniqueArc` to take allocation flags rust: alloc: update `VecExt` to take allocation flags rust: alloc: introduce the `BoxExt` trait rust: alloc: introduce allocation flags rust: alloc: remove our fork of the `alloc` crate ...
1353 lines
46 KiB
Rust
1353 lines
46 KiB
Rust
// SPDX-License-Identifier: Apache-2.0 OR MIT
|
|
|
|
//! API to safely and fallibly initialize pinned `struct`s using in-place constructors.
|
|
//!
|
|
//! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
|
|
//! overflow.
|
|
//!
|
|
//! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential
|
|
//! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move.
|
|
//!
|
|
//! # Overview
|
|
//!
|
|
//! To initialize a `struct` with an in-place constructor you will need two things:
|
|
//! - an in-place constructor,
|
|
//! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
|
|
//! [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]).
|
|
//!
|
|
//! To get an in-place constructor there are generally three options:
|
|
//! - directly creating an in-place constructor using the [`pin_init!`] macro,
|
|
//! - a custom function/macro returning an in-place constructor provided by someone else,
|
|
//! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
|
|
//!
|
|
//! Aside from pinned initialization, this API also supports in-place construction without pinning,
|
|
//! the macros/types/functions are generally named like the pinned variants without the `pin`
|
|
//! prefix.
|
|
//!
|
|
//! # Examples
|
|
//!
|
|
//! ## Using the [`pin_init!`] macro
|
|
//!
|
|
//! If you want to use [`PinInit`], then you will have to annotate your `struct` with
|
|
//! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
|
|
//! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
|
|
//! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
|
|
//! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
|
|
//!
|
|
//! ```rust
|
|
//! # #![allow(clippy::disallowed_names)]
|
|
//! use kernel::sync::{new_mutex, Mutex};
|
|
//! # use core::pin::Pin;
|
|
//! #[pin_data]
|
|
//! struct Foo {
|
|
//! #[pin]
|
|
//! a: Mutex<usize>,
|
|
//! b: u32,
|
|
//! }
|
|
//!
|
|
//! let foo = pin_init!(Foo {
|
|
//! a <- new_mutex!(42, "Foo::a"),
|
|
//! b: 24,
|
|
//! });
|
|
//! ```
|
|
//!
|
|
//! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
|
|
//! (or just the stack) to actually initialize a `Foo`:
|
|
//!
|
|
//! ```rust
|
|
//! # #![allow(clippy::disallowed_names)]
|
|
//! # use kernel::sync::{new_mutex, Mutex};
|
|
//! # use core::pin::Pin;
|
|
//! # #[pin_data]
|
|
//! # struct Foo {
|
|
//! # #[pin]
|
|
//! # a: Mutex<usize>,
|
|
//! # b: u32,
|
|
//! # }
|
|
//! # let foo = pin_init!(Foo {
|
|
//! # a <- new_mutex!(42, "Foo::a"),
|
|
//! # b: 24,
|
|
//! # });
|
|
//! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo, GFP_KERNEL);
|
|
//! ```
|
|
//!
|
|
//! For more information see the [`pin_init!`] macro.
|
|
//!
|
|
//! ## Using a custom function/macro that returns an initializer
|
|
//!
|
|
//! Many types from the kernel supply a function/macro that returns an initializer, because the
|
|
//! above method only works for types where you can access the fields.
|
|
//!
|
|
//! ```rust
|
|
//! # use kernel::sync::{new_mutex, Arc, Mutex};
|
|
//! let mtx: Result<Arc<Mutex<usize>>> =
|
|
//! Arc::pin_init(new_mutex!(42, "example::mtx"), GFP_KERNEL);
|
|
//! ```
|
|
//!
|
|
//! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
|
|
//!
|
|
//! ```rust
|
|
//! # #![allow(clippy::disallowed_names)]
|
|
//! # use kernel::{sync::Mutex, new_mutex, init::PinInit, try_pin_init};
|
|
//! #[pin_data]
|
|
//! struct DriverData {
|
|
//! #[pin]
|
|
//! status: Mutex<i32>,
|
|
//! buffer: Box<[u8; 1_000_000]>,
|
|
//! }
|
|
//!
|
|
//! impl DriverData {
|
|
//! fn new() -> impl PinInit<Self, Error> {
|
|
//! try_pin_init!(Self {
|
|
//! status <- new_mutex!(0, "DriverData::status"),
|
|
//! buffer: Box::init(kernel::init::zeroed(), GFP_KERNEL)?,
|
|
//! })
|
|
//! }
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! ## Manual creation of an initializer
|
|
//!
|
|
//! Often when working with primitives the previous approaches are not sufficient. That is where
|
|
//! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
|
|
//! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
|
|
//! actually does the initialization in the correct way. Here are the things to look out for
|
|
//! (we are calling the parameter to the closure `slot`):
|
|
//! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
|
|
//! `slot` now contains a valid bit pattern for the type `T`,
|
|
//! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
|
|
//! you need to take care to clean up anything if your initialization fails mid-way,
|
|
//! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
|
|
//! `slot` gets called.
|
|
//!
|
|
//! ```rust
|
|
//! # #![allow(unreachable_pub, clippy::disallowed_names)]
|
|
//! use kernel::{init, types::Opaque};
|
|
//! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin};
|
|
//! # mod bindings {
|
|
//! # #![allow(non_camel_case_types)]
|
|
//! # pub struct foo;
|
|
//! # pub unsafe fn init_foo(_ptr: *mut foo) {}
|
|
//! # pub unsafe fn destroy_foo(_ptr: *mut foo) {}
|
|
//! # pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 }
|
|
//! # }
|
|
//! # // `Error::from_errno` is `pub(crate)` in the `kernel` crate, thus provide a workaround.
|
|
//! # trait FromErrno {
|
|
//! # fn from_errno(errno: core::ffi::c_int) -> Error {
|
|
//! # // Dummy error that can be constructed outside the `kernel` crate.
|
|
//! # Error::from(core::fmt::Error)
|
|
//! # }
|
|
//! # }
|
|
//! # impl FromErrno for Error {}
|
|
//! /// # Invariants
|
|
//! ///
|
|
//! /// `foo` is always initialized
|
|
//! #[pin_data(PinnedDrop)]
|
|
//! pub struct RawFoo {
|
|
//! #[pin]
|
|
//! foo: Opaque<bindings::foo>,
|
|
//! #[pin]
|
|
//! _p: PhantomPinned,
|
|
//! }
|
|
//!
