Rex Zhu c08770eb8a drm/amdgpu: refine uvd gate logic for CI.
uvd dpm will be controlled by uvd.
dpm just disable uvd dpm in case of suspend when play video.
due to the new logic of uvd_begin_use/end_use,
if disable uvd dpm in late init, will have no chance to
enable uvd dpm after resume until play video again.

Change-Id: I70e3d7efe63edad37f26e6c5ea089da1135c0ab5
Signed-off-by: Rex Zhu <Rex.Zhu@amd.com>
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2016-08-25 12:24:15 -04:00

6665 lines
195 KiB
C

/*
* Copyright 2013 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/firmware.h>
#include "drmP.h"
#include "amdgpu.h"
#include "amdgpu_pm.h"
#include "amdgpu_ucode.h"
#include "cikd.h"
#include "amdgpu_dpm.h"
#include "ci_dpm.h"
#include "gfx_v7_0.h"
#include "atom.h"
#include "amd_pcie.h"
#include <linux/seq_file.h>
#include "smu/smu_7_0_1_d.h"
#include "smu/smu_7_0_1_sh_mask.h"
#include "dce/dce_8_0_d.h"
#include "dce/dce_8_0_sh_mask.h"
#include "bif/bif_4_1_d.h"
#include "bif/bif_4_1_sh_mask.h"
#include "gca/gfx_7_2_d.h"
#include "gca/gfx_7_2_sh_mask.h"
#include "gmc/gmc_7_1_d.h"
#include "gmc/gmc_7_1_sh_mask.h"
MODULE_FIRMWARE("radeon/bonaire_smc.bin");
MODULE_FIRMWARE("radeon/bonaire_k_smc.bin");
MODULE_FIRMWARE("radeon/hawaii_smc.bin");
MODULE_FIRMWARE("radeon/hawaii_k_smc.bin");
#define MC_CG_ARB_FREQ_F0 0x0a
#define MC_CG_ARB_FREQ_F1 0x0b
#define MC_CG_ARB_FREQ_F2 0x0c
#define MC_CG_ARB_FREQ_F3 0x0d
#define SMC_RAM_END 0x40000
#define VOLTAGE_SCALE 4
#define VOLTAGE_VID_OFFSET_SCALE1 625
#define VOLTAGE_VID_OFFSET_SCALE2 100
static const struct ci_pt_defaults defaults_hawaii_xt =
{
1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000,
{ 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 },
{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
};
static const struct ci_pt_defaults defaults_hawaii_pro =
{
1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062,
{ 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 },
{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
};
static const struct ci_pt_defaults defaults_bonaire_xt =
{
1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
{ 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 },
{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
};
#if 0
static const struct ci_pt_defaults defaults_bonaire_pro =
{
1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x65062,
{ 0x8C, 0x23F, 0x244, 0xA6, 0x83, 0x85, 0x86, 0x86, 0x83, 0xDB, 0xDB, 0xDA, 0x67, 0x60, 0x5F },
{ 0x187, 0x193, 0x193, 0x1C7, 0x1D1, 0x1D1, 0x210, 0x219, 0x219, 0x266, 0x26C, 0x26C, 0x2C9, 0x2CB, 0x2CB }
};
#endif
static const struct ci_pt_defaults defaults_saturn_xt =
{
1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
{ 0x8C, 0x247, 0x249, 0xA6, 0x80, 0x81, 0x8B, 0x89, 0x86, 0xC9, 0xCA, 0xC9, 0x4D, 0x4D, 0x4D },
{ 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
};
#if 0
static const struct ci_pt_defaults defaults_saturn_pro =
{
1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x30000,
{ 0x96, 0x21D, 0x23B, 0xA1, 0x85, 0x87, 0x83, 0x84, 0x81, 0xE6, 0xE6, 0xE6, 0x71, 0x6A, 0x6A },
{ 0x193, 0x19E, 0x19E, 0x1D2, 0x1DC, 0x1DC, 0x21A, 0x223, 0x223, 0x26E, 0x27E, 0x274, 0x2CF, 0x2D2, 0x2D2 }
};
#endif
static const struct ci_pt_config_reg didt_config_ci[] =
{
{ 0x10, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x10, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x10, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x10, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x11, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x11, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x11, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x11, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x12, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x12, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x12, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x12, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x2, 0x00003fff, 0, 0x4, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x2, 0x03ff0000, 16, 0x80, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x2, 0x78000000, 27, 0x3, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x1, 0x0000ffff, 0, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x1, 0xffff0000, 16, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x0, 0x00000001, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x30, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x30, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x30, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x30, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x31, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x31, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x31, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x31, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x32, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x32, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x32, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x32, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x22, 0x00003fff, 0, 0x4, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x22, 0x03ff0000, 16, 0x80, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x22, 0x78000000, 27, 0x3, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x21, 0x0000ffff, 0, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x21, 0xffff0000, 16, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x20, 0x00000001, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x50, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x50, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x50, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x50, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x51, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x51, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x51, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x51, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x52, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x52, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x52, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x52, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x42, 0x00003fff, 0, 0x4, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x42, 0x03ff0000, 16, 