2d669ceb69
Commit24f6b6036c
("dm table: fix zoned iterate_devices based device capability checks") triggered dm table load failure when dm-zoned device is set up for zoned block devices and a regular device for cache. The commit inverted logic of two callback functions for iterate_devices: device_is_zoned_model() and device_matches_zone_sectors(). The logic of device_is_zoned_model() was inverted then all destination devices of all targets in dm table are required to have the expected zoned model. This is fine for dm-linear, dm-flakey and dm-crypt on zoned block devices since each target has only one destination device. However, this results in failure for dm-zoned with regular cache device since that target has both regular block device and zoned block devices. As for device_matches_zone_sectors(), the commit inverted the logic to require all zoned block devices in each target have the specified zone_sectors. This check also fails for regular block device which does not have zones. To avoid the check failures, fix the zone model check and the zone sectors check. For zone model check, introduce the new feature flag DM_TARGET_MIXED_ZONED_MODEL, and set it to dm-zoned target. When the target has this flag, allow it to have destination devices with any zoned model. For zone sectors check, skip the check if the destination device is not a zoned block device. Also add comments and improve an error message to clarify expectations to the two checks. Fixes:24f6b6036c
("dm table: fix zoned iterate_devices based device capability checks") Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2225 lines
53 KiB
C
2225 lines
53 KiB
C
/*
|
|
* Copyright (C) 2001 Sistina Software (UK) Limited.
|
|
* Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
|
|
*
|
|
* This file is released under the GPL.
|
|
*/
|
|
|
|
#include "dm-core.h"
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/dax.h>
|
|
|
|
#define DM_MSG_PREFIX "table"
|
|
|
|
#define NODE_SIZE L1_CACHE_BYTES
|
|
#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
|
|
#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
|
|
|
|
/*
|
|
* Similar to ceiling(log_size(n))
|
|
*/
|
|
static unsigned int int_log(unsigned int n, unsigned int base)
|
|
{
|
|
int result = 0;
|
|
|
|
while (n > 1) {
|
|
n = dm_div_up(n, base);
|
|
result++;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Calculate the index of the child node of the n'th node k'th key.
|
|
*/
|
|
static inline unsigned int get_child(unsigned int n, unsigned int k)
|
|
{
|
|
return (n * CHILDREN_PER_NODE) + k;
|
|
}
|
|
|
|
/*
|
|
* Return the n'th node of level l from table t.
|
|
*/
|
|
static inline sector_t *get_node(struct dm_table *t,
|
|
unsigned int l, unsigned int n)
|
|
{
|
|
return t->index[l] + (n * KEYS_PER_NODE);
|
|
}
|
|
|
|
/*
|
|
* Return the highest key that you could lookup from the n'th
|
|
* node on level l of the btree.
|
|
*/
|
|
static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
|
|
{
|
|
for (; l < t->depth - 1; l++)
|
|
n = get_child(n, CHILDREN_PER_NODE - 1);
|
|
|
|
if (n >= t->counts[l])
|
|
return (sector_t) - 1;
|
|
|
|
return get_node(t, l, n)[KEYS_PER_NODE - 1];
|
|
}
|
|
|
|
/*
|
|
* Fills in a level of the btree based on the highs of the level
|
|
* below it.
|
|
*/
|
|
static int setup_btree_index(unsigned int l, struct dm_table *t)
|
|
{
|
|
unsigned int n, k;
|
|
sector_t *node;
|
|
|
|
for (n = 0U; n < t->counts[l]; n++) {
|
|
node = get_node(t, l, n);
|
|
|
|
for (k = 0U; k < KEYS_PER_NODE; k++)
|
|
node[k] = high(t, l + 1, get_child(n, k));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
|
|
{
|
|
unsigned long size;
|
|
void *addr;
|
|
|
|
/*
|
|
* Check that we're not going to overflow.
|
|
*/
|
|
if (nmemb > (ULONG_MAX / elem_size))
|
|
return NULL;
|
|
|
|
size = nmemb * elem_size;
|
|
addr = vzalloc(size);
|
|
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(dm_vcalloc);
|
|
|
|
/*
|
|
* highs, and targets are managed as dynamic arrays during a
|
|
* table load.
|
|
*/
|
|
static int alloc_targets(struct dm_table *t, unsigned int num)
|
|
{
|
|
sector_t *n_highs;
|
|
struct dm_target *n_targets;
|
|
|
|
/*
|
|
* Allocate both the target array and offset array at once.
|
|
*/
|
|
n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
|
|
sizeof(sector_t));
|
|
if (!n_highs)
|
|
return -ENOMEM;
|
|
|
|
n_targets = (struct dm_target *) (n_highs + num);
|
|
|
|
memset(n_highs, -1, sizeof(*n_highs) * num);
|
|
vfree(t->highs);
|
|
|
|
t->num_allocated = num;
|
|
t->highs = n_highs;
|
|
t->targets = n_targets;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dm_table_create(struct dm_table **result, fmode_t mode,
|
|
unsigned num_targets, struct mapped_device *md)
|
|
{
|
|
struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
|
|
|
|
if (!t)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&t->devices);
|
|
|
|
if (!num_targets)
|
|
num_targets = KEYS_PER_NODE;
|
|
|
|
num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
|
|
|
|
if (!num_targets) {
|
|
kfree(t);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (alloc_targets(t, num_targets)) {
|
|
kfree(t);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
t->type = DM_TYPE_NONE;
|
|
t->mode = mode;
|
|
t->md = md;
|
|
*result = t;
|
|
return 0;
|
|
}
|
|
|
|
static void free_devices(struct list_head *devices, struct mapped_device *md)
|
|
{
|
|
struct list_head *tmp, *next;
|
|
|
|
list_for_each_safe(tmp, next, devices) {
|
|
struct dm_dev_internal *dd =
|
|
list_entry(tmp, struct dm_dev_internal, list);
|
|
DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
|
|
dm_device_name(md), dd->dm_dev->name);
|
|
dm_put_table_device(md, dd->dm_dev);
|
|
kfree(dd);
|
|
}
|
|
}
|
|
|
|
static void dm_table_destroy_keyslot_manager(struct dm_table *t);
|
|
|
|
void dm_table_destroy(struct dm_table *t)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!t)
|
|
return;
|
|
|
|
/* free the indexes */
|
|
if (t->depth >= 2)
|
|
vfree(t->index[t->depth - 2]);
|
|
|
|
/* free the targets */
|
|
for (i = 0; i < t->num_targets; i++) {
|
|
struct dm_target *tgt = t->targets + i;
|
|
|
|
if (tgt->type->dtr)
|
|
tgt->type->dtr(tgt);
|
|
|
|
dm_put_target_type(tgt->type);
|
|
}
|
|
|
|
vfree(t->highs);
|
|
|
|
/* free the device list */
|
|
free_devices(&t->devices, t->md);
|
|
|
|
dm_free_md_mempools(t->mempools);
|
|
|
|
dm_table_destroy_keyslot_manager(t);
|
|
|
|
kfree(t);
|
|
}
|
|
|
|
/*
|
|
* See if we've already got a device in the list.
|
|
*/
|
|
static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
|
|
{
|
|
struct dm_dev_internal *dd;
|
|
|
|
list_for_each_entry (dd, l, list)
|
|
if (dd->dm_dev->bdev->bd_dev == dev)
|
|
return dd;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If possible, this checks an area of a destination device is invalid.
|
|
*/
|
|
static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct queue_limits *limits = data;
|
|
struct block_device *bdev = dev->bdev;
|
|
sector_t dev_size =
|
|
i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
|
|
unsigned short logical_block_size_sectors =
|
|
limits->logical_block_size >> SECTOR_SHIFT;
|
|
char b[BDEVNAME_SIZE];
|
|
|
|
if (!dev_size)
|
|
return 0;
|
|
|
|
if ((start >= dev_size) || (start + len > dev_size)) {
|
|
DMWARN("%s: %s too small for target: "
|
|
"start=%llu, len=%llu, dev_size=%llu",
|
|
dm_device_name(ti->table->md), bdevname(bdev, b),
|
|
(unsigned long long)start,
|
|
(unsigned long long)len,
|
|
(unsigned long long)dev_size);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If the target is mapped to zoned block device(s), check
|
|
* that the zones are not partially mapped.