|
|
//! impl RawFoo {
|
|
//! pub fn new(flags: u32) -> impl PinInit<Self, Error> {
|
|
//! // SAFETY:
|
|
//! // - when the closure returns `Ok(())`, then it has successfully initialized and
|
|
//! // enabled `foo`,
|
|
//! // - when it returns `Err(e)`, then it has cleaned up before
|
|
//! unsafe {
|
|
//! init::pin_init_from_closure(move |slot: *mut Self| {
|
|
//! // `slot` contains uninit memory, avoid creating a reference.
|
|
//! let foo = addr_of_mut!((*slot).foo);
|
|
//!
|
|
//! // Initialize the `foo`
|
|
//! bindings::init_foo(Opaque::raw_get(foo));
|
|
//!
|
|
//! // Try to enable it.
|
|
//! let err = bindings::enable_foo(Opaque::raw_get(foo), flags);
|
|
//! if err != 0 {
|
|
//! // Enabling has failed, first clean up the foo and then return the error.
|
|
//! bindings::destroy_foo(Opaque::raw_get(foo));
|
|
//! return Err(Error::from_errno(err));
|
|
//! }
|
|
//!
|
|
//! // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
|
|
//! Ok(())
|
|
//! })
|
|
//! }
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! #[pinned_drop]
|
|
//! impl PinnedDrop for RawFoo {
|
|
//! fn drop(self: Pin<&mut Self>) {
|
|
//! // SAFETY: Since `foo` is initialized, destroying is safe.
|
|
//! unsafe { bindings::destroy_foo(self.foo.get()) };
|
|
//! }
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! For the special case where initializing a field is a single FFI-function call that cannot fail,
|
|
//! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single
|
|
//! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination
|
|
//! with [`pin_init!`].
|
|
//!
|
|
//! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside
|
|
//! the `kernel` crate. The [`sync`] module is a good starting point.
|
|
//!
|
|
//! [`sync`]: kernel::sync
|
|
//! [pinning]: https://doc.rust-lang.org/std/pin/index.html
|
|
//! [structurally pinned fields]:
|
|
//! https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field
|
|
//! [stack]: crate::stack_pin_init
|
|
//! [`Arc<T>`]: crate::sync::Arc
|
|
//! [`impl PinInit<Foo>`]: PinInit
|
|
//! [`impl PinInit<T, E>`]: PinInit
|
|
//! [`impl Init<T, E>`]: Init
|
|
//! [`Opaque`]: kernel::types::Opaque
|
|
//! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init
|
|
//! [`pin_data`]: ::macros::pin_data
|
|
//! [`pin_init!`]: crate::pin_init!
|
|
|
|
use crate::{
|
|
alloc::{box_ext::BoxExt, AllocError, Flags},
|
|
error::{self, Error},
|
|
sync::UniqueArc,
|
|
types::{Opaque, ScopeGuard},
|
|
};
|
|
use alloc::boxed::Box;
|
|
use core::{
|
|
cell::UnsafeCell,
|
|
convert::Infallible,
|
|
marker::PhantomData,
|
|
mem::MaybeUninit,
|
|
num::*,
|
|
pin::Pin,
|
|
ptr::{self, NonNull},
|
|
};
|
|
|
|
#[doc(hidden)]
|
|
pub mod __internal;
|
|
#[doc(hidden)]
|
|
pub mod macros;
|
|
|
|
/// Initialize and pin a type directly on the stack.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```rust
|
|
/// # #![allow(clippy::disallowed_names)]
|
|
/// # use kernel::{init, macros::pin_data, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex};
|
|
/// # use core::pin::Pin;
|
|
/// #[pin_data]
|
|
/// struct Foo {
|
|
/// #[pin]
|
|
/// a: Mutex<usize>,
|
|
/// b: Bar,
|
|
/// }
|
|
///
|
|
/// #[pin_data]
|
|
/// struct Bar {
|
|
/// x: u32,
|
|
/// }
|
|
///
|
|
/// stack_pin_init!(let foo = pin_init!(Foo {
|
|
/// a <- new_mutex!(42),
|
|
/// b: Bar {
|
|
/// x: 64,
|
|
/// },
|
|
/// }));
|
|
/// let foo: Pin<&mut Foo> = foo;
|
|
/// pr_info!("a: {}", &*foo.a.lock());
|
|
/// ```
|
|
///
|
|
/// # Syntax
|
|
///
|
|
/// A normal `let` binding with optional type annotation. The expression is expected to implement
|
|
/// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
|
|
/// type, then use [`stack_try_pin_init!`].
|
|
///
|
|
/// [`stack_try_pin_init!`]: crate::stack_try_pin_init!
|
|
#[macro_export]
|
|
macro_rules! stack_pin_init {
|
|
(let $var:ident $(: $t:ty)? = $val:expr) => {
|
|
let val = $val;
|
|
let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
|
|
let mut $var = match $crate::init::__internal::StackInit::init($var, val) {
|
|
Ok(res) => res,
|
|
Err(x) => {
|
|
let x: ::core::convert::Infallible = x;
|
|
match x {}
|
|
}
|
|
};
|
|
};
|
|
}
|
|
|
|
/// Initialize and pin a type directly on the stack.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```rust,ignore
|
|
/// # #![allow(clippy::disallowed_names)]
|
|
/// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
|
|
/// # use macros::pin_data;
|
|
/// # use core::{alloc::AllocError, pin::Pin};
|
|
/// #[pin_data]
|
|
/// struct Foo {
|
|
/// #[pin]
|
|
/// a: Mutex<usize>,
|
|
/// b: Box<Bar>,
|
|
/// }
|
|
///
|
|
/// struct Bar {
|
|
/// x: u32,
|
|
/// }
|
|
///
|
|
/// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo {
|
|
/// a <- new_mutex!(42),
|
|
/// b: Box::new(Bar {
|
|
/// x: 64,
|
|
/// }, GFP_KERNEL)?,
|
|
/// }));
|
|
/// let foo = foo.unwrap();
|
|
/// pr_info!("a: {}", &*foo.a.lock());
|
|
/// ```
|
|
///
|
|
/// ```rust,ignore
|
|
/// # #![allow(clippy::disallowed_names)]
|
|
/// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
|
|
/// # use macros::pin_data;
|
|
/// # use core::{alloc::AllocError, pin::Pin};
|
|
/// #[pin_data]
|
|
/// struct Foo {
|
|
/// #[pin]
|
|
/// a: Mutex<usize>,
|
|
/// b: Box<Bar>,
|
|
/// }
|
|
///
|
|
/// struct Bar {
|
|
/// x: u32,
|
|
/// }
|
|
///
|
|
/// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo {
|
|
/// a <- new_mutex!(42),
|
|
/// b: Box::new(Bar {
|
|
/// x: 64,
|
|
/// }, GFP_KERNEL)?,
|
|
/// }));
|
|
/// pr_info!("a: {}", &*foo.a.lock());
|
|
/// # Ok::<_, AllocError>(())
|
|
/// ```
|
|
///
|
|
/// # Syntax
|
|
///
|
|
/// A normal `let` binding with optional type annotation. The expression is expected to implement
|
|
/// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
|
|
/// `=` will propagate this error.