0x80, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x42, 0x78000000, 27, 0x3, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x41, 0x0000ffff, 0, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x41, 0xffff0000, 16, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x40, 0x00000001, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x70, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x70, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x70, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x70, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x71, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x71, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x71, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x71, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x72, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x72, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x72, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x72, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x62, 0x00003fff, 0, 0x4, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x62, 0x03ff0000, 16, 0x80, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x62, 0x78000000, 27, 0x3, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x61, 0x0000ffff, 0, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x61, 0xffff0000, 16, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x60, 0x00000001, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0xFFFFFFFF }
};
static u8 ci_get_memory_module_index(struct amdgpu_device *adev)
{
return (u8) ((RREG32(mmBIOS_SCRATCH_4) >> 16) & 0xff);
}
#define MC_CG_ARB_FREQ_F0 0x0a
#define MC_CG_ARB_FREQ_F1 0x0b
#define MC_CG_ARB_FREQ_F2 0x0c
#define MC_CG_ARB_FREQ_F3 0x0d
static int ci_copy_and_switch_arb_sets(struct amdgpu_device *adev,
u32 arb_freq_src, u32 arb_freq_dest)
{
u32 mc_arb_dram_timing;
u32 mc_arb_dram_timing2;
u32 burst_time;
u32 mc_cg_config;
switch (arb_freq_src) {
case MC_CG_ARB_FREQ_F0:
mc_arb_dram_timing = RREG32(mmMC_ARB_DRAM_TIMING);
mc_arb_dram_timing2 = RREG32(mmMC_ARB_DRAM_TIMING2);
burst_time = (RREG32(mmMC_ARB_BURST_TIME) & MC_ARB_BURST_TIME__STATE0_MASK) >>
MC_ARB_BURST_TIME__STATE0__SHIFT;
break;
case MC_CG_ARB_FREQ_F1:
mc_arb_dram_timing = RREG32(mmMC_ARB_DRAM_TIMING_1);
mc_arb_dram_timing2 = RREG32(mmMC_ARB_DRAM_TIMING2_1);
burst_time = (RREG32(mmMC_ARB_BURST_TIME) & MC_ARB_BURST_TIME__STATE1_MASK) >>
MC_ARB_BURST_TIME__STATE1__SHIFT;
break;
default:
return -EINVAL;
}
switch (arb_freq_dest) {
case MC_CG_ARB_FREQ_F0:
WREG32(mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
WREG32(mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
WREG32_P(mmMC_ARB_BURST_TIME, (burst_time << MC_ARB_BURST_TIME__STATE0__SHIFT),
~MC_ARB_BURST_TIME__STATE0_MASK);
break;
case MC_CG_ARB_FREQ_F1:
WREG32(mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
WREG32(mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
WREG32_P(mmMC_ARB_BURST_TIME, (burst_time << MC_ARB_BURST_TIME__STATE1__SHIFT),
~MC_ARB_BURST_TIME__STATE1_MASK);
break;
default:
return -EINVAL;
}
mc_cg_config = RREG32(mmMC_CG_CONFIG) | 0x0000000F;
WREG32(mmMC_CG_CONFIG, mc_cg_config);
WREG32_P(mmMC_ARB_CG, (arb_freq_dest) << MC_ARB_CG__CG_ARB_REQ__SHIFT,
~MC_ARB_CG__CG_ARB_REQ_MASK);
return 0;
}
static u8 ci_get_ddr3_mclk_frequency_ratio(u32 memory_clock)
{
u8 mc_para_index;
if (memory_clock < 10000)
mc_para_index = 0;
else if (memory_clock >= 80000)
mc_para_index = 0x0f;
else
mc_para_index = (u8)((memory_clock - 10000) / 5000 + 1);
return mc_para_index;
}
static u8 ci_get_mclk_frequency_ratio(u32 memory_clock, bool strobe_mode)
{
u8 mc_para_index;
if (strobe_mode) {
if (memory_clock < 12500)
mc_para_index = 0x00;
else if (memory_clock > 47500)
mc_para_index = 0x0f;
else
mc_para_index = (u8)((memory_clock - 10000) / 2500);
} else {
if (memory_clock < 65000)
mc_para_index = 0x00;
else if (memory_clock > 135000)
mc_para_index = 0x0f;
else
mc_para_index = (u8)((memory_clock - 60000) / 5000);
}
return mc_para_index;
}
static void ci_trim_voltage_table_to_fit_state_table(struct amdgpu_device *adev,
u32 max_voltage_steps,
struct atom_voltage_table *voltage_table)
{
unsigned int i, diff;
if (voltage_table->count <= max_voltage_steps)
return;
diff = voltage_table->count - max_voltage_steps;
for (i = 0; i < max_voltage_steps; i++)
voltage_table->entries[i] = voltage_table->entries[i + diff];
voltage_table->count = max_voltage_steps;
}
static int ci_get_std_voltage_value_sidd(struct amdgpu_device *adev,
struct atom_voltage_table_entry *voltage_table,
u16 *std_voltage_hi_sidd, u16 *std_voltage_lo_sidd);
static int ci_set_power_limit(struct amdgpu_device *adev, u32 n);
static int ci_set_overdrive_target_tdp(struct amdgpu_device *adev,
u32 target_tdp);
static int ci_update_uvd_dpm(struct amdgpu_device *adev, bool gate);
static void ci_dpm_set_dpm_funcs(struct amdgpu_device *adev);
static void ci_dpm_set_irq_funcs(struct amdgpu_device *adev);
static PPSMC_Result amdgpu_ci_send_msg_to_smc_with_parameter(struct amdgpu_device *adev,
PPSMC_Msg msg, u32 parameter);
static void ci_thermal_start_smc_fan_control(struct amdgpu_device *adev);
static void ci_fan_ctrl_set_default_mode(struct amdgpu_device *adev);
static struct ci_power_info *ci_get_pi(struct amdgpu_device *adev)
{
struct ci_power_info *pi = adev->pm.dpm.priv;
return pi;
}
static struct ci_ps *ci_get_ps(struct amdgpu_ps *rps)
{
struct ci_ps *ps = rps->ps_priv;
return ps;
}
static void ci_initialize_powertune_defaults(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
switch (adev->pdev->device) {
case 0x6649:
case 0x6650:
case 0x6651:
case 0x6658:
case 0x665C:
case 0x665D:
default:
pi->powertune_defaults = &defaults_bonaire_xt;
break;
case 0x6640:
case 0x6641:
case 0x6646:
case 0x6647:
pi->powertune_defaults = &defaults_saturn_xt;
break;
case 0x67B8:
case 0x67B0:
pi->powertune_defaults = &defaults_hawaii_xt;
break;
case 0x67BA:
case 0x67B1:
pi->powertune_defaults = &defaults_hawaii_pro;
break;
case 0x67A0:
case 0x67A1:
case 0x67A2:
case 0x67A8:
case 0x67A9:
case 0x67AA:
case 0x67B9:
case 0x67BE:
pi->powertune_defaults = &defaults_bonaire_xt;
break;
}
pi->dte_tj_offset = 0;
pi->caps_power_containment = true;
pi->caps_cac = false;
pi->caps_sq_ramping = false;
pi->caps_db_ramping = false;
pi->caps_td_ramping = false;
pi->caps_tcp_ramping = false;
