b97efd5e98
Pull KCSAN updates from Paul McKenney. * 'kcsan.2021.05.18a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: kcsan: Use URL link for pointing access-marking.txt kcsan: Document "value changed" line kcsan: Report observed value changes kcsan: Remove kcsan_report_type kcsan: Remove reporting indirection kcsan: Refactor access_info initialization kcsan: Fold panic() call into print_report() kcsan: Refactor passing watchpoint/other_info kcsan: Distinguish kcsan_report() calls kcsan: Simplify value change detection kcsan: Add pointer to access-marking.txt to data_race() bullet
655 lines
19 KiB
C
655 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* KCSAN reporting.
|
|
*
|
|
* Copyright (C) 2019, Google LLC.
|
|
*/
|
|
|
|
#include <linux/debug_locks.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/stacktrace.h>
|
|
|
|
#include "kcsan.h"
|
|
#include "encoding.h"
|
|
|
|
/*
|
|
* Max. number of stack entries to show in the report.
|
|
*/
|
|
#define NUM_STACK_ENTRIES 64
|
|
|
|
/* Common access info. */
|
|
struct access_info {
|
|
const volatile void *ptr;
|
|
size_t size;
|
|
int access_type;
|
|
int task_pid;
|
|
int cpu_id;
|
|
};
|
|
|
|
/*
|
|
* Other thread info: communicated from other racing thread to thread that set
|
|
* up the watchpoint, which then prints the complete report atomically.
|
|
*/
|
|
struct other_info {
|
|
struct access_info ai;
|
|
unsigned long stack_entries[NUM_STACK_ENTRIES];
|
|
int num_stack_entries;
|
|
|
|
/*
|
|
* Optionally pass @current. Typically we do not need to pass @current
|
|
* via @other_info since just @task_pid is sufficient. Passing @current
|
|
* has additional overhead.
|
|
*
|
|
* To safely pass @current, we must either use get_task_struct/
|
|
* put_task_struct, or stall the thread that populated @other_info.
|
|
*
|
|
* We cannot rely on get_task_struct/put_task_struct in case
|
|
* release_report() races with a task being released, and would have to
|
|
* free it in release_report(). This may result in deadlock if we want
|
|
* to use KCSAN on the allocators.
|
|
*
|
|
* Since we also want to reliably print held locks for
|
|
* CONFIG_KCSAN_VERBOSE, the current implementation stalls the thread
|
|
* that populated @other_info until it has been consumed.
|
|
*/
|
|
struct task_struct *task;
|
|
};
|
|
|
|
/*
|
|
* To never block any producers of struct other_info, we need as many elements
|
|
* as we have watchpoints (upper bound on concurrent races to report).
|
|
*/
|
|
static struct other_info other_infos[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
|
|
|
|
/*
|
|
* Information about reported races; used to rate limit reporting.
|
|
*/
|
|
struct report_time {
|
|
/*
|
|
* The last time the race was reported.
|
|
*/
|
|
unsigned long time;
|
|
|
|
/*
|
|
* The frames of the 2 threads; if only 1 thread is known, one frame
|
|
* will be 0.
|
|
*/
|
|
unsigned long frame1;
|
|
unsigned long frame2;
|
|
};
|
|
|
|
/*
|
|
* Since we also want to be able to debug allocators with KCSAN, to avoid
|
|
* deadlock, report_times cannot be dynamically resized with krealloc in
|
|
* rate_limit_report.
|
|
*
|
|
* Therefore, we use a fixed-size array, which at most will occupy a page. This
|
|
* still adequately rate limits reports, assuming that a) number of unique data
|
|
* races is not excessive, and b) occurrence of unique races within the
|
|
* same time window is limited.
|
|
*/
|
|
#define REPORT_TIMES_MAX (PAGE_SIZE / sizeof(struct report_time))
|
|
#define REPORT_TIMES_SIZE \
|
|
(CONFIG_KCSAN_REPORT_ONCE_IN_MS > REPORT_TIMES_MAX ? \
|
|
REPORT_TIMES_MAX : \
|
|
CONFIG_KCSAN_REPORT_ONCE_IN_MS)
|
|
static struct report_time report_times[REPORT_TIMES_SIZE];
|
|
|
|
/*
|
|
* Spinlock serializing report generation, and access to @other_infos. Although
|
|
* it could make sense to have a finer-grained locking story for @other_infos,
|
|
* report generation needs to be serialized either way, so not much is gained.