|
|
#[macro_export]
|
|
macro_rules! stack_try_pin_init {
|
|
(let $var:ident $(: $t:ty)? = $val:expr) => {
|
|
let val = $val;
|
|
let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
|
|
let mut $var = $crate::init::__internal::StackInit::init($var, val);
|
|
};
|
|
(let $var:ident $(: $t:ty)? =? $val:expr) => {
|
|
let val = $val;
|
|
let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
|
|
let mut $var = $crate::init::__internal::StackInit::init($var, val)?;
|
|
};
|
|
}
|
|
|
|
/// Construct an in-place, pinned initializer for `struct`s.
|
|
///
|
|
/// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
|
|
/// [`try_pin_init!`].
|
|
///
|
|
/// The syntax is almost identical to that of a normal `struct` initializer:
|
|
///
|
|
/// ```rust
|
|
/// # #![allow(clippy::disallowed_names)]
|
|
/// # use kernel::{init, pin_init, macros::pin_data, init::*};
|
|
/// # use core::pin::Pin;
|
|
/// #[pin_data]
|
|
/// struct Foo {
|
|
/// a: usize,
|
|
/// b: Bar,
|
|
/// }
|
|
///
|
|
/// #[pin_data]
|
|
/// struct Bar {
|
|
/// x: u32,
|
|
/// }
|
|
///
|
|
/// # fn demo() -> impl PinInit<Foo> {
|
|
/// let a = 42;
|
|
///
|
|
/// let initializer = pin_init!(Foo {
|
|
/// a,
|
|
/// b: Bar {
|
|
/// x: 64,
|
|
/// },
|
|
/// });
|
|
/// # initializer }
|
|
/// # Box::pin_init(demo(), GFP_KERNEL).unwrap();
|
|
/// ```
|
|
///
|
|
/// Arbitrary Rust expressions can be used to set the value of a variable.
|
|
///
|
|
/// The fields are initialized in the order that they appear in the initializer. So it is possible
|
|
/// to read already initialized fields using raw pointers.
|
|
///
|
|
/// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
|
|
/// initializer.
|
|
///
|
|
/// # Init-functions
|
|
///
|
|
/// When working with this API it is often desired to let others construct your types without
|
|
/// giving access to all fields. This is where you would normally write a plain function `new`
|
|
/// that would return a new instance of your type. With this API that is also possible.
|
|
/// However, there are a few extra things to keep in mind.
|
|
///
|
|
/// To create an initializer function, simply declare it like this:
|
|
///
|
|
/// ```rust
|
|
/// # #![allow(clippy::disallowed_names)]
|
|
/// # use kernel::{init, pin_init, init::*};
|
|
/// # use core::pin::Pin;
|
|
/// # #[pin_data]
|
|
/// # struct Foo {
|
|
/// # a: usize,
|
|
/// # b: Bar,
|
|
/// # }
|
|
/// # #[pin_data]
|
|
/// # struct Bar {
|
|
/// # x: u32,
|
|
/// # }
|
|
/// impl Foo {
|
|
/// fn new() -> impl PinInit<Self> {
|
|
/// pin_init!(Self {
|
|
/// a: 42,
|
|
/// b: Bar {
|
|
/// x: 64,
|
|
/// },
|
|
/// })
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Users of `Foo` can now create it like this:
|
|
///
|
|
/// ```rust
|
|
/// # #![allow(clippy::disallowed_names)]
|
|
/// # use kernel::{init, pin_init, macros::pin_data, init::*};
|
|
/// # use core::pin::Pin;
|
|
/// # #[pin_data]
|
|
/// # struct Foo {
|
|
/// # a: usize,
|
|
/// # b: Bar,
|
|
/// # }
|
|
/// # #[pin_data]
|
|
/// # struct Bar {
|
|
/// # x: u32,
|
|
/// # }
|
|
/// # impl Foo {
|
|
/// # fn new() -> impl PinInit<Self> {
|
|
/// # pin_init!(Self {
|
|
/// # a: 42,
|
|
/// # b: Bar {
|
|
/// # x: 64,
|
|
/// # },
|
|
/// # })
|
|
/// # }
|
|
/// # }
|
|
/// let foo = Box::pin_init(Foo::new(), GFP_KERNEL);
|
|
/// ```
|
|
///
|
|
/// They can also easily embed it into their own `struct`s:
|
|
///
|
|
/// ```rust
|
|
/// # #![allow(clippy::disallowed_names)]
|
|
/// # use kernel::{init, pin_init, macros::pin_data, init::*};
|
|
/// # use core::pin::Pin;
|
|
/// # #[pin_data]
|
|
/// # struct Foo {
|
|
/// # a: usize,
|
|
/// # b: Bar,
|
|
/// # }
|
|
/// # #[pin_data]
|
|
/// # struct Bar {
|
|
/// # x: u32,
|
|
/// # }
|
|
/// # impl Foo {
|
|
/// # fn new() -> impl PinInit<Self> {
|
|
/// # pin_init!(Self {
|
|
/// # a: 42,
|
|
/// # b: Bar {
|
|
/// # x: 64,
|
|
/// # },
|
|
/// # })
|
|
/// # }
|
|
/// # }
|
|
/// #[pin_data]
|
|
/// struct FooContainer {
|
|
/// #[pin]
|
|
/// foo1: Foo,
|
|
/// #[pin]
|
|
/// foo2: Foo,
|
|
/// other: u32,
|
|
/// }
|
|
///
|
|
/// impl FooContainer {
|
|
/// fn new(other: u32) -> impl PinInit<Self> {
|
|
/// pin_init!(Self {
|
|
/// foo1 <- Foo::new(),
|
|
/// foo2 <- Foo::new(),
|
|
/// other,
|
|
/// })
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
|
|
/// This signifies that the given field is initialized in-place. As with `struct` initializers, just
|
|
/// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
|
|
///
|
|
/// # Syntax
|
|
///
|
|
/// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
|
|
/// the following modifications is expected:
|
|
/// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
|
|
/// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
|
|
/// pointer named `this` inside of the initializer.