|
|
*/
|
|
if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
|
|
unsigned int zone_sectors = bdev_zone_sectors(bdev);
|
|
|
|
if (start & (zone_sectors - 1)) {
|
|
DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
|
|
dm_device_name(ti->table->md),
|
|
(unsigned long long)start,
|
|
zone_sectors, bdevname(bdev, b));
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Note: The last zone of a zoned block device may be smaller
|
|
* than other zones. So for a target mapping the end of a
|
|
* zoned block device with such a zone, len would not be zone
|
|
* aligned. We do not allow such last smaller zone to be part
|
|
* of the mapping here to ensure that mappings with multiple
|
|
* devices do not end up with a smaller zone in the middle of
|
|
* the sector range.
|
|
*/
|
|
if (len & (zone_sectors - 1)) {
|
|
DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
|
|
dm_device_name(ti->table->md),
|
|
(unsigned long long)len,
|
|
zone_sectors, bdevname(bdev, b));
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (logical_block_size_sectors <= 1)
|
|
return 0;
|
|
|
|
if (start & (logical_block_size_sectors - 1)) {
|
|
DMWARN("%s: start=%llu not aligned to h/w "
|
|
"logical block size %u of %s",
|
|
dm_device_name(ti->table->md),
|
|
(unsigned long long)start,
|
|
limits->logical_block_size, bdevname(bdev, b));
|
|
return 1;
|
|
}
|
|
|
|
if (len & (logical_block_size_sectors - 1)) {
|
|
DMWARN("%s: len=%llu not aligned to h/w "
|
|
"logical block size %u of %s",
|
|
dm_device_name(ti->table->md),
|
|
(unsigned long long)len,
|
|
limits->logical_block_size, bdevname(bdev, b));
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This upgrades the mode on an already open dm_dev, being
|
|
* careful to leave things as they were if we fail to reopen the
|
|
* device and not to touch the existing bdev field in case
|
|
* it is accessed concurrently.
|
|
*/
|
|
static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
|
|
struct mapped_device *md)
|
|
{
|
|
int r;
|
|
struct dm_dev *old_dev, *new_dev;
|
|
|
|
old_dev = dd->dm_dev;
|
|
|
|
r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
|
|
dd->dm_dev->mode | new_mode, &new_dev);
|
|
if (r)
|
|
return r;
|
|
|
|
dd->dm_dev = new_dev;
|
|
dm_put_table_device(md, old_dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Convert the path to a device
|
|
*/
|
|
dev_t dm_get_dev_t(const char *path)
|
|
{
|
|
dev_t dev;
|
|
|
|
if (lookup_bdev(path, &dev))
|
|
dev = name_to_dev_t(path);
|
|
return dev;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_get_dev_t);
|
|
|
|
/*
|
|
* Add a device to the list, or just increment the usage count if
|
|
* it's already present.
|
|
*/
|
|
int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
|
|
struct dm_dev **result)
|
|
{
|
|
int r;
|
|
dev_t dev;
|
|
unsigned int major, minor;
|
|
char dummy;
|
|
struct dm_dev_internal *dd;
|
|
struct dm_table *t = ti->table;
|
|
|
|
BUG_ON(!t);
|
|
|
|
if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
|
|
/* Extract the major/minor numbers */
|
|
dev = MKDEV(major, minor);
|
|
if (MAJOR(dev) != major || MINOR(dev) != minor)
|
|
return -EOVERFLOW;
|
|
} else {
|
|
dev = dm_get_dev_t(path);
|
|
if (!dev)
|
|
return -ENODEV;
|
|
}
|
|
|
|
dd = find_device(&t->devices, dev);
|
|
if (!dd) {
|
|
dd = kmalloc(sizeof(*dd), GFP_KERNEL);
|
|
if (!dd)
|
|
return -ENOMEM;
|
|
|
|
if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
|
|
kfree(dd);
|
|
return r;
|
|
}
|
|
|
|
refcount_set(&dd->count, 1);
|
|
list_add(&dd->list, &t->devices);
|
|
goto out;
|
|
|
|
} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
|
|
r = upgrade_mode(dd, mode, t->md);
|
|
if (r)
|
|
return r;
|
|
}
|
|
refcount_inc(&dd->count);
|
|
out:
|
|
*result = dd->dm_dev;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dm_get_device);
|
|
|
|
static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct queue_limits *limits = data;
|
|
struct block_device *bdev = dev->bdev;
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
char b[BDEVNAME_SIZE];
|
|
|
|
if (unlikely(!q)) {
|
|
DMWARN("%s: Cannot set limits for nonexistent device %s",
|
|
dm_device_name(ti->table->md), bdevname(bdev, b));
|
|
return 0;
|
|
}
|
|
|
|
if (blk_stack_limits(limits, &q->limits,
|
|
get_start_sect(bdev) + start) < 0)
|
|
DMWARN("%s: adding target device %s caused an alignment inconsistency: "
|
|
"physical_block_size=%u, logical_block_size=%u, "
|
|
"alignment_offset=%u, start=%llu",
|
|
dm_device_name(ti->table->md), bdevname(bdev, b),
|
|
q->limits.physical_block_size,
|
|
q->limits.logical_block_size,
|
|
q->limits.alignment_offset,
|
|
(unsigned long long) start << SECTOR_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Decrement a device's use count and remove it if necessary.
|
|
*/
|
|
void dm_put_device(struct dm_target *ti, struct dm_dev *d)
|
|
{
|
|
int found = 0;
|
|
struct list_head *devices = &ti->table->devices;
|
|
struct dm_dev_internal *dd;
|
|
|
|
list_for_each_entry(dd, devices, list) {
|
|
if (dd->dm_dev == d) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
DMWARN("%s: device %s not in table devices list",
|
|
dm_device_name(ti->table->md), d->name);
|
|
return;
|
|
}
|
|
if (refcount_dec_and_test(&dd->count)) {
|
|
dm_put_table_device(ti->table->md, d);
|
|
list_del(&dd->list);
|
|
kfree(dd);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(dm_put_device);
|
|
|
|
/*
|
|
* Checks to see if the target joins onto the end of the table.
|
|
*/
|
|
static int adjoin(struct dm_table *table, struct dm_target *ti)
|
|
{
|
|
struct dm_target *prev;
|
|
|
|
if (!table->num_targets)
|
|
return !ti->begin;
|
|
|
|
prev = &table->targets[table->num_targets - 1];
|
|
return (ti->begin == (prev->begin + prev->len));
|
|
}
|
|
|
|
/*
|
|
* Used to dynamically allocate the arg array.
|
|
*
|
|
* We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
|
|
* process messages even if some device is suspended. These messages have a
|
|
* small fixed number of arguments.
|
|
*
|
|
* On the other hand, dm-switch needs to process bulk data using messages and
|
|
* excessive use of GFP_NOIO could cause trouble.
|
|
*/
|
|
static char **realloc_argv(unsigned *size, char **old_argv)
|
|
{
|
|
char **argv;
|
|
unsigned new_size;
|
|
gfp_t gfp;
|
|
|
|
if (*size) {
|
|
new_size = *size * 2;
|
|
gfp = GFP_KERNEL;
|
|
} else {
|
|
new_size = 8;
|
|
gfp = GFP_NOIO;
|
|
}
|
|
argv = kmalloc_array(new_size, sizeof(*argv), gfp);
|
|
if (argv && old_argv) {
|
|
memcpy(argv, old_argv, *size * sizeof(*argv));
|
|
*size = new_size;
|
|
}
|
|
|
|
kfree(old_argv);
|
|
return argv;
|
|
}
|
|
|
|
/*
|
|
* Destructively splits up the argument list to pass to ctr.