|
|
*/
|
|
static DEFINE_RAW_SPINLOCK(report_lock);
|
|
|
|
/*
|
|
* Checks if the race identified by thread frames frame1 and frame2 has
|
|
* been reported since (now - KCSAN_REPORT_ONCE_IN_MS).
|
|
*/
|
|
static bool rate_limit_report(unsigned long frame1, unsigned long frame2)
|
|
{
|
|
struct report_time *use_entry = &report_times[0];
|
|
unsigned long invalid_before;
|
|
int i;
|
|
|
|
BUILD_BUG_ON(CONFIG_KCSAN_REPORT_ONCE_IN_MS != 0 && REPORT_TIMES_SIZE == 0);
|
|
|
|
if (CONFIG_KCSAN_REPORT_ONCE_IN_MS == 0)
|
|
return false;
|
|
|
|
invalid_before = jiffies - msecs_to_jiffies(CONFIG_KCSAN_REPORT_ONCE_IN_MS);
|
|
|
|
/* Check if a matching race report exists. */
|
|
for (i = 0; i < REPORT_TIMES_SIZE; ++i) {
|
|
struct report_time *rt = &report_times[i];
|
|
|
|
/*
|
|
* Must always select an entry for use to store info as we
|
|
* cannot resize report_times; at the end of the scan, use_entry
|
|
* will be the oldest entry, which ideally also happened before
|
|
* KCSAN_REPORT_ONCE_IN_MS ago.
|
|
*/
|
|
if (time_before(rt->time, use_entry->time))
|
|
use_entry = rt;
|
|
|
|
/*
|
|
* Initially, no need to check any further as this entry as well
|
|
* as following entries have never been used.
|
|
*/
|
|
if (rt->time == 0)
|
|
break;
|
|
|
|
/* Check if entry expired. */
|
|
if (time_before(rt->time, invalid_before))
|
|
continue; /* before KCSAN_REPORT_ONCE_IN_MS ago */
|
|
|
|
/* Reported recently, check if race matches. */
|
|
if ((rt->frame1 == frame1 && rt->frame2 == frame2) ||
|
|
(rt->frame1 == frame2 && rt->frame2 == frame1))
|
|
return true;
|
|
}
|
|
|
|
use_entry->time = jiffies;
|
|
use_entry->frame1 = frame1;
|
|
use_entry->frame2 = frame2;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Special rules to skip reporting.
|
|
*/
|
|
static bool
|
|
skip_report(enum kcsan_value_change value_change, unsigned long top_frame)
|
|
{
|
|
/* Should never get here if value_change==FALSE. */
|
|
WARN_ON_ONCE(value_change == KCSAN_VALUE_CHANGE_FALSE);
|
|
|
|
/*
|
|
* The first call to skip_report always has value_change==TRUE, since we
|
|
* cannot know the value written of an instrumented access. For the 2nd
|
|
* call there are 6 cases with CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY:
|
|
*
|
|
* 1. read watchpoint, conflicting write (value_change==TRUE): report;
|
|
* 2. read watchpoint, conflicting write (value_change==MAYBE): skip;
|
|
* 3. write watchpoint, conflicting write (value_change==TRUE): report;
|
|
* 4. write watchpoint, conflicting write (value_change==MAYBE): skip;
|
|
* 5. write watchpoint, conflicting read (value_change==MAYBE): skip;
|
|
* 6. write watchpoint, conflicting read (value_change==TRUE): report;
|
|
*
|
|
* Cases 1-4 are intuitive and expected; case 5 ensures we do not report
|
|
* data races where the write may have rewritten the same value; case 6
|
|
* is possible either if the size is larger than what we check value
|
|
* changes for or the access type is KCSAN_ACCESS_ASSERT.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) &&
|
|
value_change == KCSAN_VALUE_CHANGE_MAYBE) {
|
|
/*
|
|
* The access is a write, but the data value did not change.
|
|
*
|
|
* We opt-out of this filter for certain functions at request of
|
|
* maintainers.