|
|
/// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the
|
|
/// struct, this initializes every field with 0 and then runs all initializers specified in the
|
|
/// body. This can only be done if [`Zeroable`] is implemented for the struct.
|
|
///
|
|
/// For instance:
|
|
///
|
|
/// ```rust
|
|
/// # use kernel::{macros::{Zeroable, pin_data}, pin_init};
|
|
/// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
|
|
/// #[pin_data]
|
|
/// #[derive(Zeroable)]
|
|
/// struct Buf {
|
|
/// // `ptr` points into `buf`.
|
|
/// ptr: *mut u8,
|
|
/// buf: [u8; 64],
|
|
/// #[pin]
|
|
/// pin: PhantomPinned,
|
|
/// }
|
|
/// pin_init!(&this in Buf {
|
|
/// buf: [0; 64],
|
|
/// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
|
|
/// pin: PhantomPinned,
|
|
/// });
|
|
/// pin_init!(Buf {
|
|
/// buf: [1; 64],
|
|
/// ..Zeroable::zeroed()
|
|
/// });
|
|
/// ```
|
|
///
|
|
/// [`try_pin_init!`]: kernel::try_pin_init
|
|
/// [`NonNull<Self>`]: core::ptr::NonNull
|
|
// For a detailed example of how this macro works, see the module documentation of the hidden
|
|
// module `__internal` inside of `init/__internal.rs`.
|
|
#[macro_export]
|
|
macro_rules! pin_init {
|
|
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
|
|
$($fields:tt)*
|
|
}) => {
|
|
$crate::__init_internal!(
|
|
@this($($this)?),
|
|
@typ($t $(::<$($generics),*>)?),
|
|
@fields($($fields)*),
|
|
@error(::core::convert::Infallible),
|
|
@data(PinData, use_data),
|
|
@has_data(HasPinData, __pin_data),
|
|
@construct_closure(pin_init_from_closure),
|
|
@munch_fields($($fields)*),
|
|
)
|
|
};
|
|
}
|
|
|
|
/// Construct an in-place, fallible pinned initializer for `struct`s.
|
|
///
|
|
/// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
|
|
///
|
|
/// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
|
|
/// initialization and return the error.
|
|
///
|
|
/// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
|
|
/// initialization fails, the memory can be safely deallocated without any further modifications.
|
|
///
|
|
/// This macro defaults the error to [`Error`].
|
|
///
|
|
/// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type`
|
|
/// after the `struct` initializer to specify the error type you want to use.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```rust
|
|
/// # #![feature(new_uninit)]
|
|
/// use kernel::{init::{self, PinInit}, error::Error};
|
|
/// #[pin_data]
|
|
/// struct BigBuf {
|
|
/// big: Box<[u8; 1024 * 1024 * 1024]>,
|
|
/// small: [u8; 1024 * 1024],
|
|
/// ptr: *mut u8,
|
|
/// }
|
|
///
|
|
/// impl BigBuf {
|
|
/// fn new() -> impl PinInit<Self, Error> {
|
|
/// try_pin_init!(Self {
|
|
/// big: Box::init(init::zeroed(), GFP_KERNEL)?,
|
|
/// small: [0; 1024 * 1024],
|
|
/// ptr: core::ptr::null_mut(),
|
|
/// }? Error)
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
// For a detailed example of how this macro works, see the module documentation of the hidden
|
|
// module `__internal` inside of `init/__internal.rs`.
|
|
#[macro_export]
|
|
macro_rules! try_pin_init {
|
|
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
|
|
$($fields:tt)*
|
|
}) => {
|
|
$crate::__init_internal!(
|
|
@this($($this)?),
|
|
@typ($t $(::<$($generics),*>)? ),
|
|
@fields($($fields)*),
|
|
@error($crate::error::Error),
|
|
@data(PinData, use_data),
|
|
@has_data(HasPinData, __pin_data),
|
|
@construct_closure(pin_init_from_closure),
|
|
@munch_fields($($fields)*),
|
|
)
|
|
};
|
|
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
|
|
$($fields:tt)*
|
|
}? $err:ty) => {
|
|
$crate::__init_internal!(
|
|
@this($($this)?),
|
|
@typ($t $(::<$($generics),*>)? ),
|
|
@fields($($fields)*),
|
|
@error($err),
|
|
@data(PinData, use_data),
|
|
@has_data(HasPinData, __pin_data),
|
|
@construct_closure(pin_init_from_closure),
|
|
@munch_fields($($fields)*),
|
|
)
|
|
};
|
|
}
|
|
|
|
/// Construct an in-place initializer for `struct`s.
|
|
///
|
|
/// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
|
|
/// [`try_init!`].
|
|
///
|
|
/// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
|
|
/// - `unsafe` code must guarantee either full initialization or return an error and allow
|
|
/// deallocation of the memory.
|
|
/// - the fields are initialized in the order given in the initializer.
|
|
/// - no references to fields are allowed to be created inside of the initializer.
|
|
///
|
|
/// This initializer is for initializing data in-place that might later be moved. If you want to
|
|
/// pin-initialize, use [`pin_init!`].
|
|
///
|
|
/// [`try_init!`]: crate::try_init!