|
|
*/
|
|
int dm_split_args(int *argc, char ***argvp, char *input)
|
|
{
|
|
char *start, *end = input, *out, **argv = NULL;
|
|
unsigned array_size = 0;
|
|
|
|
*argc = 0;
|
|
|
|
if (!input) {
|
|
*argvp = NULL;
|
|
return 0;
|
|
}
|
|
|
|
argv = realloc_argv(&array_size, argv);
|
|
if (!argv)
|
|
return -ENOMEM;
|
|
|
|
while (1) {
|
|
/* Skip whitespace */
|
|
start = skip_spaces(end);
|
|
|
|
if (!*start)
|
|
break; /* success, we hit the end */
|
|
|
|
/* 'out' is used to remove any back-quotes */
|
|
end = out = start;
|
|
while (*end) {
|
|
/* Everything apart from '\0' can be quoted */
|
|
if (*end == '\\' && *(end + 1)) {
|
|
*out++ = *(end + 1);
|
|
end += 2;
|
|
continue;
|
|
}
|
|
|
|
if (isspace(*end))
|
|
break; /* end of token */
|
|
|
|
*out++ = *end++;
|
|
}
|
|
|
|
/* have we already filled the array ? */
|
|
if ((*argc + 1) > array_size) {
|
|
argv = realloc_argv(&array_size, argv);
|
|
if (!argv)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* we know this is whitespace */
|
|
if (*end)
|
|
end++;
|
|
|
|
/* terminate the string and put it in the array */
|
|
*out = '\0';
|
|
argv[*argc] = start;
|
|
(*argc)++;
|
|
}
|
|
|
|
*argvp = argv;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Impose necessary and sufficient conditions on a devices's table such
|
|
* that any incoming bio which respects its logical_block_size can be
|
|
* processed successfully. If it falls across the boundary between
|
|
* two or more targets, the size of each piece it gets split into must
|
|
* be compatible with the logical_block_size of the target processing it.
|
|
*/
|
|
static int validate_hardware_logical_block_alignment(struct dm_table *table,
|
|
struct queue_limits *limits)
|
|
{
|
|
/*
|
|
* This function uses arithmetic modulo the logical_block_size
|
|
* (in units of 512-byte sectors).
|
|
*/
|
|
unsigned short device_logical_block_size_sects =
|
|
limits->logical_block_size >> SECTOR_SHIFT;
|
|
|
|
/*
|
|
* Offset of the start of the next table entry, mod logical_block_size.
|
|
*/
|
|
unsigned short next_target_start = 0;
|
|
|
|
/*
|
|
* Given an aligned bio that extends beyond the end of a
|
|
* target, how many sectors must the next target handle?
|
|
*/
|
|
unsigned short remaining = 0;
|
|
|
|
struct dm_target *ti;
|
|
struct queue_limits ti_limits;
|
|
unsigned i;
|
|
|
|
/*
|
|
* Check each entry in the table in turn.
|
|
*/
|
|
for (i = 0; i < dm_table_get_num_targets(table); i++) {
|
|
ti = dm_table_get_target(table, i);
|
|
|
|
blk_set_stacking_limits(&ti_limits);
|
|
|
|
/* combine all target devices' limits */
|
|
if (ti->type->iterate_devices)
|
|
ti->type->iterate_devices(ti, dm_set_device_limits,
|
|
&ti_limits);
|
|
|
|
/*
|
|
* If the remaining sectors fall entirely within this
|
|
* table entry are they compatible with its logical_block_size?
|
|
*/
|
|
if (remaining < ti->len &&
|
|
remaining & ((ti_limits.logical_block_size >>
|
|
SECTOR_SHIFT) - 1))
|
|
break; /* Error */
|
|
|
|
next_target_start =
|
|
(unsigned short) ((next_target_start + ti->len) &
|
|
(device_logical_block_size_sects - 1));
|
|
remaining = next_target_start ?
|
|
device_logical_block_size_sects - next_target_start : 0;
|
|
}
|
|
|
|
if (remaining) {
|
|
DMWARN("%s: table line %u (start sect %llu len %llu) "
|
|
"not aligned to h/w logical block size %u",
|
|
dm_device_name(table->md), i,
|
|
(unsigned long long) ti->begin,
|
|
(unsigned long long) ti->len,
|
|
limits->logical_block_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dm_table_add_target(struct dm_table *t, const char *type,
|
|
sector_t start, sector_t len, char *params)
|
|
{
|
|
int r = -EINVAL, argc;
|
|
char **argv;
|
|
struct dm_target *tgt;
|
|
|
|
if (t->singleton) {
|
|
DMERR("%s: target type %s must appear alone in table",
|
|
dm_device_name(t->md), t->targets->type->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
BUG_ON(t->num_targets >= t->num_allocated);
|
|
|
|
tgt = t->targets + t->num_targets;
|
|
memset(tgt, 0, sizeof(*tgt));
|
|
|
|
if (!len) {
|
|
DMERR("%s: zero-length target", dm_device_name(t->md));
|
|
return -EINVAL;
|
|
}
|
|
|
|
tgt->type = dm_get_target_type(type);
|
|
if (!tgt->type) {
|
|
DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (dm_target_needs_singleton(tgt->type)) {
|
|
if (t->num_targets) {
|
|
tgt->error = "singleton target type must appear alone in table";
|
|
goto bad;
|
|
}
|
|
t->singleton = true;
|
|
}
|
|
|
|
if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
|
|
tgt->error = "target type may not be included in a read-only table";
|
|
goto bad;
|
|
}
|
|
|
|
if (t->immutable_target_type) {
|
|
if (t->immutable_target_type != tgt->type) {
|
|
tgt->error = "immutable target type cannot be mixed with other target types";
|
|
goto bad;
|
|
}
|
|
} else if (dm_target_is_immutable(tgt->type)) {
|
|
if (t->num_targets) {
|
|
tgt->error = "immutable target type cannot be mixed with other target types";
|
|
goto bad;
|
|
}
|
|
t->immutable_target_type = tgt->type;
|
|
}
|
|
|
|
if (dm_target_has_integrity(tgt->type))
|
|
t->integrity_added = 1;
|
|
|
|
tgt->table = t;
|
|
tgt->begin = start;
|
|
tgt->len = len;
|
|
tgt->error = "Unknown error";
|
|
|
|
/*
|
|
* Does this target adjoin the previous one ?
|
|
*/
|
|
if (!adjoin(t, tgt)) {
|
|
tgt->error = "Gap in table";
|
|
goto bad;
|
|
}
|
|
|
|
r = dm_split_args(&argc, &argv, params);
|
|
if (r) {
|
|
tgt->error = "couldn't split parameters (insufficient memory)";
|
|
goto bad;
|
|
}
|
|
|
|
r = tgt->type->ctr(tgt, argc, argv);
|
|
kfree(argv);
|
|
if (r)
|
|
goto bad;
|
|
|
|
t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
|
|
|
|
if (!tgt->num_discard_bios && tgt->discards_supported)
|
|
DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
|
|
dm_device_name(t->md), type);
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
|
|
dm_put_target_type(tgt->type);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Target argument parsing helpers.