if (pi->caps_power_containment) {
pi->caps_cac = true;
if (adev->asic_type == CHIP_HAWAII)
pi->enable_bapm_feature = false;
else
pi->enable_bapm_feature = true;
pi->enable_tdc_limit_feature = true;
pi->enable_pkg_pwr_tracking_feature = true;
}
}
static u8 ci_convert_to_vid(u16 vddc)
{
return (6200 - (vddc * VOLTAGE_SCALE)) / 25;
}
static int ci_populate_bapm_vddc_vid_sidd(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
u8 *hi_vid = pi->smc_powertune_table.BapmVddCVidHiSidd;
u8 *lo_vid = pi->smc_powertune_table.BapmVddCVidLoSidd;
u8 *hi2_vid = pi->smc_powertune_table.BapmVddCVidHiSidd2;
u32 i;
if (adev->pm.dpm.dyn_state.cac_leakage_table.entries == NULL)
return -EINVAL;
if (adev->pm.dpm.dyn_state.cac_leakage_table.count > 8)
return -EINVAL;
if (adev->pm.dpm.dyn_state.cac_leakage_table.count !=
adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count)
return -EINVAL;
for (i = 0; i < adev->pm.dpm.dyn_state.cac_leakage_table.count; i++) {
if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_EVV) {
lo_vid[i] = ci_convert_to_vid(adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc1);
hi_vid[i] = ci_convert_to_vid(adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc2);
hi2_vid[i] = ci_convert_to_vid(adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc3);
} else {
lo_vid[i] = ci_convert_to_vid(adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc);
hi_vid[i] = ci_convert_to_vid((u16)adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].leakage);
}
}
return 0;
}
static int ci_populate_vddc_vid(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
u8 *vid = pi->smc_powertune_table.VddCVid;
u32 i;
if (pi->vddc_voltage_table.count > 8)
return -EINVAL;
for (i = 0; i < pi->vddc_voltage_table.count; i++)
vid[i] = ci_convert_to_vid(pi->vddc_voltage_table.entries[i].value);
return 0;
}
static int ci_populate_svi_load_line(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
const struct ci_pt_defaults *pt_defaults = pi->powertune_defaults;
pi->smc_powertune_table.SviLoadLineEn = pt_defaults->svi_load_line_en;
pi->smc_powertune_table.SviLoadLineVddC = pt_defaults->svi_load_line_vddc;
pi->smc_powertune_table.SviLoadLineTrimVddC = 3;
pi->smc_powertune_table.SviLoadLineOffsetVddC = 0;
return 0;
}
static int ci_populate_tdc_limit(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
const struct ci_pt_defaults *pt_defaults = pi->powertune_defaults;
u16 tdc_limit;
tdc_limit = adev->pm.dpm.dyn_state.cac_tdp_table->tdc * 256;
pi->smc_powertune_table.TDC_VDDC_PkgLimit = cpu_to_be16(tdc_limit);
pi->smc_powertune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
pt_defaults->tdc_vddc_throttle_release_limit_perc;
pi->smc_powertune_table.TDC_MAWt = pt_defaults->tdc_mawt;
return 0;
}
static int ci_populate_dw8(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
const struct ci_pt_defaults *pt_defaults = pi->powertune_defaults;
int ret;
ret = amdgpu_ci_read_smc_sram_dword(adev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, PmFuseTable) +
offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
(u32 *)&pi->smc_powertune_table.TdcWaterfallCtl,
pi->sram_end);
if (ret)
return -EINVAL;
else
pi->smc_powertune_table.TdcWaterfallCtl = pt_defaults->tdc_waterfall_ctl;
return 0;
}
static int ci_populate_fuzzy_fan(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
if ((adev->pm.dpm.fan.fan_output_sensitivity & (1 << 15)) ||
(adev->pm.dpm.fan.fan_output_sensitivity == 0))
adev->pm.dpm.fan.fan_output_sensitivity =
adev->pm.dpm.fan.default_fan_output_sensitivity;
pi->smc_powertune_table.FuzzyFan_PwmSetDelta =
cpu_to_be16(adev->pm.dpm.fan.fan_output_sensitivity);
return 0;
}
static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
u8 *hi_vid = pi->smc_powertune_table.BapmVddCVidHiSidd;
u8 *lo_vid = pi->smc_powertune_table.BapmVddCVidLoSidd;
int i, min, max;
min = max = hi_vid[0];
for (i = 0; i < 8; i++) {
if (0 != hi_vid[i]) {
if (min > hi_vid[i])
min = hi_vid[i];
if (max < hi_vid[i])
max = hi_vid[i];
}
if (0 != lo_vid[i]) {
if (min > lo_vid[i])
min = lo_vid[i];
if (max < lo_vid[i])
max = lo_vid[i];
}
}
if ((min == 0) || (max == 0))
return -EINVAL;
pi->smc_powertune_table.GnbLPMLMaxVid = (u8)max;
pi->smc_powertune_table.GnbLPMLMinVid = (u8)min;
return 0;
}
static int ci_populate_bapm_vddc_base_leakage_sidd(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
u16 hi_sidd = pi->smc_powertune_table.BapmVddCBaseLeakageHiSidd;
u16 lo_sidd = pi->smc_powertune_table.BapmVddCBaseLeakageLoSidd;
struct amdgpu_cac_tdp_table *cac_tdp_table =
adev->pm.dpm.dyn_state.cac_tdp_table;
hi_sidd = cac_tdp_table->high_cac_leakage / 100 * 256;
lo_sidd = cac_tdp_table->low_cac_leakage / 100 * 256;
pi->smc_powertune_table.BapmVddCBaseLeakageHiSidd = cpu_to_be16(hi_sidd);
pi->smc_powertune_table.BapmVddCBaseLeakageLoSidd = cpu_to_be16(lo_sidd);
return 0;
}
static int ci_populate_bapm_parameters_in_dpm_table(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
const struct ci_pt_defaults *pt_defaults = pi->powertune_defaults;
SMU7_Discrete_DpmTable *dpm_table = &pi->smc_state_table;
struct amdgpu_cac_tdp_table *cac_tdp_table =
adev->pm.dpm.dyn_state.cac_tdp_table;
struct amdgpu_ppm_table *ppm = adev->pm.dpm.dyn_state.ppm_table;
int i, j, k;
const u16 *def1;
const u16 *def2;
dpm_table->DefaultTdp = cac_tdp_table->tdp * 256;
dpm_table->TargetTdp = cac_tdp_table->configurable_tdp * 256;
dpm_table->DTETjOffset = (u8)pi->dte_tj_offset;
dpm_table->GpuTjMax =
(u8)(pi->thermal_temp_setting.temperature_high / 1000);
dpm_table->GpuTjHyst = 8;
dpm_table->DTEAmbientTempBase = pt_defaults->dte_ambient_temp_base;
if (ppm) {
dpm_table->PPM_PkgPwrLimit = cpu_to_be16((u16)ppm->dgpu_tdp * 256 / 1000);
dpm_table->PPM_TemperatureLimit = cpu_to_be16((u16)ppm->tj_max * 256);
} else {
dpm_table->PPM_PkgPwrLimit = cpu_to_be16(0);
dpm_table->PPM_TemperatureLimit = cpu_to_be16(0);
}
dpm_table->BAPM_TEMP_GRADIENT = cpu_to_be32(pt_defaults->bapm_temp_gradient);
def1 = pt_defaults->bapmti_r;
def2 = pt_defaults->bapmti_rc;
for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
for (j = 0; j < SMU7_DTE_SOURCES; j++) {
for (k = 0; k < SMU7_DTE_SINKS; k++) {
dpm_table->BAPMTI_R[i][j][k] = cpu_to_be16(*def1);
dpm_table->BAPMTI_RC[i][j][k] = cpu_to_be16(*def2);
def1++;
def2++;
}
}
}
return 0;
}
static int ci_populate_pm_base(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