|
|
// For a detailed example of how this macro works, see the module documentation of the hidden
|
|
// module `__internal` inside of `init/__internal.rs`.
|
|
#[macro_export]
|
|
macro_rules! init {
|
|
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
|
|
$($fields:tt)*
|
|
}) => {
|
|
$crate::__init_internal!(
|
|
@this($($this)?),
|
|
@typ($t $(::<$($generics),*>)?),
|
|
@fields($($fields)*),
|
|
@error(::core::convert::Infallible),
|
|
@data(InitData, /*no use_data*/),
|
|
@has_data(HasInitData, __init_data),
|
|
@construct_closure(init_from_closure),
|
|
@munch_fields($($fields)*),
|
|
)
|
|
}
|
|
}
|
|
|
|
/// Construct an in-place fallible initializer for `struct`s.
|
|
///
|
|
/// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use
|
|
/// [`init!`].
|
|
///
|
|
/// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error,
|
|
/// append `? $type` after the `struct` initializer.
|
|
/// The safety caveats from [`try_pin_init!`] also apply:
|
|
/// - `unsafe` code must guarantee either full initialization or return an error and allow
|
|
/// deallocation of the memory.
|
|
/// - the fields are initialized in the order given in the initializer.
|
|
/// - no references to fields are allowed to be created inside of the initializer.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```rust
|
|
/// use kernel::{init::{PinInit, zeroed}, error::Error};
|
|
/// struct BigBuf {
|
|
/// big: Box<[u8; 1024 * 1024 * 1024]>,
|
|
/// small: [u8; 1024 * 1024],
|
|
/// }
|
|
///
|
|
/// impl BigBuf {
|
|
/// fn new() -> impl Init<Self, Error> {
|
|
/// try_init!(Self {
|
|
/// big: Box::init(zeroed(), GFP_KERNEL)?,
|
|
/// small: [0; 1024 * 1024],
|
|
/// }? Error)
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
// For a detailed example of how this macro works, see the module documentation of the hidden
|
|
// module `__internal` inside of `init/__internal.rs`.
|
|
#[macro_export]
|
|
macro_rules! try_init {
|
|
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
|
|
$($fields:tt)*
|
|
}) => {
|
|
$crate::__init_internal!(
|
|
@this($($this)?),
|
|
@typ($t $(::<$($generics),*>)?),
|
|
@fields($($fields)*),
|
|
@error($crate::error::Error),
|
|
@data(InitData, /*no use_data*/),
|
|
@has_data(HasInitData, __init_data),
|
|
@construct_closure(init_from_closure),
|
|
@munch_fields($($fields)*),
|
|
)
|
|
};
|
|
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
|
|
$($fields:tt)*
|
|
}? $err:ty) => {
|
|
$crate::__init_internal!(
|
|
@this($($this)?),
|
|
@typ($t $(::<$($generics),*>)?),
|
|
@fields($($fields)*),
|
|
@error($err),
|
|
@data(InitData, /*no use_data*/),
|
|
@has_data(HasInitData, __init_data),
|
|
@construct_closure(init_from_closure),
|
|
@munch_fields($($fields)*),
|
|
)
|
|
};
|
|
}
|
|
|
|
/// A pin-initializer for the type `T`.
|
|
///
|
|
/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
|
|
/// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
|
|
/// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this.
|
|
///
|
|
/// Also see the [module description](self).
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// When implementing this trait you will need to take great care. Also there are probably very few
|
|
/// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
|
|
///
|
|
/// The [`PinInit::__pinned_init`] function:
|
|
/// - returns `Ok(())` if it initialized every field of `slot`,
|
|
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
|
|
/// - `slot` can be deallocated without UB occurring,
|
|
/// - `slot` does not need to be dropped,
|
|
/// - `slot` is not partially initialized.
|
|
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
|
|
///
|
|
/// [`Arc<T>`]: crate::sync::Arc
|
|
/// [`Arc::pin_init`]: crate::sync::Arc::pin_init
|
|
#[must_use = "An initializer must be used in order to create its value."]
|
|
pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
|
|
/// Initializes `slot`.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// - `slot` is a valid pointer to uninitialized memory.
|
|
/// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
|
|
/// deallocate.
|
|
/// - `slot` will not move until it is dropped, i.e. it will be pinned.
|
|
unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
|
|
|
|
/// First initializes the value using `self` then calls the function `f` with the initialized
|
|
/// value.
|
|
///
|
|
/// If `f` returns an error the value is dropped and the initializer will forward the error.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```rust
|
|
/// # #![allow(clippy::disallowed_names)]
|
|
/// use kernel::{types::Opaque, init::pin_init_from_closure};
|
|
/// #[repr(C)]
|
|
/// struct RawFoo([u8; 16]);
|
|
/// extern {
|
|
/// fn init_foo(_: *mut RawFoo);
|
|
/// }
|
|
///
|
|
/// #[pin_data]
|
|
/// struct Foo {
|
|
/// #[pin]
|
|
/// raw: Opaque<RawFoo>,
|
|
/// }
|
|
///
|
|
/// impl Foo {
|
|
/// fn setup(self: Pin<&mut Self>) {
|
|
/// pr_info!("Setting up foo");
|
|
/// }
|
|
/// }
|
|
///
|
|
/// let foo = pin_init!(Foo {
|
|
/// raw <- unsafe {
|
|
/// Opaque::ffi_init(|s| {
|
|
/// init_foo(s);
|
|
/// })
|
|
/// },
|
|
/// }).pin_chain(|foo| {
|
|
/// foo.setup();
|
|
/// Ok(())
|
|
/// });
|
|
/// ```
|
|
fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E>
|
|
where
|
|
F: FnOnce(Pin<&mut T>) -> Result<(), E>,
|
|
{
|
|
ChainPinInit(self, f, PhantomData)
|
|
}
|
|
}
|
|
|
|
/// An initializer returned by [`PinInit::pin_chain`].
|
|
pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>);
|
|
|
|
// SAFETY: The `__pinned_init` function is implemented such that it
|
|
// - returns `Ok(())` on successful initialization,
|
|
// - returns `Err(err)` on error and in this case `slot` will be dropped.
|
|
// - considers `slot` pinned.