|
|
*/
|
|
static int validate_next_arg(const struct dm_arg *arg,
|
|
struct dm_arg_set *arg_set,
|
|
unsigned *value, char **error, unsigned grouped)
|
|
{
|
|
const char *arg_str = dm_shift_arg(arg_set);
|
|
char dummy;
|
|
|
|
if (!arg_str ||
|
|
(sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
|
|
(*value < arg->min) ||
|
|
(*value > arg->max) ||
|
|
(grouped && arg_set->argc < *value)) {
|
|
*error = arg->error;
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
|
|
unsigned *value, char **error)
|
|
{
|
|
return validate_next_arg(arg, arg_set, value, error, 0);
|
|
}
|
|
EXPORT_SYMBOL(dm_read_arg);
|
|
|
|
int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
|
|
unsigned *value, char **error)
|
|
{
|
|
return validate_next_arg(arg, arg_set, value, error, 1);
|
|
}
|
|
EXPORT_SYMBOL(dm_read_arg_group);
|
|
|
|
const char *dm_shift_arg(struct dm_arg_set *as)
|
|
{
|
|
char *r;
|
|
|
|
if (as->argc) {
|
|
as->argc--;
|
|
r = *as->argv;
|
|
as->argv++;
|
|
return r;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(dm_shift_arg);
|
|
|
|
void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
|
|
{
|
|
BUG_ON(as->argc < num_args);
|
|
as->argc -= num_args;
|
|
as->argv += num_args;
|
|
}
|
|
EXPORT_SYMBOL(dm_consume_args);
|
|
|
|
static bool __table_type_bio_based(enum dm_queue_mode table_type)
|
|
{
|
|
return (table_type == DM_TYPE_BIO_BASED ||
|
|
table_type == DM_TYPE_DAX_BIO_BASED);
|
|
}
|
|
|
|
static bool __table_type_request_based(enum dm_queue_mode table_type)
|
|
{
|
|
return table_type == DM_TYPE_REQUEST_BASED;
|
|
}
|
|
|
|
void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
|
|
{
|
|
t->type = type;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_table_set_type);
|
|
|
|
/* validate the dax capability of the target device span */
|
|
int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
int blocksize = *(int *) data, id;
|
|
bool rc;
|
|
|
|
id = dax_read_lock();
|
|
rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
|
|
dax_read_unlock(id);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Check devices support synchronous DAX */
|
|
static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
|
|
}
|
|
|
|
bool dm_table_supports_dax(struct dm_table *t,
|
|
iterate_devices_callout_fn iterate_fn, int *blocksize)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i;
|
|
|
|
/* Ensure that all targets support DAX. */
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
|
|
if (!ti->type->direct_access)
|
|
return false;
|
|
|
|
if (!ti->type->iterate_devices ||
|
|
ti->type->iterate_devices(ti, iterate_fn, blocksize))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct block_device *bdev = dev->bdev;
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
|
|
/* request-based cannot stack on partitions! */
|
|
if (bdev_is_partition(bdev))
|
|
return false;
|
|
|
|
return queue_is_mq(q);
|
|
}
|
|
|
|
static int dm_table_determine_type(struct dm_table *t)
|
|
{
|
|
unsigned i;
|
|
unsigned bio_based = 0, request_based = 0, hybrid = 0;
|
|
struct dm_target *tgt;
|
|
struct list_head *devices = dm_table_get_devices(t);
|
|
enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
|
|
int page_size = PAGE_SIZE;
|
|
|
|
if (t->type != DM_TYPE_NONE) {
|
|
/* target already set the table's type */
|
|
if (t->type == DM_TYPE_BIO_BASED) {
|
|
/* possibly upgrade to a variant of bio-based */
|
|
goto verify_bio_based;
|
|
}
|
|
BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
|
|
goto verify_rq_based;
|
|
}
|
|
|
|
for (i = 0; i < t->num_targets; i++) {
|
|
tgt = t->targets + i;
|
|
if (dm_target_hybrid(tgt))
|
|
hybrid = 1;
|
|
else if (dm_target_request_based(tgt))
|
|
request_based = 1;
|
|
else
|
|
bio_based = 1;
|
|
|
|
if (bio_based && request_based) {
|
|
DMERR("Inconsistent table: different target types"
|
|
" can't be mixed up");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (hybrid && !bio_based && !request_based) {
|
|
/*
|
|
* The targets can work either way.
|
|
* Determine the type from the live device.
|
|
* Default to bio-based if device is new.
|
|
*/
|
|
if (__table_type_request_based(live_md_type))
|
|
request_based = 1;
|
|
else
|
|
bio_based = 1;
|
|
}
|
|
|
|
if (bio_based) {
|
|
verify_bio_based:
|
|
/* We must use this table as bio-based */
|
|
t->type = DM_TYPE_BIO_BASED;
|
|
if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
|
|
(list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
|
|
t->type = DM_TYPE_DAX_BIO_BASED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
BUG_ON(!request_based); /* No targets in this table */
|
|
|
|
t->type = DM_TYPE_REQUEST_BASED;
|
|
|
|
verify_rq_based:
|
|
/*
|
|
* Request-based dm supports only tables that have a single target now.
|
|
* To support multiple targets, request splitting support is needed,
|
|
* and that needs lots of changes in the block-layer.
|
|
* (e.g. request completion process for partial completion.)
|
|
*/
|
|
if (t->num_targets > 1) {
|
|
DMERR("request-based DM doesn't support multiple targets");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (list_empty(devices)) {
|
|
int srcu_idx;
|
|
struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
|
|
|
|
/* inherit live table's type */
|
|
if (live_table)
|
|
t->type = live_table->type;
|
|
dm_put_live_table(t->md, srcu_idx);
|
|
return 0;
|
|
}
|
|
|
|
tgt = dm_table_get_immutable_target(t);
|
|
if (!tgt) {
|
|
DMERR("table load rejected: immutable target is required");
|
|
return -EINVAL;
|
|
} else if (tgt->max_io_len) {
|
|
DMERR("table load rejected: immutable target that splits IO is not supported");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Non-request-stackable devices can't be used for request-based dm */
|
|
if (!tgt->type->iterate_devices ||
|
|
!tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
|
|
DMERR("table load rejected: including non-request-stackable devices");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
enum dm_queue_mode dm_table_get_type(struct dm_table *t)
|
|
{
|
|
return t->type;
|
|
}
|
|
|
|
struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
|
|
{
|
|
return t->immutable_target_type;
|
|
}
|
|
|
|
struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
|
|
{
|
|
/* Immutable target is implicitly a singleton */
|
|
if (t->num_targets > 1 ||
|
|
!dm_target_is_immutable(t->targets[0].type))
|
|
return NULL;
|
|
|
|
return t->targets;
|
|
}
|
|
|
|
struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
if (dm_target_is_wildcard(ti->type))
|
|
return ti;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
bool dm_table_bio_based(struct dm_table *t)
|
|
{
|
|
return __table_type_bio_based(dm_table_get_type(t));
|
|
}
|
|
|
|
bool dm_table_request_based(struct dm_table *t)
|
|
{
|
|
return __table_type_request_based(dm_table_get_type(t));
|
|
}
|
|
|
|
static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
|
|
{
|
|
enum dm_queue_mode type = dm_table_get_type(t);
|
|
unsigned per_io_data_size = 0;
|
|
unsigned min_pool_size = 0;
|
|
struct dm_target *ti;
|
|
unsigned i;
|
|
|
|
if (unlikely(type == DM_TYPE_NONE)) {
|
|
DMWARN("no table type is set, can't allocate mempools");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (__table_type_bio_based(type))
|
|
for (i = 0; i < t->num_targets; i++) {
|
|
ti = t->targets + i;
|
|
per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
|
|
min_pool_size = max(min_pool_size, ti->num_flush_bios);
|
|
}
|
|
|
|
t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
|
|
per_io_data_size, min_pool_size);
|
|
if (!t->mempools)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void dm_table_free_md_mempools(struct dm_table *t)
|
|
{
|
|
dm_free_md_mempools(t->mempools);
|
|
t->mempools = NULL;
|
|
}
|
|
|
|
struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
|
|
{
|
|
return t->mempools;
|
|
}
|
|
|
|
static int setup_indexes(struct dm_table *t)
|
|
{
|
|
int i;
|
|
unsigned int total = 0;
|
|
sector_t *indexes;
|
|
|
|
/* allocate the space for *all* the indexes */
|
|
for (i = t->depth - 2; i >= 0; i--) {
|
|
t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
|
|
total += t->counts[i];
|
|
}
|
|
|
|
indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
|
|
if (!indexes)
|
|
return -ENOMEM;
|
|
|
|
/* set up internal nodes, bottom-up */
|
|
for (i = t->depth - 2; i >= 0; i--) {
|
|
t->index[i] = indexes;
|
|
indexes += (KEYS_PER_NODE * t->counts[i]);
|
|
setup_btree_index(i, t);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Builds the btree to index the map.