|
|
*/
|
|
char buf[64];
|
|
int len = scnprintf(buf, sizeof(buf), "%ps", (void *)top_frame);
|
|
|
|
if (!strnstr(buf, "rcu_", len) &&
|
|
!strnstr(buf, "_rcu", len) &&
|
|
!strnstr(buf, "_srcu", len))
|
|
return true;
|
|
}
|
|
|
|
return kcsan_skip_report_debugfs(top_frame);
|
|
}
|
|
|
|
static const char *get_access_type(int type)
|
|
{
|
|
if (type & KCSAN_ACCESS_ASSERT) {
|
|
if (type & KCSAN_ACCESS_SCOPED) {
|
|
if (type & KCSAN_ACCESS_WRITE)
|
|
return "assert no accesses (scoped)";
|
|
else
|
|
return "assert no writes (scoped)";
|
|
} else {
|
|
if (type & KCSAN_ACCESS_WRITE)
|
|
return "assert no accesses";
|
|
else
|
|
return "assert no writes";
|
|
}
|
|
}
|
|
|
|
switch (type) {
|
|
case 0:
|
|
return "read";
|
|
case KCSAN_ACCESS_ATOMIC:
|
|
return "read (marked)";
|
|
case KCSAN_ACCESS_WRITE:
|
|
return "write";
|
|
case KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
|
|
return "write (marked)";
|
|
case KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE:
|
|
return "read-write";
|
|
case KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
|
|
return "read-write (marked)";
|
|
case KCSAN_ACCESS_SCOPED:
|
|
return "read (scoped)";
|
|
case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_ATOMIC:
|
|
return "read (marked, scoped)";
|
|
case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE:
|
|
return "write (scoped)";
|
|
case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
|
|
return "write (marked, scoped)";
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static const char *get_bug_type(int type)
|
|
{
|
|
return (type & KCSAN_ACCESS_ASSERT) != 0 ? "assert: race" : "data-race";
|
|
}
|
|
|
|
/* Return thread description: in task or interrupt. */
|
|
static const char *get_thread_desc(int task_id)
|
|
{
|
|
if (task_id != -1) {
|
|
static char buf[32]; /* safe: protected by report_lock */
|
|
|
|
snprintf(buf, sizeof(buf), "task %i", task_id);
|
|
return buf;
|
|
}
|
|
return "interrupt";
|
|
}
|
|
|
|
/* Helper to skip KCSAN-related functions in stack-trace. */
|
|
static int get_stack_skipnr(const unsigned long stack_entries[], int num_entries)
|
|
{
|
|
char buf[64];
|
|
char *cur;
|
|
int len, skip;
|
|
|
|
for (skip = 0; skip < num_entries; ++skip) {
|
|
len = scnprintf(buf, sizeof(buf), "%ps", (void *)stack_entries[skip]);
|
|
|
|
/* Never show tsan_* or {read,write}_once_size. */
|
|
if (strnstr(buf, "tsan_", len) ||
|
|
strnstr(buf, "_once_size", len))
|
|
continue;
|
|
|
|
cur = strnstr(buf, "kcsan_", len);
|
|
if (cur) {
|
|
cur += strlen("kcsan_");
|
|
if (!str_has_prefix(cur, "test"))
|
|
continue; /* KCSAN runtime function. */
|
|
/* KCSAN related test. */
|
|
}
|
|
|
|
/*
|
|
* No match for runtime functions -- @skip entries to skip to
|
|
* get to first frame of interest.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
return skip;
|
|
}
|
|
|
|
/* Compares symbolized strings of addr1 and addr2. */
|
|
static int sym_strcmp(void *addr1, void *addr2)
|
|
{
|
|
char buf1[64];
|
|
char buf2[64];
|
|
|
|
snprintf(buf1, sizeof(buf1), "%pS", addr1);
|
|
snprintf(buf2, sizeof(buf2), "%pS", addr2);
|
|
|
|
return strncmp(buf1, buf2, sizeof(buf1));
|
|
}
|
|
|
|
static void print_verbose_info(struct task_struct *task)
|
|
{
|
|
if (!task)
|
|
return;
|
|
|
|
/* Restore IRQ state trace for printing. */
|
|
kcsan_restore_irqtrace(task);
|
|
|
|
pr_err("\n");
|
|
debug_show_held_locks(task);
|
|
print_irqtrace_events(task);
|
|
}
|
|
|
|
static void print_report(enum kcsan_value_change value_change,
|
|
const struct access_info *ai,
|
|
const struct other_info *other_info,
|
|
u64 old, u64 new, u64 mask)
|
|
{
|
|
unsigned long stack_entries[NUM_STACK_ENTRIES] = { 0 };
|
|
int num_stack_entries = stack_trace_save(stack_entries, NUM_STACK_ENTRIES, 1);
|
|
int skipnr = get_stack_skipnr(stack_entries, num_stack_entries);
|
|
unsigned long this_frame = stack_entries[skipnr];
|
|
unsigned long other_frame = 0;
|
|
int other_skipnr = 0; /* silence uninit warnings */
|
|
|
|
/*
|
|
* Must check report filter rules before starting to print.