|
|
unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E>
|
|
where
|
|
I: PinInit<T, E>,
|
|
F: FnOnce(Pin<&mut T>) -> Result<(), E>,
|
|
{
|
|
unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
|
|
// SAFETY: All requirements fulfilled since this function is `__pinned_init`.
|
|
unsafe { self.0.__pinned_init(slot)? };
|
|
// SAFETY: The above call initialized `slot` and we still have unique access.
|
|
let val = unsafe { &mut *slot };
|
|
// SAFETY: `slot` is considered pinned.
|
|
let val = unsafe { Pin::new_unchecked(val) };
|
|
(self.1)(val).map_err(|e| {
|
|
// SAFETY: `slot` was initialized above.
|
|
unsafe { core::ptr::drop_in_place(slot) };
|
|
e
|
|
})
|
|
}
|
|
}
|
|
|
|
/// An initializer for `T`.
|
|
///
|
|
/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
|
|
/// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
|
|
/// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because
|
|
/// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
|
|
///
|
|
/// Also see the [module description](self).
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// When implementing this trait you will need to take great care. Also there are probably very few
|
|
/// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
|
|
///
|
|
/// The [`Init::__init`] function:
|
|
/// - returns `Ok(())` if it initialized every field of `slot`,
|
|
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
|
|
/// - `slot` can be deallocated without UB occurring,
|
|
/// - `slot` does not need to be dropped,
|
|
/// - `slot` is not partially initialized.
|
|
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
|
|
///
|
|
/// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
|
|
/// code as `__init`.
|
|
///
|
|
/// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
|
|
/// move the pointee after initialization.
|
|
///
|
|
/// [`Arc<T>`]: crate::sync::Arc
|
|
#[must_use = "An initializer must be used in order to create its value."]
|
|
pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> {
|
|
/// Initializes `slot`.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// - `slot` is a valid pointer to uninitialized memory.
|
|
/// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
|
|
/// deallocate.
|
|
unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
|
|
|
|
/// First initializes the value using `self` then calls the function `f` with the initialized
|
|
/// value.
|
|
///
|
|
/// If `f` returns an error the value is dropped and the initializer will forward the error.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```rust
|
|
/// # #![allow(clippy::disallowed_names)]
|
|
/// use kernel::{types::Opaque, init::{self, init_from_closure}};
|
|
/// struct Foo {
|
|
/// buf: [u8; 1_000_000],
|
|
/// }
|
|
///
|
|
/// impl Foo {
|
|
/// fn setup(&mut self) {
|
|
/// pr_info!("Setting up foo");
|
|
/// }
|
|
/// }
|
|
///
|
|
/// let foo = init!(Foo {
|
|
/// buf <- init::zeroed()
|
|
/// }).chain(|foo| {
|
|
/// foo.setup();
|
|
/// Ok(())
|
|
/// });
|
|
/// ```
|
|
fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E>
|
|
where
|
|
F: FnOnce(&mut T) -> Result<(), E>,
|
|
{
|
|
ChainInit(self, f, PhantomData)
|
|
}
|
|
}
|
|
|
|
/// An initializer returned by [`Init::chain`].
|
|
pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>);
|
|
|
|
// SAFETY: The `__init` function is implemented such that it
|
|
// - returns `Ok(())` on successful initialization,
|
|
// - returns `Err(err)` on error and in this case `slot` will be dropped.
|
|
unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E>
|
|
where
|
|
I: Init<T, E>,
|
|
F: FnOnce(&mut T) -> Result<(), E>,
|
|
{
|
|
unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
|
|
// SAFETY: All requirements fulfilled since this function is `__init`.
|
|
unsafe { self.0.__pinned_init(slot)? };
|
|
// SAFETY: The above call initialized `slot` and we still have unique access.
|
|
(self.1)(unsafe { &mut *slot }).map_err(|e| {
|
|
// SAFETY: `slot` was initialized above.
|
|
unsafe { core::ptr::drop_in_place(slot) };
|
|
e
|
|
})
|
|
}
|
|
}
|
|
|
|
// SAFETY: `__pinned_init` behaves exactly the same as `__init`.
|
|
unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E>
|
|
where
|
|
I: Init<T, E>,
|
|
F: FnOnce(&mut T) -> Result<(), E>,
|
|
{
|
|
unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
|
|
// SAFETY: `__init` has less strict requirements compared to `__pinned_init`.
|
|
unsafe { self.__init(slot) }
|
|
}
|
|
}
|
|
|
|
/// Creates a new [`PinInit<T, E>`] from the given closure.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The closure:
|
|
/// - returns `Ok(())` if it initialized every field of `slot`,
|
|
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
|
|
/// - `slot` can be deallocated without UB occurring,
|
|
/// - `slot` does not need to be dropped,
|
|
/// - `slot` is not partially initialized.
|
|
/// - may assume that the `slot` does not move if `T: !Unpin`,
|
|
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
|
|
#[inline]
|
|
pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
|
|
f: impl FnOnce(*mut T) -> Result<(), E>,
|
|
) -> impl PinInit<T, E> {
|
|
__internal::InitClosure(f, PhantomData)
|
|
}
|
|
|
|
/// Creates a new [`Init<T, E>`] from the given closure.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The closure:
|
|
/// - returns `Ok(())` if it initialized every field of `slot`,
|
|
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
|
|
/// - `slot` can be deallocated without UB occurring,
|
|
/// - `slot` does not need to be dropped,
|
|
/// - `slot` is not partially initialized.
|
|
/// - the `slot` may move after initialization.
|
|
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
|
|
#[inline]
|
|
pub const unsafe fn init_from_closure<T: ?Sized, E>(
|
|
f: impl FnOnce(*mut T) -> Result<(), E>,
|
|
) -> impl Init<T, E> {
|
|
__internal::InitClosure(f, PhantomData)
|
|
}
|
|
|
|
/// An initializer that leaves the memory uninitialized.
|
|
///
|
|
/// The initializer is a no-op. The `slot` memory is not changed.
|
|
#[inline]
|
|
pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
|
|
// SAFETY: The memory is allowed to be uninitialized.