|
|
*/
|
|
static int dm_table_build_index(struct dm_table *t)
|
|
{
|
|
int r = 0;
|
|
unsigned int leaf_nodes;
|
|
|
|
/* how many indexes will the btree have ? */
|
|
leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
|
|
t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
|
|
|
|
/* leaf layer has already been set up */
|
|
t->counts[t->depth - 1] = leaf_nodes;
|
|
t->index[t->depth - 1] = t->highs;
|
|
|
|
if (t->depth >= 2)
|
|
r = setup_indexes(t);
|
|
|
|
return r;
|
|
}
|
|
|
|
static bool integrity_profile_exists(struct gendisk *disk)
|
|
{
|
|
return !!blk_get_integrity(disk);
|
|
}
|
|
|
|
/*
|
|
* Get a disk whose integrity profile reflects the table's profile.
|
|
* Returns NULL if integrity support was inconsistent or unavailable.
|
|
*/
|
|
static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
|
|
{
|
|
struct list_head *devices = dm_table_get_devices(t);
|
|
struct dm_dev_internal *dd = NULL;
|
|
struct gendisk *prev_disk = NULL, *template_disk = NULL;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
struct dm_target *ti = dm_table_get_target(t, i);
|
|
if (!dm_target_passes_integrity(ti->type))
|
|
goto no_integrity;
|
|
}
|
|
|
|
list_for_each_entry(dd, devices, list) {
|
|
template_disk = dd->dm_dev->bdev->bd_disk;
|
|
if (!integrity_profile_exists(template_disk))
|
|
goto no_integrity;
|
|
else if (prev_disk &&
|
|
blk_integrity_compare(prev_disk, template_disk) < 0)
|
|
goto no_integrity;
|
|
prev_disk = template_disk;
|
|
}
|
|
|
|
return template_disk;
|
|
|
|
no_integrity:
|
|
if (prev_disk)
|
|
DMWARN("%s: integrity not set: %s and %s profile mismatch",
|
|
dm_device_name(t->md),
|
|
prev_disk->disk_name,
|
|
template_disk->disk_name);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Register the mapped device for blk_integrity support if the
|
|
* underlying devices have an integrity profile. But all devices may
|
|
* not have matching profiles (checking all devices isn't reliable
|
|
* during table load because this table may use other DM device(s) which
|
|
* must be resumed before they will have an initialized integity
|
|
* profile). Consequently, stacked DM devices force a 2 stage integrity
|
|
* profile validation: First pass during table load, final pass during
|
|
* resume.
|
|
*/
|
|
static int dm_table_register_integrity(struct dm_table *t)
|
|
{
|
|
struct mapped_device *md = t->md;
|
|
struct gendisk *template_disk = NULL;
|
|
|
|
/* If target handles integrity itself do not register it here. */
|
|
if (t->integrity_added)
|
|
return 0;
|
|
|
|
template_disk = dm_table_get_integrity_disk(t);
|
|
if (!template_disk)
|
|
return 0;
|
|
|
|
if (!integrity_profile_exists(dm_disk(md))) {
|
|
t->integrity_supported = true;
|
|
/*
|
|
* Register integrity profile during table load; we can do
|
|
* this because the final profile must match during resume.
|
|
*/
|
|
blk_integrity_register(dm_disk(md),
|
|
blk_get_integrity(template_disk));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If DM device already has an initialized integrity
|
|
* profile the new profile should not conflict.
|
|
*/
|
|
if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
|
|
DMWARN("%s: conflict with existing integrity profile: "
|
|
"%s profile mismatch",
|
|
dm_device_name(t->md),
|
|
template_disk->disk_name);
|
|
return 1;
|
|
}
|
|
|
|
/* Preserve existing integrity profile */
|
|
t->integrity_supported = true;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
|
|
|
|
struct dm_keyslot_manager {
|
|
struct blk_keyslot_manager ksm;
|
|
struct mapped_device *md;
|
|
};
|
|
|
|
struct dm_keyslot_evict_args {
|
|
const struct blk_crypto_key *key;
|
|
int err;
|
|
};
|
|
|
|
static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct dm_keyslot_evict_args *args = data;
|
|
int err;
|
|
|
|
err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
|
|
if (!args->err)
|
|
args->err = err;
|
|
/* Always try to evict the key from all devices. */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When an inline encryption key is evicted from a device-mapper device, evict
|
|
* it from all the underlying devices.
|
|
*/
|
|
static int dm_keyslot_evict(struct blk_keyslot_manager *ksm,
|
|
const struct blk_crypto_key *key, unsigned int slot)
|
|
{
|
|
struct dm_keyslot_manager *dksm = container_of(ksm,
|
|
struct dm_keyslot_manager,
|
|
ksm);
|
|
struct mapped_device *md = dksm->md;
|
|
struct dm_keyslot_evict_args args = { key };
|
|
struct dm_table *t;
|
|
int srcu_idx;
|
|
int i;
|
|
struct dm_target *ti;
|
|
|
|
t = dm_get_live_table(md, &srcu_idx);
|
|
if (!t)
|
|
return 0;
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
if (!ti->type->iterate_devices)
|
|
continue;
|
|
ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
|
|
}
|
|
dm_put_live_table(md, srcu_idx);
|
|
return args.err;
|
|
}
|
|
|
|
static struct blk_ksm_ll_ops dm_ksm_ll_ops = {
|
|
.keyslot_evict = dm_keyslot_evict,
|
|
};
|
|
|
|
static int device_intersect_crypto_modes(struct dm_target *ti,
|
|
struct dm_dev *dev, sector_t start,
|
|
sector_t len, void *data)
|
|
{
|
|
struct blk_keyslot_manager *parent = data;
|
|
struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm;
|
|
|
|
blk_ksm_intersect_modes(parent, child);
|
|
return 0;
|
|
}
|
|
|
|
void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
|
|
{
|
|
struct dm_keyslot_manager *dksm = container_of(ksm,
|
|
struct dm_keyslot_manager,
|
|
ksm);
|
|
|
|
if (!ksm)
|
|
return;
|
|
|
|
blk_ksm_destroy(ksm);
|
|
kfree(dksm);
|
|
}
|
|
|
|
static void dm_table_destroy_keyslot_manager(struct dm_table *t)
|
|
{
|
|
dm_destroy_keyslot_manager(t->ksm);
|
|
t->ksm = NULL;
|
|
}
|
|
|
|
/*
|
|
* Constructs and initializes t->ksm with a keyslot manager that
|
|
* represents the common set of crypto capabilities of the devices
|
|
* described by the dm_table. However, if the constructed keyslot
|
|
* manager does not support a superset of the crypto capabilities
|
|
* supported by the current keyslot manager of the mapped_device,
|
|
* it returns an error instead, since we don't support restricting
|
|
* crypto capabilities on table changes. Finally, if the constructed
|
|
* keyslot manager doesn't actually support any crypto modes at all,
|
|
* it just returns NULL.