|
|
*/
|
|
if (skip_report(KCSAN_VALUE_CHANGE_TRUE, stack_entries[skipnr]))
|
|
return;
|
|
|
|
if (other_info) {
|
|
other_skipnr = get_stack_skipnr(other_info->stack_entries,
|
|
other_info->num_stack_entries);
|
|
other_frame = other_info->stack_entries[other_skipnr];
|
|
|
|
/* @value_change is only known for the other thread */
|
|
if (skip_report(value_change, other_frame))
|
|
return;
|
|
}
|
|
|
|
if (rate_limit_report(this_frame, other_frame))
|
|
return;
|
|
|
|
/* Print report header. */
|
|
pr_err("==================================================================\n");
|
|
if (other_info) {
|
|
int cmp;
|
|
|
|
/*
|
|
* Order functions lexographically for consistent bug titles.
|
|
* Do not print offset of functions to keep title short.
|
|
*/
|
|
cmp = sym_strcmp((void *)other_frame, (void *)this_frame);
|
|
pr_err("BUG: KCSAN: %s in %ps / %ps\n",
|
|
get_bug_type(ai->access_type | other_info->ai.access_type),
|
|
(void *)(cmp < 0 ? other_frame : this_frame),
|
|
(void *)(cmp < 0 ? this_frame : other_frame));
|
|
} else {
|
|
pr_err("BUG: KCSAN: %s in %pS\n", get_bug_type(ai->access_type),
|
|
(void *)this_frame);
|
|
}
|
|
|
|
pr_err("\n");
|
|
|
|
/* Print information about the racing accesses. */
|
|
if (other_info) {
|
|
pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
|
|
get_access_type(other_info->ai.access_type), other_info->ai.ptr,
|
|
other_info->ai.size, get_thread_desc(other_info->ai.task_pid),
|
|
other_info->ai.cpu_id);
|
|
|
|
/* Print the other thread's stack trace. */
|
|
stack_trace_print(other_info->stack_entries + other_skipnr,
|
|
other_info->num_stack_entries - other_skipnr,
|
|
0);
|
|
|
|
if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
|
|
print_verbose_info(other_info->task);
|
|
|
|
pr_err("\n");
|
|
pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
|
|
get_access_type(ai->access_type), ai->ptr, ai->size,
|
|
get_thread_desc(ai->task_pid), ai->cpu_id);
|
|
} else {
|
|
pr_err("race at unknown origin, with %s to 0x%px of %zu bytes by %s on cpu %i:\n",
|
|
get_access_type(ai->access_type), ai->ptr, ai->size,
|
|
get_thread_desc(ai->task_pid), ai->cpu_id);
|
|
}
|
|
/* Print stack trace of this thread. */
|
|
stack_trace_print(stack_entries + skipnr, num_stack_entries - skipnr,
|
|
0);
|
|
|
|
if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
|
|
print_verbose_info(current);
|
|
|
|
/* Print observed value change. */
|
|
if (ai->size <= 8) {
|
|
int hex_len = ai->size * 2;
|
|
u64 diff = old ^ new;
|
|
|
|
if (mask)
|
|
diff &= mask;
|
|
if (diff) {
|
|
pr_err("\n");
|
|
pr_err("value changed: 0x%0*llx -> 0x%0*llx\n",
|
|
hex_len, old, hex_len, new);
|
|
if (mask) {
|
|
pr_err(" bits changed: 0x%0*llx with mask 0x%0*llx\n",
|
|
hex_len, diff, hex_len, mask);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Print report footer. */
|
|
pr_err("\n");
|
|
pr_err("Reported by Kernel Concurrency Sanitizer on:\n");
|
|
dump_stack_print_info(KERN_DEFAULT);
|
|
pr_err("==================================================================\n");
|
|
|
|
if (panic_on_warn)
|
|
panic("panic_on_warn set ...\n");
|
|
}
|
|
|
|
static void release_report(unsigned long *flags, struct other_info *other_info)
|
|
{
|
|
/*
|
|
* Use size to denote valid/invalid, since KCSAN entirely ignores
|
|
* 0-sized accesses.