|
|
unsafe { init_from_closure(|_| Ok(())) }
|
|
}
|
|
|
|
/// Initializes an array by initializing each element via the provided initializer.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```rust
|
|
/// use kernel::{error::Error, init::init_array_from_fn};
|
|
/// let array: Box<[usize; 1_000]> = Box::init::<Error>(init_array_from_fn(|i| i), GFP_KERNEL).unwrap();
|
|
/// assert_eq!(array.len(), 1_000);
|
|
/// ```
|
|
pub fn init_array_from_fn<I, const N: usize, T, E>(
|
|
mut make_init: impl FnMut(usize) -> I,
|
|
) -> impl Init<[T; N], E>
|
|
where
|
|
I: Init<T, E>,
|
|
{
|
|
let init = move |slot: *mut [T; N]| {
|
|
let slot = slot.cast::<T>();
|
|
// Counts the number of initialized elements and when dropped drops that many elements from
|
|
// `slot`.
|
|
let mut init_count = ScopeGuard::new_with_data(0, |i| {
|
|
// We now free every element that has been initialized before.
|
|
// SAFETY: The loop initialized exactly the values from 0..i and since we
|
|
// return `Err` below, the caller will consider the memory at `slot` as
|
|
// uninitialized.
|
|
unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
|
|
});
|
|
for i in 0..N {
|
|
let init = make_init(i);
|
|
// SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
|
|
let ptr = unsafe { slot.add(i) };
|
|
// SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
|
|
// requirements.
|
|
unsafe { init.__init(ptr) }?;
|
|
*init_count += 1;
|
|
}
|
|
init_count.dismiss();
|
|
Ok(())
|
|
};
|
|
// SAFETY: The initializer above initializes every element of the array. On failure it drops
|
|
// any initialized elements and returns `Err`.
|
|
unsafe { init_from_closure(init) }
|
|
}
|
|
|
|
/// Initializes an array by initializing each element via the provided initializer.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```rust
|
|
/// use kernel::{sync::{Arc, Mutex}, init::pin_init_array_from_fn, new_mutex};
|
|
/// let array: Arc<[Mutex<usize>; 1_000]> =
|
|
/// Arc::pin_init(pin_init_array_from_fn(|i| new_mutex!(i)), GFP_KERNEL).unwrap();
|
|
/// assert_eq!(array.len(), 1_000);
|
|
/// ```
|
|
pub fn pin_init_array_from_fn<I, const N: usize, T, E>(
|
|
mut make_init: impl FnMut(usize) -> I,
|
|
) -> impl PinInit<[T; N], E>
|
|
where
|
|
I: PinInit<T, E>,
|
|
{
|
|
let init = move |slot: *mut [T; N]| {
|
|
let slot = slot.cast::<T>();
|
|
// Counts the number of initialized elements and when dropped drops that many elements from
|
|
// `slot`.
|
|
let mut init_count = ScopeGuard::new_with_data(0, |i| {
|
|
// We now free every element that has been initialized before.
|
|
// SAFETY: The loop initialized exactly the values from 0..i and since we
|
|
// return `Err` below, the caller will consider the memory at `slot` as
|
|
// uninitialized.
|
|
unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
|
|
});
|
|
for i in 0..N {
|
|
let init = make_init(i);
|
|
// SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
|
|
let ptr = unsafe { slot.add(i) };
|
|
// SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
|
|
// requirements.
|
|
unsafe { init.__pinned_init(ptr) }?;
|
|
*init_count += 1;
|
|
}
|
|
init_count.dismiss();
|
|
Ok(())
|
|
};
|
|
// SAFETY: The initializer above initializes every element of the array. On failure it drops
|
|
// any initialized elements and returns `Err`.
|
|
unsafe { pin_init_from_closure(init) }
|
|
}
|
|
|
|
// SAFETY: Every type can be initialized by-value.
|
|
unsafe impl<T, E> Init<T, E> for T {
|
|
unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
|
|
unsafe { slot.write(self) };
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
// SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`.
|
|
unsafe impl<T, E> PinInit<T, E> for T {
|
|
unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
|
|
unsafe { self.__init(slot) }
|
|
}
|
|
}
|
|
|
|
/// Smart pointer that can initialize memory in-place.
|
|
pub trait InPlaceInit<T>: Sized {
|
|
/// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
|
|
/// type.
|
|
///
|
|
/// If `T: !Unpin` it will not be able to move afterwards.
|
|
fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E>
|
|
where
|
|
E: From<AllocError>;
|
|
|
|
/// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
|
|
/// type.
|
|
///
|
|
/// If `T: !Unpin` it will not be able to move afterwards.
|
|
fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> error::Result<Pin<Self>>
|
|
where
|
|
Error: From<E>,
|
|
{
|
|
// SAFETY: We delegate to `init` and only change the error type.
|
|
let init = unsafe {
|
|
pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
|
|
};
|
|
Self::try_pin_init(init, flags)
|
|
}
|
|
|
|
/// Use the given initializer to in-place initialize a `T`.
|
|
fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
|
|
where
|
|
E: From<AllocError>;
|
|
|
|
/// Use the given initializer to in-place initialize a `T`.
|
|
fn init<E>(init: impl Init<T, E>, flags: Flags) -> error::Result<Self>
|
|
where
|
|
Error: From<E>,
|
|
{
|
|
// SAFETY: We delegate to `init` and only change the error type.
|
|
let init = unsafe {
|
|
init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
|
|
};
|
|
Self::try_init(init, flags)
|
|
}
|
|
}
|
|
|
|
impl<T> InPlaceInit<T> for Box<T> {
|
|
#[inline]
|
|
fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E>
|
|
where
|
|
E: From<AllocError>,
|
|
{
|
|
let mut this = <Box<_> as BoxExt<_>>::new_uninit(flags)?;
|
|
let slot = this.as_mut_ptr();
|
|
// SAFETY: When init errors/panics, slot will get deallocated but not dropped,
|
|
// slot is valid and will not be moved, because we pin it later.
|
|
unsafe { init.__pinned_init(slot)? };
|
|
// SAFETY: All fields have been initialized.
|
|
Ok(unsafe { this.assume_init() }.into())
|
|
}
|
|
|
|
#[inline]
|
|
fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
|
|
where
|
|
E: From<AllocError>,
|
|
{
|
|
let mut this = <Box<_> as BoxExt<_>>::new_uninit(flags)?;
|
|
let slot = this.as_mut_ptr();
|
|
// SAFETY: When init errors/panics, slot will get deallocated but not dropped,
|
|
// slot is valid.