|
|
*/
|
|
static int dm_table_construct_keyslot_manager(struct dm_table *t)
|
|
{
|
|
struct dm_keyslot_manager *dksm;
|
|
struct blk_keyslot_manager *ksm;
|
|
struct dm_target *ti;
|
|
unsigned int i;
|
|
bool ksm_is_empty = true;
|
|
|
|
dksm = kmalloc(sizeof(*dksm), GFP_KERNEL);
|
|
if (!dksm)
|
|
return -ENOMEM;
|
|
dksm->md = t->md;
|
|
|
|
ksm = &dksm->ksm;
|
|
blk_ksm_init_passthrough(ksm);
|
|
ksm->ksm_ll_ops = dm_ksm_ll_ops;
|
|
ksm->max_dun_bytes_supported = UINT_MAX;
|
|
memset(ksm->crypto_modes_supported, 0xFF,
|
|
sizeof(ksm->crypto_modes_supported));
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
|
|
if (!dm_target_passes_crypto(ti->type)) {
|
|
blk_ksm_intersect_modes(ksm, NULL);
|
|
break;
|
|
}
|
|
if (!ti->type->iterate_devices)
|
|
continue;
|
|
ti->type->iterate_devices(ti, device_intersect_crypto_modes,
|
|
ksm);
|
|
}
|
|
|
|
if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) {
|
|
DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
|
|
dm_destroy_keyslot_manager(ksm);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If the new KSM doesn't actually support any crypto modes, we may as
|
|
* well represent it with a NULL ksm.
|
|
*/
|
|
ksm_is_empty = true;
|
|
for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) {
|
|
if (ksm->crypto_modes_supported[i]) {
|
|
ksm_is_empty = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ksm_is_empty) {
|
|
dm_destroy_keyslot_manager(ksm);
|
|
ksm = NULL;
|
|
}
|
|
|
|
/*
|
|
* t->ksm is only set temporarily while the table is being set
|
|
* up, and it gets set to NULL after the capabilities have
|
|
* been transferred to the request_queue.
|
|
*/
|
|
t->ksm = ksm;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dm_update_keyslot_manager(struct request_queue *q,
|
|
struct dm_table *t)
|
|
{
|
|
if (!t->ksm)
|
|
return;
|
|
|
|
/* Make the ksm less restrictive */
|
|
if (!q->ksm) {
|
|
blk_ksm_register(t->ksm, q);
|
|
} else {
|
|
blk_ksm_update_capabilities(q->ksm, t->ksm);
|
|
dm_destroy_keyslot_manager(t->ksm);
|
|
}
|
|
t->ksm = NULL;
|
|
}
|
|
|
|
#else /* CONFIG_BLK_INLINE_ENCRYPTION */
|
|
|
|
static int dm_table_construct_keyslot_manager(struct dm_table *t)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
|
|
{
|
|
}
|
|
|
|
static void dm_table_destroy_keyslot_manager(struct dm_table *t)
|
|
{
|
|
}
|
|
|
|
static void dm_update_keyslot_manager(struct request_queue *q,
|
|
struct dm_table *t)
|
|
{
|
|
}
|
|
|
|
#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
|
|
|
|
/*
|
|
* Prepares the table for use by building the indices,
|
|
* setting the type, and allocating mempools.
|
|
*/
|
|
int dm_table_complete(struct dm_table *t)
|
|
{
|
|
int r;
|
|
|
|
r = dm_table_determine_type(t);
|
|
if (r) {
|
|
DMERR("unable to determine table type");
|
|
return r;
|
|
}
|
|
|
|
r = dm_table_build_index(t);
|
|
if (r) {
|
|
DMERR("unable to build btrees");
|
|
return r;
|
|
}
|
|
|
|
r = dm_table_register_integrity(t);
|
|
if (r) {
|
|
DMERR("could not register integrity profile.");
|
|
return r;
|
|
}
|
|
|
|
r = dm_table_construct_keyslot_manager(t);
|
|
if (r) {
|
|
DMERR("could not construct keyslot manager.");
|
|
return r;
|
|
}
|
|
|
|
r = dm_table_alloc_md_mempools(t, t->md);
|
|
if (r)
|
|
DMERR("unable to allocate mempools");
|
|
|
|
return r;
|
|
}
|
|
|
|
static DEFINE_MUTEX(_event_lock);
|
|
void dm_table_event_callback(struct dm_table *t,
|
|
void (*fn)(void *), void *context)
|
|
{
|
|
mutex_lock(&_event_lock);
|
|
t->event_fn = fn;
|
|
t->event_context = context;
|
|
mutex_unlock(&_event_lock);
|
|
}
|
|
|
|
void dm_table_event(struct dm_table *t)
|
|
{
|
|
mutex_lock(&_event_lock);
|
|
if (t->event_fn)
|
|
t->event_fn(t->event_context);
|
|
mutex_unlock(&_event_lock);
|
|
}
|
|
EXPORT_SYMBOL(dm_table_event);
|
|
|
|
inline sector_t dm_table_get_size(struct dm_table *t)
|
|
{
|
|
return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
|
|
}
|
|
EXPORT_SYMBOL(dm_table_get_size);
|
|
|
|
struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
|
|
{
|
|
if (index >= t->num_targets)
|
|
return NULL;
|
|
|
|
return t->targets + index;
|
|
}
|
|
|
|
/*
|
|
* Search the btree for the correct target.
|
|
*
|
|
* Caller should check returned pointer for NULL
|
|
* to trap I/O beyond end of device.
|
|
*/
|
|
struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
|
|
{
|
|
unsigned int l, n = 0, k = 0;
|
|
sector_t *node;
|
|
|
|
if (unlikely(sector >= dm_table_get_size(t)))
|
|
return NULL;
|
|
|
|
for (l = 0; l < t->depth; l++) {
|
|
n = get_child(n, k);
|
|
node = get_node(t, l, n);
|
|
|
|
for (k = 0; k < KEYS_PER_NODE; k++)
|
|
if (node[k] >= sector)
|
|
break;
|
|
}
|
|
|
|
return &t->targets[(KEYS_PER_NODE * n) + k];
|
|
}
|
|
|
|
/*
|
|
* type->iterate_devices() should be called when the sanity check needs to
|
|
* iterate and check all underlying data devices. iterate_devices() will
|
|
* iterate all underlying data devices until it encounters a non-zero return
|
|
* code, returned by whether the input iterate_devices_callout_fn, or
|
|
* iterate_devices() itself internally.
|
|
*
|
|
* For some target type (e.g. dm-stripe), one call of iterate_devices() may
|
|
* iterate multiple underlying devices internally, in which case a non-zero
|
|
* return code returned by iterate_devices_callout_fn will stop the iteration
|
|
* in advance.
|
|
*
|
|
* Cases requiring _any_ underlying device supporting some kind of attribute,
|
|
* should use the iteration structure like dm_table_any_dev_attr(), or call
|
|
* it directly. @func should handle semantics of positive examples, e.g.
|
|
* capable of something.
|
|
*
|
|
* Cases requiring _all_ underlying devices supporting some kind of attribute,
|
|
* should use the iteration structure like dm_table_supports_nowait() or
|
|
* dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
|
|
* uses an @anti_func that handle semantics of counter examples, e.g. not
|
|
* capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
|
|
*/
|
|
static bool dm_table_any_dev_attr(struct dm_table *t,
|
|
iterate_devices_callout_fn func, void *data)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
|
|
if (ti->type->iterate_devices &&
|
|
ti->type->iterate_devices(ti, func, data))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int count_device(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
unsigned *num_devices = data;
|
|
|
|
(*num_devices)++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check whether a table has no data devices attached using each
|
|
* target's iterate_devices method.
|
|
* Returns false if the result is unknown because a target doesn't
|
|
* support iterate_devices.
|
|
*/
|
|
bool dm_table_has_no_data_devices(struct dm_table *table)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i, num_devices;
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(table); i++) {
|
|
ti = dm_table_get_target(table, i);
|
|
|
|
if (!ti->type->iterate_devices)
|
|
return false;
|
|
|
|
num_devices = 0;
|
|
ti->type->iterate_devices(ti, count_device, &num_devices);
|
|
if (num_devices)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
enum blk_zoned_model *zoned_model = data;
|
|
|
|
return blk_queue_zoned_model(q) != *zoned_model;
|
|
}
|
|
|
|
/*
|
|
* Check the device zoned model based on the target feature flag. If the target
|
|
* has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
|
|
* also accepted but all devices must have the same zoned model. If the target
|
|
* has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
|
|
* zoned model with all zoned devices having the same zone size.