u32 pm_fuse_table_offset;
int ret;
if (pi->caps_power_containment) {
ret = amdgpu_ci_read_smc_sram_dword(adev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, PmFuseTable),
&pm_fuse_table_offset, pi->sram_end);
if (ret)
return ret;
ret = ci_populate_bapm_vddc_vid_sidd(adev);
if (ret)
return ret;
ret = ci_populate_vddc_vid(adev);
if (ret)
return ret;
ret = ci_populate_svi_load_line(adev);
if (ret)
return ret;
ret = ci_populate_tdc_limit(adev);
if (ret)
return ret;
ret = ci_populate_dw8(adev);
if (ret)
return ret;
ret = ci_populate_fuzzy_fan(adev);
if (ret)
return ret;
ret = ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(adev);
if (ret)
return ret;
ret = ci_populate_bapm_vddc_base_leakage_sidd(adev);
if (ret)
return ret;
ret = amdgpu_ci_copy_bytes_to_smc(adev, pm_fuse_table_offset,
(u8 *)&pi->smc_powertune_table,
sizeof(SMU7_Discrete_PmFuses), pi->sram_end);
if (ret)
return ret;
}
return 0;
}
static void ci_do_enable_didt(struct amdgpu_device *adev, const bool enable)
{
struct ci_power_info *pi = ci_get_pi(adev);
u32 data;
if (pi->caps_sq_ramping) {
data = RREG32_DIDT(ixDIDT_SQ_CTRL0);
if (enable)
data |= DIDT_SQ_CTRL0__DIDT_CTRL_EN_MASK;
else
data &= ~DIDT_SQ_CTRL0__DIDT_CTRL_EN_MASK;
WREG32_DIDT(ixDIDT_SQ_CTRL0, data);
}
if (pi->caps_db_ramping) {
data = RREG32_DIDT(ixDIDT_DB_CTRL0);
if (enable)
data |= DIDT_DB_CTRL0__DIDT_CTRL_EN_MASK;
else
data &= ~DIDT_DB_CTRL0__DIDT_CTRL_EN_MASK;
WREG32_DIDT(ixDIDT_DB_CTRL0, data);
}
if (pi->caps_td_ramping) {
data = RREG32_DIDT(ixDIDT_TD_CTRL0);
if (enable)
data |= DIDT_TD_CTRL0__DIDT_CTRL_EN_MASK;
else
data &= ~DIDT_TD_CTRL0__DIDT_CTRL_EN_MASK;
WREG32_DIDT(ixDIDT_TD_CTRL0, data);
}
if (pi->caps_tcp_ramping) {
data = RREG32_DIDT(ixDIDT_TCP_CTRL0);
if (enable)
data |= DIDT_TCP_CTRL0__DIDT_CTRL_EN_MASK;
else
data &= ~DIDT_TCP_CTRL0__DIDT_CTRL_EN_MASK;
WREG32_DIDT(ixDIDT_TCP_CTRL0, data);
}
}
static int ci_program_pt_config_registers(struct amdgpu_device *adev,
const struct ci_pt_config_reg *cac_config_regs)
{
const struct ci_pt_config_reg *config_regs = cac_config_regs;
u32 data;
u32 cache = 0;
if (config_regs == NULL)
return -EINVAL;
while (config_regs->offset != 0xFFFFFFFF) {
if (config_regs->type == CISLANDS_CONFIGREG_CACHE) {
cache |= ((config_regs->value << config_regs->shift) & config_regs->mask);
} else {
switch (config_regs->type) {
case CISLANDS_CONFIGREG_SMC_IND:
data = RREG32_SMC(config_regs->offset);
break;
case CISLANDS_CONFIGREG_DIDT_IND:
data = RREG32_DIDT(config_regs->offset);
break;
default:
data = RREG32(config_regs->offset);
break;
}
data &= ~config_regs->mask;
data |= ((config_regs->value << config_regs->shift) & config_regs->mask);
data |= cache;
switch (config_regs->type) {
case CISLANDS_CONFIGREG_SMC_IND:
WREG32_SMC(config_regs->offset, data);
break;
case CISLANDS_CONFIGREG_DIDT_IND:
WREG32_DIDT(config_regs->offset, data);
break;
default:
WREG32(config_regs->offset, data);
break;
}
cache = 0;
}
config_regs++;
}
return 0;
}
static int ci_enable_didt(struct amdgpu_device *adev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(adev);
int ret;
if (pi->caps_sq_ramping || pi->caps_db_ramping ||
pi->caps_td_ramping || pi->caps_tcp_ramping) {
adev->gfx.rlc.funcs->enter_safe_mode(adev);
if (enable) {
ret = ci_program_pt_config_registers(adev, didt_config_ci);
if (ret) {
adev->gfx.rlc.funcs->exit_safe_mode(adev);
return ret;
}
}
ci_do_enable_didt(adev, enable);
adev->gfx.rlc.funcs->exit_safe_mode(adev);
}
return 0;
}
static int ci_enable_power_containment(struct amdgpu_device *adev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(adev);
PPSMC_Result smc_result;
int ret = 0;
if (enable) {
pi->power_containment_features = 0;
if (pi->caps_power_containment) {
if (pi->enable_bapm_feature) {
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_EnableDTE);
if (smc_result != PPSMC_Result_OK)
ret = -EINVAL;
else
pi->power_containment_features |= POWERCONTAINMENT_FEATURE_BAPM;
}
if (pi->enable_tdc_limit_feature) {
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_TDCLimitEnable);
if (smc_result != PPSMC_Result_OK)
ret = -EINVAL;
else
pi->power_containment_features |= POWERCONTAINMENT_FEATURE_TDCLimit;
}
if (pi->enable_pkg_pwr_tracking_feature) {
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_PkgPwrLimitEnable);
if (smc_result != PPSMC_Result_OK) {
ret = -EINVAL;
} else {
struct amdgpu_cac_tdp_table *cac_tdp_table =
adev->pm.dpm.dyn_state.cac_tdp_table;
u32 default_pwr_limit =
(u32)(cac_tdp_table->maximum_power_delivery_limit * 256);
pi->power_containment_features |= POWERCONTAINMENT_FEATURE_PkgPwrLimit;
ci_set_power_limit(adev, default_pwr_limit);
}
}
}
} else {
if (pi->caps_power_containment && pi->power_containment_features) {
if (pi->power_containment_features & POWERCONTAINMENT_FEATURE_TDCLimit)
amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_TDCLimitDisable);
if (pi->power_containment_features & POWERCONTAINMENT_FEATURE_BAPM)
amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_DisableDTE);
if (pi->power_containment_features & POWERCONTAINMENT_FEATURE_PkgPwrLimit)
amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_PkgPwrLimitDisable);
pi->power_containment_features = 0;
}
}
return ret;
}
static int ci_enable_smc_cac(struct amdgpu_device *adev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(adev);
PPSMC_Result smc_result;
int ret = 0;
if (pi->caps_cac) {
if (enable) {
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_EnableCac);
if (smc_result != PPSMC_Result_OK) {
ret = -EINVAL;
pi->cac_enabled = false;
} else {
pi->cac_enabled = true;
}
} else if (pi->cac_enabled) {
amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_DisableCac);
pi->cac_enabled = false;
}
}
return ret;
}
static int ci_enable_thermal_based_sclk_dpm(struct amdgpu_device *adev,
bool enable)
{
struct ci_power_info *pi = ci_get_pi(adev);
PPSMC_Result smc_result = PPSMC_Result_OK;
if (pi->thermal_sclk_dpm_enabled) {
if (enable)
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_ENABLE_THERMAL_DPM);
else
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_DISABLE_THERMAL_DPM);
}
if (smc_result == PPSMC_Result_OK)
return 0;
else
return -EINVAL;
}
static int ci_power_control_set_level(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct amdgpu_cac_tdp_table *cac_tdp_table =
adev->pm.dpm.dyn_state.cac_tdp_table;
s32 adjust_percent;
s32 target_tdp;