|
|
*/
|
|
other_info->ai.size = 0;
|
|
raw_spin_unlock_irqrestore(&report_lock, *flags);
|
|
}
|
|
|
|
/*
|
|
* Sets @other_info->task and awaits consumption of @other_info.
|
|
*
|
|
* Precondition: report_lock is held.
|
|
* Postcondition: report_lock is held.
|
|
*/
|
|
static void set_other_info_task_blocking(unsigned long *flags,
|
|
const struct access_info *ai,
|
|
struct other_info *other_info)
|
|
{
|
|
/*
|
|
* We may be instrumenting a code-path where current->state is already
|
|
* something other than TASK_RUNNING.
|
|
*/
|
|
const bool is_running = task_is_running(current);
|
|
/*
|
|
* To avoid deadlock in case we are in an interrupt here and this is a
|
|
* race with a task on the same CPU (KCSAN_INTERRUPT_WATCHER), provide a
|
|
* timeout to ensure this works in all contexts.
|
|
*
|
|
* Await approximately the worst case delay of the reporting thread (if
|
|
* we are not interrupted).
|
|
*/
|
|
int timeout = max(kcsan_udelay_task, kcsan_udelay_interrupt);
|
|
|
|
other_info->task = current;
|
|
do {
|
|
if (is_running) {
|
|
/*
|
|
* Let lockdep know the real task is sleeping, to print
|
|
* the held locks (recall we turned lockdep off, so
|
|
* locking/unlocking @report_lock won't be recorded).
|
|
*/
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
}
|
|
raw_spin_unlock_irqrestore(&report_lock, *flags);
|
|
/*
|
|
* We cannot call schedule() since we also cannot reliably
|
|
* determine if sleeping here is permitted -- see in_atomic().
|
|
*/
|
|
|
|
udelay(1);
|
|
raw_spin_lock_irqsave(&report_lock, *flags);
|
|
if (timeout-- < 0) {
|
|
/*
|
|
* Abort. Reset @other_info->task to NULL, since it
|
|
* appears the other thread is still going to consume
|
|
* it. It will result in no verbose info printed for
|
|
* this task.
|
|
*/
|
|
other_info->task = NULL;
|
|
break;
|
|
}
|
|
/*
|
|
* If invalid, or @ptr nor @current matches, then @other_info
|
|
* has been consumed and we may continue. If not, retry.
|
|
*/
|
|
} while (other_info->ai.size && other_info->ai.ptr == ai->ptr &&
|
|
other_info->task == current);
|
|
if (is_running)
|
|
set_current_state(TASK_RUNNING);
|
|
}
|
|
|
|
/* Populate @other_info; requires that the provided @other_info not in use. */
|
|
static void prepare_report_producer(unsigned long *flags,
|
|
const struct access_info *ai,
|
|
struct other_info *other_info)
|
|
{
|
|
raw_spin_lock_irqsave(&report_lock, *flags);
|
|
|
|
/*
|
|
* The same @other_infos entry cannot be used concurrently, because
|
|
* there is a one-to-one mapping to watchpoint slots (@watchpoints in
|
|
* core.c), and a watchpoint is only released for reuse after reporting
|
|
* is done by the consumer of @other_info. Therefore, it is impossible
|
|
* for another concurrent prepare_report_producer() to set the same
|
|
* @other_info, and are guaranteed exclusivity for the @other_infos
|
|
* entry pointed to by @other_info.
|
|
*
|
|
* To check this property holds, size should never be non-zero here,
|
|
* because every consumer of struct other_info resets size to 0 in
|
|
* release_report().
|
|
*/
|
|
WARN_ON(other_info->ai.size);
|
|
|
|
other_info->ai = *ai;
|
|
other_info->num_stack_entries = stack_trace_save(other_info->stack_entries, NUM_STACK_ENTRIES, 2);
|
|
|
|
if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
|
|
set_other_info_task_blocking(flags, ai, other_info);
|
|
|
|
raw_spin_unlock_irqrestore(&report_lock, *flags);
|
|
}
|
|
|
|
/* Awaits producer to fill @other_info and then returns. */
|
|
static bool prepare_report_consumer(unsigned long *flags,
|
|
const struct access_info *ai,
|
|
struct other_info *other_info)
|
|
{
|
|
|
|
raw_spin_lock_irqsave(&report_lock, *flags);
|
|
while (!other_info->ai.size) { /* Await valid @other_info. */
|
|
raw_spin_unlock_irqrestore(&report_lock, *flags);
|
|
cpu_relax();
|
|
raw_spin_lock_irqsave(&report_lock, *flags);
|
|
}
|
|
|
|
/* Should always have a matching access based on watchpoint encoding. */
|
|
if (WARN_ON(!matching_access((unsigned long)other_info->ai.ptr & WATCHPOINT_ADDR_MASK, other_info->ai.size,
|
|
(unsigned long)ai->ptr & WATCHPOINT_ADDR_MASK, ai->size)))
|
|
goto discard;
|
|
|
|
if (!matching_access((unsigned long)other_info->ai.ptr, other_info->ai.size,
|
|
(unsigned long)ai->ptr, ai->size)) {
|
|
/*
|
|
* If the actual accesses to not match, this was a false
|
|
* positive due to watchpoint encoding.