|
|
*/
|
|
static bool dm_table_supports_zoned_model(struct dm_table *t,
|
|
enum blk_zoned_model zoned_model)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
|
|
if (dm_target_supports_zoned_hm(ti->type)) {
|
|
if (!ti->type->iterate_devices ||
|
|
ti->type->iterate_devices(ti, device_not_zoned_model,
|
|
&zoned_model))
|
|
return false;
|
|
} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
|
|
if (zoned_model == BLK_ZONED_HM)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
unsigned int *zone_sectors = data;
|
|
|
|
if (!blk_queue_is_zoned(q))
|
|
return 0;
|
|
|
|
return blk_queue_zone_sectors(q) != *zone_sectors;
|
|
}
|
|
|
|
/*
|
|
* Check consistency of zoned model and zone sectors across all targets. For
|
|
* zone sectors, if the destination device is a zoned block device, it shall
|
|
* have the specified zone_sectors.
|
|
*/
|
|
static int validate_hardware_zoned_model(struct dm_table *table,
|
|
enum blk_zoned_model zoned_model,
|
|
unsigned int zone_sectors)
|
|
{
|
|
if (zoned_model == BLK_ZONED_NONE)
|
|
return 0;
|
|
|
|
if (!dm_table_supports_zoned_model(table, zoned_model)) {
|
|
DMERR("%s: zoned model is not consistent across all devices",
|
|
dm_device_name(table->md));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check zone size validity and compatibility */
|
|
if (!zone_sectors || !is_power_of_2(zone_sectors))
|
|
return -EINVAL;
|
|
|
|
if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
|
|
DMERR("%s: zone sectors is not consistent across all zoned devices",
|
|
dm_device_name(table->md));
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Establish the new table's queue_limits and validate them.
|
|
*/
|
|
int dm_calculate_queue_limits(struct dm_table *table,
|
|
struct queue_limits *limits)
|
|
{
|
|
struct dm_target *ti;
|
|
struct queue_limits ti_limits;
|
|
unsigned i;
|
|
enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
|
|
unsigned int zone_sectors = 0;
|
|
|
|
blk_set_stacking_limits(limits);
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(table); i++) {
|
|
blk_set_stacking_limits(&ti_limits);
|
|
|
|
ti = dm_table_get_target(table, i);
|
|
|
|
if (!ti->type->iterate_devices)
|
|
goto combine_limits;
|
|
|
|
/*
|
|
* Combine queue limits of all the devices this target uses.
|
|
*/
|
|
ti->type->iterate_devices(ti, dm_set_device_limits,
|
|
&ti_limits);
|
|
|
|
if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
|
|
/*
|
|
* After stacking all limits, validate all devices
|
|
* in table support this zoned model and zone sectors.
|
|
*/
|
|
zoned_model = ti_limits.zoned;
|
|
zone_sectors = ti_limits.chunk_sectors;
|
|
}
|
|
|
|
/* Set I/O hints portion of queue limits */
|
|
if (ti->type->io_hints)
|
|
ti->type->io_hints(ti, &ti_limits);
|
|
|
|
/*
|
|
* Check each device area is consistent with the target's
|
|
* overall queue limits.
|
|
*/
|
|
if (ti->type->iterate_devices(ti, device_area_is_invalid,
|
|
&ti_limits))
|
|
return -EINVAL;
|
|
|
|
combine_limits:
|
|
/*
|
|
* Merge this target's queue limits into the overall limits
|
|
* for the table.
|
|
*/
|
|
if (blk_stack_limits(limits, &ti_limits, 0) < 0)
|
|
DMWARN("%s: adding target device "
|
|
"(start sect %llu len %llu) "
|
|
"caused an alignment inconsistency",
|
|
dm_device_name(table->md),
|
|
(unsigned long long) ti->begin,
|
|
(unsigned long long) ti->len);
|
|
}
|
|
|
|
/*
|
|
* Verify that the zoned model and zone sectors, as determined before
|
|
* any .io_hints override, are the same across all devices in the table.
|
|
* - this is especially relevant if .io_hints is emulating a disk-managed
|
|
* zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
|
|
* BUT...
|
|
*/
|
|
if (limits->zoned != BLK_ZONED_NONE) {
|
|
/*
|
|
* ...IF the above limits stacking determined a zoned model
|
|
* validate that all of the table's devices conform to it.
|
|
*/
|
|
zoned_model = limits->zoned;
|
|
zone_sectors = limits->chunk_sectors;
|
|
}
|
|
if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
|
|
return -EINVAL;
|
|
|
|
return validate_hardware_logical_block_alignment(table, limits);
|
|
}
|
|
|
|
/*
|
|
* Verify that all devices have an integrity profile that matches the
|
|
* DM device's registered integrity profile. If the profiles don't
|
|
* match then unregister the DM device's integrity profile.
|
|
*/
|
|
static void dm_table_verify_integrity(struct dm_table *t)
|
|
{
|
|
struct gendisk *template_disk = NULL;
|
|
|
|
if (t->integrity_added)
|
|
return;
|
|
|
|
if (t->integrity_supported) {
|
|
/*
|
|
* Verify that the original integrity profile
|
|
* matches all the devices in this table.
|
|
*/
|
|
template_disk = dm_table_get_integrity_disk(t);
|
|
if (template_disk &&
|
|
blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
|
|
return;
|
|
}
|
|
|
|
if (integrity_profile_exists(dm_disk(t->md))) {
|
|
DMWARN("%s: unable to establish an integrity profile",
|
|
dm_device_name(t->md));
|
|
blk_integrity_unregister(dm_disk(t->md));
|
|
}
|
|
}
|
|
|
|
static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
unsigned long flush = (unsigned long) data;
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return (q->queue_flags & flush);
|
|
}
|
|
|
|
static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i;
|
|
|
|
/*
|
|
* Require at least one underlying device to support flushes.
|
|
* t->devices includes internal dm devices such as mirror logs
|
|
* so we need to use iterate_devices here, which targets
|
|
* supporting flushes must provide.
|
|
*/
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
|
|
if (!ti->num_flush_bios)
|
|
continue;
|
|
|
|
if (ti->flush_supported)
|
|
return true;
|
|
|
|
if (ti->type->iterate_devices &&
|
|
ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int device_dax_write_cache_enabled(struct dm_target *ti,
|
|
struct dm_dev *dev, sector_t start,
|
|
sector_t len, void *data)
|
|
{
|
|
struct dax_device *dax_dev = dev->dax_dev;
|
|
|
|
if (!dax_dev)
|
|
return false;
|
|
|
|
if (dax_write_cache_enabled(dax_dev))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return !blk_queue_nonrot(q);
|
|
}
|
|
|
|
static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return !blk_queue_add_random(q);
|
|
}
|
|
|
|
static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return !q->limits.max_write_same_sectors;
|
|
}
|
|
|
|
static bool dm_table_supports_write_same(struct dm_table *t)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
|
|
if (!ti->num_write_same_bios)
|
|
return false;
|
|
|
|
if (!ti->type->iterate_devices ||
|
|
ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return !q->limits.max_write_zeroes_sectors;
|
|
}
|
|
|
|
static bool dm_table_supports_write_zeroes(struct dm_table *t)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i = 0;
|
|
|
|
while (i < dm_table_get_num_targets(t)) {
|
|
ti = dm_table_get_target(t, i++);
|
|
|
|
if (!ti->num_write_zeroes_bios)
|
|
return false;
|
|
|
|
if (!ti->type->iterate_devices ||
|
|
ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return !blk_queue_nowait(q);
|
|
}
|
|
|
|
static bool dm_table_supports_nowait(struct dm_table *t)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i = 0;
|
|
|
|
while (i < dm_table_get_num_targets(t)) {
|
|
ti = dm_table_get_target(t, i++);
|
|
|
|
if (!dm_target_supports_nowait(ti->type))
|
|
return false;
|
|
|
|
if (!ti->type->iterate_devices ||
|
|
ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return !blk_queue_discard(q);
|
|
}
|
|
|
|
static bool dm_table_supports_discards(struct dm_table *t)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
|
|
if (!ti->num_discard_bios)
|
|
return false;
|
|
|
|
/*
|
|
* Either the target provides discard support (as implied by setting
|
|
* 'discards_supported') or it relies on _all_ data devices having
|
|
* discard support.