int ret = 0;
bool adjust_polarity = false; /* ??? */
if (pi->caps_power_containment) {
adjust_percent = adjust_polarity ?
adev->pm.dpm.tdp_adjustment : (-1 * adev->pm.dpm.tdp_adjustment);
target_tdp = ((100 + adjust_percent) *
(s32)cac_tdp_table->configurable_tdp) / 100;
ret = ci_set_overdrive_target_tdp(adev, (u32)target_tdp);
}
return ret;
}
static void ci_dpm_powergate_uvd(struct amdgpu_device *adev, bool gate)
{
struct ci_power_info *pi = ci_get_pi(adev);
if (pi->uvd_power_gated == gate)
return;
pi->uvd_power_gated = gate;
ci_update_uvd_dpm(adev, gate);
}
static bool ci_dpm_vblank_too_short(struct amdgpu_device *adev)
{
u32 vblank_time = amdgpu_dpm_get_vblank_time(adev);
u32 switch_limit = adev->mc.vram_type == AMDGPU_VRAM_TYPE_GDDR5 ? 450 : 300;
if (vblank_time < switch_limit)
return true;
else
return false;
}
static void ci_apply_state_adjust_rules(struct amdgpu_device *adev,
struct amdgpu_ps *rps)
{
struct ci_ps *ps = ci_get_ps(rps);
struct ci_power_info *pi = ci_get_pi(adev);
struct amdgpu_clock_and_voltage_limits *max_limits;
bool disable_mclk_switching;
u32 sclk, mclk;
int i;
if (rps->vce_active) {
rps->evclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].evclk;
rps->ecclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].ecclk;
} else {
rps->evclk = 0;
rps->ecclk = 0;
}
if ((adev->pm.dpm.new_active_crtc_count > 1) ||
ci_dpm_vblank_too_short(adev))
disable_mclk_switching = true;
else
disable_mclk_switching = false;
if ((rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
pi->battery_state = true;
else
pi->battery_state = false;
if (adev->pm.dpm.ac_power)
max_limits = &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
else
max_limits = &adev->pm.dpm.dyn_state.max_clock_voltage_on_dc;
if (adev->pm.dpm.ac_power == false) {
for (i = 0; i < ps->performance_level_count; i++) {
if (ps->performance_levels[i].mclk > max_limits->mclk)
ps->performance_levels[i].mclk = max_limits->mclk;
if (ps->performance_levels[i].sclk > max_limits->sclk)
ps->performance_levels[i].sclk = max_limits->sclk;
}
}
/* XXX validate the min clocks required for display */
if (disable_mclk_switching) {
mclk = ps->performance_levels[ps->performance_level_count - 1].mclk;
sclk = ps->performance_levels[0].sclk;
} else {
mclk = ps->performance_levels[0].mclk;
sclk = ps->performance_levels[0].sclk;
}
if (rps->vce_active) {
if (sclk < adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].sclk)
sclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].sclk;
if (mclk < adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].mclk)
mclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].mclk;
}
ps->performance_levels[0].sclk = sclk;
ps->performance_levels[0].mclk = mclk;
if (ps->performance_levels[1].sclk < ps->performance_levels[0].sclk)
ps->performance_levels[1].sclk = ps->performance_levels[0].sclk;
if (disable_mclk_switching) {
if (ps->performance_levels[0].mclk < ps->performance_levels[1].mclk)
ps->performance_levels[0].mclk = ps->performance_levels[1].mclk;
} else {
if (ps->performance_levels[1].mclk < ps->performance_levels[0].mclk)
ps->performance_levels[1].mclk = ps->performance_levels[0].mclk;
}
}
static int ci_thermal_set_temperature_range(struct amdgpu_device *adev,
int min_temp, int max_temp)
{
int low_temp = 0 * 1000;
int high_temp = 255 * 1000;
u32 tmp;
if (low_temp < min_temp)
low_temp = min_temp;
if (high_temp > max_temp)
high_temp = max_temp;
if (high_temp < low_temp) {
DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
return -EINVAL;
}
tmp = RREG32_SMC(ixCG_THERMAL_INT);
tmp &= ~(CG_THERMAL_INT__DIG_THERM_INTH_MASK | CG_THERMAL_INT__DIG_THERM_INTL_MASK);
tmp |= ((high_temp / 1000) << CG_THERMAL_INT__DIG_THERM_INTH__SHIFT) |
((low_temp / 1000)) << CG_THERMAL_INT__DIG_THERM_INTL__SHIFT;
WREG32_SMC(ixCG_THERMAL_INT, tmp);
#if 0
/* XXX: need to figure out how to handle this properly */
tmp = RREG32_SMC(ixCG_THERMAL_CTRL);
tmp &= DIG_THERM_DPM_MASK;
tmp |= DIG_THERM_DPM(high_temp / 1000);
WREG32_SMC(ixCG_THERMAL_CTRL, tmp);
#endif
adev->pm.dpm.thermal.min_temp = low_temp;
adev->pm.dpm.thermal.max_temp = high_temp;
return 0;
}
static int ci_thermal_enable_alert(struct amdgpu_device *adev,
bool enable)
{
u32 thermal_int = RREG32_SMC(ixCG_THERMAL_INT);
PPSMC_Result result;
if (enable) {
thermal_int &= ~(CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK |
CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK);
WREG32_SMC(ixCG_THERMAL_INT, thermal_int);
result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_Thermal_Cntl_Enable);
if (result != PPSMC_Result_OK) {
DRM_DEBUG_KMS("Could not enable thermal interrupts.\n");
return -EINVAL;
}
} else {
thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK |
CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
WREG32_SMC(ixCG_THERMAL_INT, thermal_int);
result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_Thermal_Cntl_Disable);
if (result != PPSMC_Result_OK) {
DRM_DEBUG_KMS("Could not disable thermal interrupts.\n");
return -EINVAL;
}
}
return 0;
}
static void ci_fan_ctrl_set_static_mode(struct amdgpu_device *adev, u32 mode)
{
struct ci_power_info *pi = ci_get_pi(adev);
u32 tmp;
if (pi->fan_ctrl_is_in_default_mode) {
tmp = (RREG32_SMC(ixCG_FDO_CTRL2) & CG_FDO_CTRL2__FDO_PWM_MODE_MASK)
>> CG_FDO_CTRL2__FDO_PWM_MODE__SHIFT;
pi->fan_ctrl_default_mode = tmp;
tmp = (RREG32_SMC(ixCG_FDO_CTRL2) & CG_FDO_CTRL2__TMIN_MASK)
>> CG_FDO_CTRL2__TMIN__SHIFT;
pi->t_min = tmp;
pi->fan_ctrl_is_in_default_mode = false;
}
tmp = RREG32_SMC(ixCG_FDO_CTRL2) & ~CG_FDO_CTRL2__TMIN_MASK;
tmp |= 0 << CG_FDO_CTRL2__TMIN__SHIFT;
WREG32_SMC(ixCG_FDO_CTRL2, tmp);
tmp = RREG32_SMC(ixCG_FDO_CTRL2) & ~CG_FDO_CTRL2__FDO_PWM_MODE_MASK;
tmp |= mode << CG_FDO_CTRL2__FDO_PWM_MODE__SHIFT;
WREG32_SMC(ixCG_FDO_CTRL2, tmp);
}
static int ci_thermal_setup_fan_table(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
u32 duty100;
u32 t_diff1, t_diff2, pwm_diff1, pwm_diff2;
u16 fdo_min, slope1, slope2;
u32 reference_clock, tmp;
int ret;
u64 tmp64;
if (!pi->fan_table_start) {
adev->pm.dpm.fan.ucode_fan_control = false;
return 0;
}
duty100 = (RREG32_SMC(ixCG_FDO_CTRL1) & CG_FDO_CTRL1__FMAX_DUTY100_MASK)
>> CG_FDO_CTRL1__FMAX_DUTY100__SHIFT;
if (duty100 == 0) {
adev->pm.dpm.fan.ucode_fan_control = false;
return 0;
}
tmp64 = (u64)adev->pm.dpm.fan.pwm_min * duty100;
do_div(tmp64, 10000);