|
|
unsafe { init.__init(slot)? };
|
|
// SAFETY: All fields have been initialized.
|
|
Ok(unsafe { this.assume_init() })
|
|
}
|
|
}
|
|
|
|
impl<T> InPlaceInit<T> for UniqueArc<T> {
|
|
#[inline]
|
|
fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E>
|
|
where
|
|
E: From<AllocError>,
|
|
{
|
|
let mut this = UniqueArc::new_uninit(flags)?;
|
|
let slot = this.as_mut_ptr();
|
|
// SAFETY: When init errors/panics, slot will get deallocated but not dropped,
|
|
// slot is valid and will not be moved, because we pin it later.
|
|
unsafe { init.__pinned_init(slot)? };
|
|
// SAFETY: All fields have been initialized.
|
|
Ok(unsafe { this.assume_init() }.into())
|
|
}
|
|
|
|
#[inline]
|
|
fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
|
|
where
|
|
E: From<AllocError>,
|
|
{
|
|
let mut this = UniqueArc::new_uninit(flags)?;
|
|
let slot = this.as_mut_ptr();
|
|
// SAFETY: When init errors/panics, slot will get deallocated but not dropped,
|
|
// slot is valid.
|
|
unsafe { init.__init(slot)? };
|
|
// SAFETY: All fields have been initialized.
|
|
Ok(unsafe { this.assume_init() })
|
|
}
|
|
}
|
|
|
|
/// Trait facilitating pinned destruction.
|
|
///
|
|
/// Use [`pinned_drop`] to implement this trait safely:
|
|
///
|
|
/// ```rust
|
|
/// # use kernel::sync::Mutex;
|
|
/// use kernel::macros::pinned_drop;
|
|
/// use core::pin::Pin;
|
|
/// #[pin_data(PinnedDrop)]
|
|
/// struct Foo {
|
|
/// #[pin]
|
|
/// mtx: Mutex<usize>,
|
|
/// }
|
|
///
|
|
/// #[pinned_drop]
|
|
/// impl PinnedDrop for Foo {
|
|
/// fn drop(self: Pin<&mut Self>) {
|
|
/// pr_info!("Foo is being dropped!");
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
|
|
///
|
|
/// [`pinned_drop`]: kernel::macros::pinned_drop
|
|
pub unsafe trait PinnedDrop: __internal::HasPinData {
|
|
/// Executes the pinned destructor of this type.
|
|
///
|
|
/// While this function is marked safe, it is actually unsafe to call it manually. For this
|
|
/// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
|
|
/// and thus prevents this function from being called where it should not.
|
|
///
|
|
/// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
|
|
/// automatically.
|
|
fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
|
|
}
|
|
|
|
/// Marker trait for types that can be initialized by writing just zeroes.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
|
|
/// this is not UB:
|
|
///
|
|
/// ```rust,ignore
|
|
/// let val: Self = unsafe { core::mem::zeroed() };
|
|
/// ```
|
|
pub unsafe trait Zeroable {}
|
|
|
|
/// Create a new zeroed T.
|
|
///
|
|
/// The returned initializer will write `0x00` to every byte of the given `slot`.
|
|
#[inline]
|
|
pub fn zeroed<T: Zeroable>() -> impl Init<T> {
|
|
// SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
|
|
// and because we write all zeroes, the memory is initialized.
|
|
unsafe {
|
|
init_from_closure(|slot: *mut T| {
|
|
slot.write_bytes(0, 1);
|
|
Ok(())
|
|
})
|
|
}
|
|
}
|
|
|
|
macro_rules! impl_zeroable {
|
|
($($({$($generics:tt)*})? $t:ty, )*) => {
|
|
$(unsafe impl$($($generics)*)? Zeroable for $t {})*
|
|
};
|
|
}
|
|
|
|
impl_zeroable! {
|
|
// SAFETY: All primitives that are allowed to be zero.
|
|
bool,
|
|
char,
|
|
u8, u16, u32, u64, u128, usize,
|
|
i8, i16, i32, i64, i128, isize,
|
|
f32, f64,
|
|
|
|
// Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list;
|
|
// creating an instance of an uninhabited type is immediate undefined behavior. For more on
|
|
// uninhabited/empty types, consult The Rustonomicon:
|
|
// <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference
|
|
// also has information on undefined behavior:
|
|
// <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>.
|
|
//
|
|
// SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists.
|
|
{<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (),
|
|
|
|
// SAFETY: Type is allowed to take any value, including all zeros.
|
|
{<T>} MaybeUninit<T>,
|
|
// SAFETY: Type is allowed to take any value, including all zeros.
|
|
{<T>} Opaque<T>,
|
|
|
|
// SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`.
|
|
{<T: ?Sized + Zeroable>} UnsafeCell<T>,
|
|
|
|
// SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
|
|
Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
|
|
Option<NonZeroU128>, Option<NonZeroUsize>,
|
|
Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
|
|
Option<NonZeroI128>, Option<NonZeroIsize>,
|
|
|
|
// SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
|
|
//
|
|
// In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant.
|
|
{<T: ?Sized>} Option<NonNull<T>>,
|
|
{<T: ?Sized>} Option<Box<T>>,
|
|
|
|
// SAFETY: `null` pointer is valid.
|
|
//
|
|
// We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
|
|
// null.
|
|
//
|
|
// When `Pointee` gets stabilized, we could use
|
|
// `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
|
|
{<T>} *mut T, {<T>} *const T,
|
|
|
|
// SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
|
|
// zero.
|
|
{<T>} *mut [T], {<T>} *const [T], *mut str, *const str,
|
|
|
|
// SAFETY: `T` is `Zeroable`.
|
|
{<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
|
|
}
|
|
|
|
macro_rules! impl_tuple_zeroable {
|
|
($(,)?) => {};
|
|
($first:ident, $($t:ident),* $(,)?) => {
|
|
// SAFETY: All elements are zeroable and padding can be zero.
|
|
unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
|
|
impl_tuple_zeroable!($($t),* ,);
|
|
}
|
|
}
|
|
|
|
impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);
|