|
|
*/
|
|
if (!ti->discards_supported &&
|
|
(!ti->type->iterate_devices ||
|
|
ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_not_secure_erase_capable(struct dm_target *ti,
|
|
struct dm_dev *dev, sector_t start,
|
|
sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return !blk_queue_secure_erase(q);
|
|
}
|
|
|
|
static bool dm_table_supports_secure_erase(struct dm_table *t)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
|
|
if (!ti->num_secure_erase_bios)
|
|
return false;
|
|
|
|
if (!ti->type->iterate_devices ||
|
|
ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_requires_stable_pages(struct dm_target *ti,
|
|
struct dm_dev *dev, sector_t start,
|
|
sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return blk_queue_stable_writes(q);
|
|
}
|
|
|
|
void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
|
|
struct queue_limits *limits)
|
|
{
|
|
bool wc = false, fua = false;
|
|
int page_size = PAGE_SIZE;
|
|
|
|
/*
|
|
* Copy table's limits to the DM device's request_queue
|
|
*/
|
|
q->limits = *limits;
|
|
|
|
if (dm_table_supports_nowait(t))
|
|
blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
|
|
else
|
|
blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
|
|
|
|
if (!dm_table_supports_discards(t)) {
|
|
blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
|
|
/* Must also clear discard limits... */
|
|
q->limits.max_discard_sectors = 0;
|
|
q->limits.max_hw_discard_sectors = 0;
|
|
q->limits.discard_granularity = 0;
|
|
q->limits.discard_alignment = 0;
|
|
q->limits.discard_misaligned = 0;
|
|
} else
|
|
blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
|
|
|
|
if (dm_table_supports_secure_erase(t))
|
|
blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
|
|
|
|
if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
|
|
wc = true;
|
|
if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
|
|
fua = true;
|
|
}
|
|
blk_queue_write_cache(q, wc, fua);
|
|
|
|
if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
|
|
blk_queue_flag_set(QUEUE_FLAG_DAX, q);
|
|
if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
|
|
set_dax_synchronous(t->md->dax_dev);
|
|
}
|
|
else
|
|
blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
|
|
|
|
if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
|
|
dax_write_cache(t->md->dax_dev, true);
|
|
|
|
/* Ensure that all underlying devices are non-rotational. */
|
|
if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
|
|
blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
|
|
else
|
|
blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
|
|
|
|
if (!dm_table_supports_write_same(t))
|
|
q->limits.max_write_same_sectors = 0;
|
|
if (!dm_table_supports_write_zeroes(t))
|
|
q->limits.max_write_zeroes_sectors = 0;
|
|
|
|
dm_table_verify_integrity(t);
|
|
|
|
/*
|
|
* Some devices don't use blk_integrity but still want stable pages
|
|
* because they do their own checksumming.
|
|
* If any underlying device requires stable pages, a table must require
|
|
* them as well. Only targets that support iterate_devices are considered:
|
|
* don't want error, zero, etc to require stable pages.
|
|
*/
|
|
if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
|
|
blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
|
|
else
|
|
blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
|
|
|
|
/*
|
|
* Determine whether or not this queue's I/O timings contribute
|
|
* to the entropy pool, Only request-based targets use this.
|
|
* Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
|
|
* have it set.
|
|
*/
|
|
if (blk_queue_add_random(q) &&
|
|
dm_table_any_dev_attr(t, device_is_not_random, NULL))
|
|
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
|
|
|
|
/*
|
|
* For a zoned target, the number of zones should be updated for the
|
|
* correct value to be exposed in sysfs queue/nr_zones. For a BIO based
|
|
* target, this is all that is needed.
|
|
*/
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
if (blk_queue_is_zoned(q)) {
|
|
WARN_ON_ONCE(queue_is_mq(q));
|
|
q->nr_zones = blkdev_nr_zones(t->md->disk);
|
|
}
|
|
#endif
|
|
|
|
dm_update_keyslot_manager(q, t);
|
|
blk_queue_update_readahead(q);
|
|
}
|
|
|
|
unsigned int dm_table_get_num_targets(struct dm_table *t)
|
|
{
|
|
return t->num_targets;
|
|
}
|
|
|
|
struct list_head *dm_table_get_devices(struct dm_table *t)
|
|
{
|
|
return &t->devices;
|
|
}
|
|
|
|
fmode_t dm_table_get_mode(struct dm_table *t)
|
|
{
|
|
return t->mode;
|
|
}
|
|
EXPORT_SYMBOL(dm_table_get_mode);
|
|
|
|
enum suspend_mode {
|
|
PRESUSPEND,
|
|
PRESUSPEND_UNDO,
|
|
POSTSUSPEND,
|
|
};
|
|
|
|
static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
|
|
{
|
|
int i = t->num_targets;
|
|
struct dm_target *ti = t->targets;
|
|
|
|
lockdep_assert_held(&t->md->suspend_lock);
|
|
|
|
while (i--) {
|
|
switch (mode) {
|
|
case PRESUSPEND:
|
|
if (ti->type->presuspend)
|
|
ti->type->presuspend(ti);
|
|
break;
|
|
case PRESUSPEND_UNDO:
|
|
if (ti->type->presuspend_undo)
|
|
ti->type->presuspend_undo(ti);
|
|
break;
|
|
case POSTSUSPEND:
|
|
if (ti->type->postsuspend)
|
|
ti->type->postsuspend(ti);
|
|
break;
|
|
}
|
|
ti++;
|
|
}
|
|
}
|
|
|
|
void dm_table_presuspend_targets(struct dm_table *t)
|
|
{
|
|
if (!t)
|
|
return;
|
|
|
|
suspend_targets(t, PRESUSPEND);
|
|
}
|
|
|
|
void dm_table_presuspend_undo_targets(struct dm_table *t)
|
|
{
|
|
if (!t)
|
|
return;
|
|
|
|
suspend_targets(t, PRESUSPEND_UNDO);
|
|
}
|
|
|
|
void dm_table_postsuspend_targets(struct dm_table *t)
|
|
{
|
|
if (!t)
|
|
return;
|
|
|
|
suspend_targets(t, POSTSUSPEND);
|
|
}
|
|
|
|
int dm_table_resume_targets(struct dm_table *t)
|
|
{
|
|
int i, r = 0;
|
|
|
|
lockdep_assert_held(&t->md->suspend_lock);
|
|
|
|
for (i = 0; i < t->num_targets; i++) {
|
|
struct dm_target *ti = t->targets + i;
|
|
|
|
if (!ti->type->preresume)
|
|
continue;
|
|
|
|
r = ti->type->preresume(ti);
|
|
if (r) {
|
|
DMERR("%s: %s: preresume failed, error = %d",
|
|
dm_device_name(t->md), ti->type->name, r);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < t->num_targets; i++) {
|
|
struct dm_target *ti = t->targets + i;
|
|
|
|
if (ti->type->resume)
|
|
ti->type->resume(ti);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct mapped_device *dm_table_get_md(struct dm_table *t)
|
|
{
|
|
return t->md;
|
|
}
|
|
EXPORT_SYMBOL(dm_table_get_md);
|
|
|
|
const char *dm_table_device_name(struct dm_table *t)
|
|
{
|
|
return dm_device_name(t->md);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_table_device_name);
|
|
|
|
void dm_table_run_md_queue_async(struct dm_table *t)
|
|
{
|
|
if (!dm_table_request_based(t))
|
|
return;
|
|
|
|
if (t->md->queue)
|
|
blk_mq_run_hw_queues(t->md->queue, true);
|
|
}
|
|
EXPORT_SYMBOL(dm_table_run_md_queue_async);
|
|
|