fdo_min = (u16)tmp64;
t_diff1 = adev->pm.dpm.fan.t_med - adev->pm.dpm.fan.t_min;
t_diff2 = adev->pm.dpm.fan.t_high - adev->pm.dpm.fan.t_med;
pwm_diff1 = adev->pm.dpm.fan.pwm_med - adev->pm.dpm.fan.pwm_min;
pwm_diff2 = adev->pm.dpm.fan.pwm_high - adev->pm.dpm.fan.pwm_med;
slope1 = (u16)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
slope2 = (u16)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
fan_table.TempMin = cpu_to_be16((50 + adev->pm.dpm.fan.t_min) / 100);
fan_table.TempMed = cpu_to_be16((50 + adev->pm.dpm.fan.t_med) / 100);
fan_table.TempMax = cpu_to_be16((50 + adev->pm.dpm.fan.t_max) / 100);
fan_table.Slope1 = cpu_to_be16(slope1);
fan_table.Slope2 = cpu_to_be16(slope2);
fan_table.FdoMin = cpu_to_be16(fdo_min);
fan_table.HystDown = cpu_to_be16(adev->pm.dpm.fan.t_hyst);
fan_table.HystUp = cpu_to_be16(1);
fan_table.HystSlope = cpu_to_be16(1);
fan_table.TempRespLim = cpu_to_be16(5);
reference_clock = amdgpu_asic_get_xclk(adev);
fan_table.RefreshPeriod = cpu_to_be32((adev->pm.dpm.fan.cycle_delay *
reference_clock) / 1600);
fan_table.FdoMax = cpu_to_be16((u16)duty100);
tmp = (RREG32_SMC(ixCG_MULT_THERMAL_CTRL) & CG_MULT_THERMAL_CTRL__TEMP_SEL_MASK)
>> CG_MULT_THERMAL_CTRL__TEMP_SEL__SHIFT;
fan_table.TempSrc = (uint8_t)tmp;
ret = amdgpu_ci_copy_bytes_to_smc(adev,
pi->fan_table_start,
(u8 *)(&fan_table),
sizeof(fan_table),
pi->sram_end);
if (ret) {
DRM_ERROR("Failed to load fan table to the SMC.");
adev->pm.dpm.fan.ucode_fan_control = false;
}
return 0;
}
static int ci_fan_ctrl_start_smc_fan_control(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
PPSMC_Result ret;
if (pi->caps_od_fuzzy_fan_control_support) {
ret = amdgpu_ci_send_msg_to_smc_with_parameter(adev,
PPSMC_StartFanControl,
FAN_CONTROL_FUZZY);
if (ret != PPSMC_Result_OK)
return -EINVAL;
ret = amdgpu_ci_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetFanPwmMax,
adev->pm.dpm.fan.default_max_fan_pwm);
if (ret != PPSMC_Result_OK)
return -EINVAL;
} else {
ret = amdgpu_ci_send_msg_to_smc_with_parameter(adev,
PPSMC_StartFanControl,
FAN_CONTROL_TABLE);
if (ret != PPSMC_Result_OK)
return -EINVAL;
}
pi->fan_is_controlled_by_smc = true;
return 0;
}
static int ci_fan_ctrl_stop_smc_fan_control(struct amdgpu_device *adev)
{
PPSMC_Result ret;
struct ci_power_info *pi = ci_get_pi(adev);
ret = amdgpu_ci_send_msg_to_smc(adev, PPSMC_StopFanControl);
if (ret == PPSMC_Result_OK) {
pi->fan_is_controlled_by_smc = false;
return 0;
} else {
return -EINVAL;
}
}
static int ci_dpm_get_fan_speed_percent(struct amdgpu_device *adev,
u32 *speed)
{
u32 duty, duty100;
u64 tmp64;
if (adev->pm.no_fan)
return -ENOENT;
duty100 = (RREG32_SMC(ixCG_FDO_CTRL1) & CG_FDO_CTRL1__FMAX_DUTY100_MASK)
>> CG_FDO_CTRL1__FMAX_DUTY100__SHIFT;
duty = (RREG32_SMC(ixCG_THERMAL_STATUS) & CG_THERMAL_STATUS__FDO_PWM_DUTY_MASK)
>> CG_THERMAL_STATUS__FDO_PWM_DUTY__SHIFT;
if (duty100 == 0)
return -EINVAL;
tmp64 = (u64)duty * 100;
do_div(tmp64, duty100);
*speed = (u32)tmp64;
if (*speed > 100)
*speed = 100;
return 0;
}
static int ci_dpm_set_fan_speed_percent(struct amdgpu_device *adev,
u32 speed)
{
u32 tmp;
u32 duty, duty100;
u64 tmp64;
struct ci_power_info *pi = ci_get_pi(adev);
if (adev->pm.no_fan)
return -ENOENT;
if (pi->fan_is_controlled_by_smc)
return -EINVAL;
if (speed > 100)
return -EINVAL;
duty100 = (RREG32_SMC(ixCG_FDO_CTRL1) & CG_FDO_CTRL1__FMAX_DUTY100_MASK)
>> CG_FDO_CTRL1__FMAX_DUTY100__SHIFT;
if (duty100 == 0)
return -EINVAL;
tmp64 = (u64)speed * duty100;
do_div(tmp64, 100);
duty = (u32)tmp64;
tmp = RREG32_SMC(ixCG_FDO_CTRL0) & ~CG_FDO_CTRL0__FDO_STATIC_DUTY_MASK;
tmp |= duty << CG_FDO_CTRL0__FDO_STATIC_DUTY__SHIFT;
WREG32_SMC(ixCG_FDO_CTRL0, tmp);
return 0;
}
static void ci_dpm_set_fan_control_mode(struct amdgpu_device *adev, u32 mode)
{
if (mode) {
/* stop auto-manage */
if (adev->pm.dpm.fan.ucode_fan_control)
ci_fan_ctrl_stop_smc_fan_control(adev);
ci_fan_ctrl_set_static_mode(adev, mode);
} else {
/* restart auto-manage */
if (adev->pm.dpm.fan.ucode_fan_control)
ci_thermal_start_smc_fan_control(adev);
else
ci_fan_ctrl_set_default_mode(adev);
}
}
static u32 ci_dpm_get_fan_control_mode(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
u32 tmp;
if (pi->fan_is_controlled_by_smc)
return 0;
tmp = RREG32_SMC(ixCG_FDO_CTRL2) & CG_FDO_CTRL2__FDO_PWM_MODE_MASK;
return (tmp >> CG_FDO_CTRL2__FDO_PWM_MODE__SHIFT);
}
#if 0
static int ci_fan_ctrl_get_fan_speed_rpm(struct amdgpu_device *adev,
u32 *speed)
{
u32 tach_period;
u32 xclk = amdgpu_asic_get_xclk(adev);
if (adev->pm.no_fan)
return -ENOENT;
if (adev->pm.fan_pulses_per_revolution == 0)
return -ENOENT;
tach_period = (RREG32_SMC(ixCG_TACH_STATUS) & CG_TACH_STATUS__TACH_PERIOD_MASK)
>> CG_TACH_STATUS__TACH_PERIOD__SHIFT;
if (tach_period == 0)
return -ENOENT;
*speed = 60 * xclk * 10000 / tach_period;
return 0;
}
static int ci_fan_ctrl_set_fan_speed_rpm(struct amdgpu_device *adev,
u32 speed)
{
u32 tach_period, tmp;
u32 xclk = amdgpu_asic_get_xclk(adev);
if (adev->pm.no_fan)
return -ENOENT;
if (adev->pm.fan_pulses_per_revolution == 0)
return -ENOENT;
if ((speed < adev->pm.fan_min_rpm) ||
(speed > adev->pm.fan_max_rpm))
return -EINVAL;
if (adev->pm.dpm.fan.ucode_fan_control)
ci_fan_ctrl_stop_smc_fan_control(adev);
tach_period = 60 * xclk * 10000 / (8 * speed);
tmp = RREG32_SMC(ixCG_TACH_CTRL) & ~CG_TACH_CTRL__TARGET_PERIOD_MASK;
tmp |= tach_period << CG_TACH_CTRL__TARGET_PERIOD__SHIFT;
WREG32_SMC(CG_TACH_CTRL, tmp);
ci_fan_ctrl_set_static_mode(adev, FDO_PWM_MODE_STATIC_RPM);
return 0;
}
#endif
static void ci_fan_ctrl_set_default_mode(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
u32 tmp;
if (!pi->fan_ctrl_is_in_default_mode) {
tmp = RREG32_SMC(ixCG_FDO_CTRL2) & ~CG_FDO_CTRL2__FDO_PWM_MODE_MASK;
tmp |= pi->fan_ctrl_default_mode << CG_FDO_CTRL2__FDO_PWM_MODE__SHIFT;
WREG32_SMC(ixCG_FDO_CTRL2, tmp);
tmp = RREG32_SMC(ixCG_FDO_CTRL2) & ~CG_FDO_CTRL2__TMIN_MASK;
tmp |= pi->t_min << CG_FDO_CTRL2__TMIN__SHIFT;
WREG32_SMC(ixCG_FDO_CTRL2, tmp);
pi->fan_ctrl_is_in_default_mode = true;
}
}
static void ci_thermal_start_smc_fan_control(struct amdgpu_device *adev)
{
if (adev->pm.dpm.fan.ucode_fan_control) {
ci_fan_ctrl_start_smc_fan_control(adev);
ci_fan_ctrl_set_static_mode(adev, FDO_PWM_MODE_STATIC);
}
}
static void ci_thermal_initialize(struct amdgpu_device *adev)
{
u32 tmp;
if (adev->pm.fan_pulses_per_revolution) {