|
|
*/
|
|
atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ENCODING_FALSE_POSITIVES]);
|
|
goto discard;
|
|
}
|
|
|
|
return true;
|
|
|
|
discard:
|
|
release_report(flags, other_info);
|
|
return false;
|
|
}
|
|
|
|
static struct access_info prepare_access_info(const volatile void *ptr, size_t size,
|
|
int access_type)
|
|
{
|
|
return (struct access_info) {
|
|
.ptr = ptr,
|
|
.size = size,
|
|
.access_type = access_type,
|
|
.task_pid = in_task() ? task_pid_nr(current) : -1,
|
|
.cpu_id = raw_smp_processor_id()
|
|
};
|
|
}
|
|
|
|
void kcsan_report_set_info(const volatile void *ptr, size_t size, int access_type,
|
|
int watchpoint_idx)
|
|
{
|
|
const struct access_info ai = prepare_access_info(ptr, size, access_type);
|
|
unsigned long flags;
|
|
|
|
kcsan_disable_current();
|
|
lockdep_off(); /* See kcsan_report_known_origin(). */
|
|
|
|
prepare_report_producer(&flags, &ai, &other_infos[watchpoint_idx]);
|
|
|
|
lockdep_on();
|
|
kcsan_enable_current();
|
|
}
|
|
|
|
void kcsan_report_known_origin(const volatile void *ptr, size_t size, int access_type,
|
|
enum kcsan_value_change value_change, int watchpoint_idx,
|
|
u64 old, u64 new, u64 mask)
|
|
{
|
|
const struct access_info ai = prepare_access_info(ptr, size, access_type);
|
|
struct other_info *other_info = &other_infos[watchpoint_idx];
|
|
unsigned long flags = 0;
|
|
|
|
kcsan_disable_current();
|
|
/*
|
|
* Because we may generate reports when we're in scheduler code, the use
|
|
* of printk() could deadlock. Until such time that all printing code
|
|
* called in print_report() is scheduler-safe, accept the risk, and just
|
|
* get our message out. As such, also disable lockdep to hide the
|
|
* warning, and avoid disabling lockdep for the rest of the kernel.
|
|
*/
|
|
lockdep_off();
|
|
|
|
if (!prepare_report_consumer(&flags, &ai, other_info))
|
|
goto out;
|
|
/*
|
|
* Never report if value_change is FALSE, only when it is
|
|
* either TRUE or MAYBE. In case of MAYBE, further filtering may
|
|
* be done once we know the full stack trace in print_report().
|
|
*/
|
|
if (value_change != KCSAN_VALUE_CHANGE_FALSE)
|
|
print_report(value_change, &ai, other_info, old, new, mask);
|
|
|
|
release_report(&flags, other_info);
|
|
out:
|
|
lockdep_on();
|
|
kcsan_enable_current();
|
|
}
|
|
|
|
void kcsan_report_unknown_origin(const volatile void *ptr, size_t size, int access_type,
|
|
u64 old, u64 new, u64 mask)
|
|
{
|
|
const struct access_info ai = prepare_access_info(ptr, size, access_type);
|
|
unsigned long flags;
|
|
|
|
kcsan_disable_current();
|
|
lockdep_off(); /* See kcsan_report_known_origin(). */
|
|
|
|
raw_spin_lock_irqsave(&report_lock, flags);
|
|
print_report(KCSAN_VALUE_CHANGE_TRUE, &ai, NULL, old, new, mask);
|
|
raw_spin_unlock_irqrestore(&report_lock, flags);
|
|
|
|
lockdep_on();
|
|
kcsan_enable_current();
|
|
}
|