tmp = RREG32_SMC(ixCG_TACH_CTRL) & ~CG_TACH_CTRL__EDGE_PER_REV_MASK;
tmp |= (adev->pm.fan_pulses_per_revolution - 1)
<< CG_TACH_CTRL__EDGE_PER_REV__SHIFT;
WREG32_SMC(ixCG_TACH_CTRL, tmp);
}
tmp = RREG32_SMC(ixCG_FDO_CTRL2) & ~CG_FDO_CTRL2__TACH_PWM_RESP_RATE_MASK;
tmp |= 0x28 << CG_FDO_CTRL2__TACH_PWM_RESP_RATE__SHIFT;
WREG32_SMC(ixCG_FDO_CTRL2, tmp);
}
static int ci_thermal_start_thermal_controller(struct amdgpu_device *adev)
{
int ret;
ci_thermal_initialize(adev);
ret = ci_thermal_set_temperature_range(adev, CISLANDS_TEMP_RANGE_MIN, CISLANDS_TEMP_RANGE_MAX);
if (ret)
return ret;
ret = ci_thermal_enable_alert(adev, true);
if (ret)
return ret;
if (adev->pm.dpm.fan.ucode_fan_control) {
ret = ci_thermal_setup_fan_table(adev);
if (ret)
return ret;
ci_thermal_start_smc_fan_control(adev);
}
return 0;
}
static void ci_thermal_stop_thermal_controller(struct amdgpu_device *adev)
{
if (!adev->pm.no_fan)
ci_fan_ctrl_set_default_mode(adev);
}
static int ci_read_smc_soft_register(struct amdgpu_device *adev,
u16 reg_offset, u32 *value)
{
struct ci_power_info *pi = ci_get_pi(adev);
return amdgpu_ci_read_smc_sram_dword(adev,
pi->soft_regs_start + reg_offset,
value, pi->sram_end);
}
static int ci_write_smc_soft_register(struct amdgpu_device *adev,
u16 reg_offset, u32 value)
{
struct ci_power_info *pi = ci_get_pi(adev);
return amdgpu_ci_write_smc_sram_dword(adev,
pi->soft_regs_start + reg_offset,
value, pi->sram_end);
}
static void ci_init_fps_limits(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
SMU7_Discrete_DpmTable *table = &pi->smc_state_table;
if (pi->caps_fps) {
u16 tmp;
tmp = 45;
table->FpsHighT = cpu_to_be16(tmp);
tmp = 30;
table->FpsLowT = cpu_to_be16(tmp);
}
}
static int ci_update_sclk_t(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
int ret = 0;
u32 low_sclk_interrupt_t = 0;
if (pi->caps_sclk_throttle_low_notification) {
low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t);
ret = amdgpu_ci_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT),
(u8 *)&low_sclk_interrupt_t,
sizeof(u32), pi->sram_end);
}
return ret;
}
static void ci_get_leakage_voltages(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
u16 leakage_id, virtual_voltage_id;
u16 vddc, vddci;
int i;
pi->vddc_leakage.count = 0;
pi->vddci_leakage.count = 0;
if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_EVV) {
for (i = 0; i < CISLANDS_MAX_LEAKAGE_COUNT; i++) {
virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
if (amdgpu_atombios_get_voltage_evv(adev, virtual_voltage_id, &vddc) != 0)
continue;
if (vddc != 0 && vddc != virtual_voltage_id) {
pi->vddc_leakage.actual_voltage[pi->vddc_leakage.count] = vddc;
pi->vddc_leakage.leakage_id[pi->vddc_leakage.count] = virtual_voltage_id;
pi->vddc_leakage.count++;
}
}
} else if (amdgpu_atombios_get_leakage_id_from_vbios(adev, &leakage_id) == 0) {
for (i = 0; i < CISLANDS_MAX_LEAKAGE_COUNT; i++) {
virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
if (amdgpu_atombios_get_leakage_vddc_based_on_leakage_params(adev, &vddc, &vddci,
virtual_voltage_id,
leakage_id) == 0) {
if (vddc != 0 && vddc != virtual_voltage_id) {
pi->vddc_leakage.actual_voltage[pi->vddc_leakage.count] = vddc;
pi->vddc_leakage.leakage_id[pi->vddc_leakage.count] = virtual_voltage_id;
pi->vddc_leakage.count++;
}
if (vddci != 0 && vddci != virtual_voltage_id) {
pi->vddci_leakage.actual_voltage[pi->vddci_leakage.count] = vddci;
pi->vddci_leakage.leakage_id[pi->vddci_leakage.count] = virtual_voltage_id;
pi->vddci_leakage.count++;
}
}
}
}
}
static void ci_set_dpm_event_sources(struct amdgpu_device *adev, u32 sources)
{
struct ci_power_info *pi = ci_get_pi(adev);
bool want_thermal_protection;
enum amdgpu_dpm_event_src dpm_event_src;
u32 tmp;
switch (sources) {
case 0:
default:
want_thermal_protection = false;
break;
case (1 << AMDGPU_DPM_AUTO_THROTTLE_SRC_THERMAL):
want_thermal_protection = true;
dpm_event_src = AMDGPU_DPM_EVENT_SRC_DIGITAL;
break;
case (1 << AMDGPU_DPM_AUTO_THROTTLE_SRC_EXTERNAL):
want_thermal_protection = true;
dpm_event_src = AMDGPU_DPM_EVENT_SRC_EXTERNAL;
break;
case ((1 << AMDGPU_DPM_AUTO_THROTTLE_SRC_EXTERNAL) |
(1 << AMDGPU_DPM_AUTO_THROTTLE_SRC_THERMAL)):
want_thermal_protection = true;
dpm_event_src = AMDGPU_DPM_EVENT_SRC_DIGIAL_OR_EXTERNAL;
break;
}
if (want_thermal_protection) {
#if 0
/* XXX: need to figure out how to handle this properly */
tmp = RREG32_SMC(ixCG_THERMAL_CTRL);
tmp &= DPM_EVENT_SRC_MASK;
tmp |= DPM_EVENT_SRC(dpm_event_src);
WREG32_SMC(ixCG_THERMAL_CTRL, tmp);
#endif
tmp = RREG32_SMC(ixGENERAL_PWRMGT);
if (pi->thermal_protection)
tmp &= ~GENERAL_PWRMGT__THERMAL_PROTECTION_DIS_MASK;
else
tmp |= GENERAL_PWRMGT__THERMAL_PROTECTION_DIS_MASK;
WREG32_SMC(ixGENERAL_PWRMGT, tmp);
} else {
tmp = RREG32_SMC(ixGENERAL_PWRMGT);
tmp |= GENERAL_PWRMGT__THERMAL_PROTECTION_DIS_MASK;
WREG32_SMC(ixGENERAL_PWRMGT, tmp);
}
}
static void ci_enable_auto_throttle_source(struct amdgpu_device *adev,
enum amdgpu_dpm_auto_throttle_src source,
bool enable)
{
struct ci_power_info *pi = ci_get_pi(adev);
if (enable) {
if (!(pi->active_auto_throttle_sources & (1 << source))) {
pi->active_auto_throttle_sources |= 1 << source;
ci_set_dpm_event_sources(adev, pi->active_auto_throttle_sources);
}
} else {
if (pi->active_auto_throttle_sources & (1 << source)) {
pi->active_auto_throttle_sources &= ~(1 << source);
ci_set_dpm_event_sources(adev, pi->active_auto_throttle_sources);
}
}
}
static void ci_enable_vr_hot_gpio_interrupt(struct amdgpu_device *adev)
{
if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_REGULATOR_HOT)
amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_EnableVRHotGPIOInterrupt);
}
static int ci_unfreeze_sclk_mclk_dpm(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
PPSMC_Result smc_result;
if (!pi->need_update_smu7_dpm_table)
return 0;
if ((!pi->sclk_dpm_key_disabled) &&
(pi->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) {
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_SCLKDPM_UnfreezeLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
if ((!pi->mclk_dpm_key_disabled) &&
(pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_MCLKDPM_UnfreezeLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
pi->need_update_smu7_dpm_table = 0;
return 0;
}
static int ci_enable_sclk_mclk_dpm(struct amdgpu_device *adev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(adev);
PPSMC_Result smc_result;
if (enable) {
if (!pi->sclk_dpm_key_disabled) {
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_DPM_Enable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
if (!pi->mclk_dpm_key_disabled) {
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_MCLKDPM_Enable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
WREG32_P(mmMC_SEQ_CNTL_3, MC_SEQ_CNTL_3__CAC_EN_MASK,
~MC_SEQ_CNTL_3__CAC_EN_MASK);
WREG32_SMC(ixLCAC_MC0_CNTL, 0x05);
WREG32_SMC(ixLCAC_MC1_CNTL, 0x05);
WREG32_SMC(ixLCAC_CPL_CNTL, 0x100005);
udelay(10);
WREG32_SMC(ixLCAC_MC0_CNTL, 0x400005);
WREG32_SMC(ixLCAC_MC1_CNTL, 0x400005);
WREG32_SMC(ixLCAC_CPL_CNTL, 0x500005);
}
} else {
if (!pi->sclk_dpm_key_disabled) {
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_DPM_Disable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
if (!pi->mclk_dpm_key_disabled) {
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_MCLKDPM_Disable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
}
return 0;
}
static int ci_start_dpm(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
PPSMC_Result smc_result;
int ret;
u32 tmp;
tmp = RREG32_SMC(ixGENERAL_PWRMGT);
tmp |= GENERAL_PWRMGT__GLOBAL_PWRMGT_EN_MASK;
WREG32_SMC(ixGENERAL_PWRMGT, tmp);
tmp = RREG32_SMC(ixSCLK_PWRMGT_CNTL);
tmp |= SCLK_PWRMGT_CNTL__DYNAMIC_PM_EN_MASK;
WREG32_SMC(ixSCLK_PWRMGT_CNTL, tmp);
ci_write_smc_soft_register(adev, offsetof(SMU7_SoftRegisters, VoltageChangeTimeout), 0x1000);
WREG32_P(mmBIF_LNCNT_RESET, 0, ~BIF_LNCNT_RESET__RESET_LNCNT_EN_MASK);
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_Voltage_Cntl_Enable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
ret = ci_enable_sclk_mclk_dpm(adev, true);
if (ret)
return ret;
if (!pi->pcie_dpm_key_disabled) {
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_PCIeDPM_Enable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_freeze_sclk_mclk_dpm(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
PPSMC_Result smc_result;
if (!pi->need_update_smu7_dpm_table)
return 0;
if ((!pi->sclk_dpm_key_disabled) &&
(pi->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) {
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_SCLKDPM_FreezeLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
if ((!pi->mclk_dpm_key_disabled) &&
(pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_MCLKDPM_FreezeLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_stop_dpm(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
PPSMC_Result smc_result;
int ret;
u32 tmp;
tmp = RREG32_SMC(ixGENERAL_PWRMGT);
tmp &= ~GENERAL_PWRMGT__GLOBAL_PWRMGT_EN_MASK;
WREG32_SMC(ixGENERAL_PWRMGT, tmp);
tmp = RREG32_SMC(ixSCLK_PWRMGT_CNTL);
tmp &= ~SCLK_PWRMGT_CNTL__DYNAMIC_PM_EN_MASK;
WREG32_SMC(ixSCLK_PWRMGT_CNTL, tmp);
if (!pi->pcie_dpm_key_disabled) {
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_PCIeDPM_Disable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
ret = ci_enable_sclk_mclk_dpm(adev, false);
if (ret)
return ret;
smc_result = amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_Voltage_Cntl_Disable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
return 0;
}
static void ci_enable_sclk_control(struct amdgpu_device *adev, bool enable)
{
u32 tmp = RREG32_SMC(ixSCLK_PWRMGT_CNTL);
if (enable)
tmp &= ~SCLK_PWRMGT_CNTL__SCLK_PWRMGT_OFF_MASK;
else
tmp |= SCLK_PWRMGT_CNTL__SCLK_PWRMGT_OFF_MASK;
WREG32_SMC(ixSCLK_PWRMGT_CNTL, tmp);
}
#if 0
static int ci_notify_hw_of_power_source(struct amdgpu_device *adev,
bool ac_power)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct amdgpu_cac_tdp_table *cac_tdp_table =
adev->pm.dpm.dyn_state.cac_tdp_table;
u32 power_limit;
if (ac_power)
power_limit = (u32)(cac_tdp_table->maximum_power_delivery_limit * 256);
else
power_limit = (u32)(cac_tdp_table->battery_power_limit * 256);
ci_set_power_limit(adev, power_limit);
if (pi->caps_automatic_dc_transition) {
if (ac_power)
amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_RunningOnAC);
else
amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_Remove_DC_Clamp);
}
return 0;
}
#endif
static PPSMC_Result amdgpu_ci_send_msg_to_smc_with_parameter(struct amdgpu_device *adev,
PPSMC_Msg msg, u32 parameter)
{
WREG32(mmSMC_MSG_ARG_0, parameter);
return amdgpu_ci_send_msg_to_smc(adev, msg);
}
static PPSMC_Result amdgpu_ci_send_msg_to_smc_return_parameter(struct amdgpu_device *adev,
PPSMC_Msg msg, u32 *parameter)
{
PPSMC_Result smc_result;
smc_result = amdgpu_ci_send_msg_to_smc(adev, msg);
if ((smc_result == PPSMC_Result_OK) && parameter)
*parameter = RREG32(mmSMC_MSG_ARG_0);
return smc_result;
}
static int ci_dpm_force_state_sclk(struct amdgpu_device *adev, u32 n)
{
struct ci_power_info *pi = ci_get_pi(adev);
if (!pi->sclk_dpm_key_disabled) {
PPSMC_Result smc_result =
amdgpu_ci_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_SCLKDPM_SetEnabledMask, 1 << n);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_dpm_force_state_mclk(struct amdgpu_device *adev, u32 n)
{
struct ci_power_info *pi = ci_get_pi(adev);
if (!pi->mclk_dpm_key_disabled) {
PPSMC_Result smc_result =
amdgpu_ci_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_MCLKDPM_SetEnabledMask, 1 << n);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_dpm_force_state_pcie(struct amdgpu_device *adev, u32 n)
{
struct ci_power_info *pi = ci_get_pi(adev);
if (!pi->pcie_dpm_key_disabled) {
PPSMC_Result smc_result =
amdgpu_ci_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_PCIeDPM_ForceLevel, n);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_set_power_limit(struct amdgpu_device *adev, u32 n)
{
struct ci_power_info *pi = ci_get_pi(adev);
if (pi->power_containment_features & POWERCONTAINMENT_FEATURE_PkgPwrLimit) {
PPSMC_Result smc_result =
amdgpu_ci_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_PkgPwrSetLimit, n);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_set_overdrive_target_tdp(struct amdgpu_device *adev,
u32 target_tdp)
{
PPSMC_Result smc_result =
amdgpu_ci_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_OverDriveSetTargetTdp, target_tdp);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
return 0;
}
#if 0
static int ci_set_boot_state(struct amdgpu_device *adev)
{
return ci_enable_sclk_mclk_dpm(adev, false);
}
#endif
static u32 ci_get_average_sclk_freq(struct amdgpu_device *adev)
{
u32 sclk_freq;
PPSMC_Result smc_result =
amdgpu_ci_send_msg_to_smc_return_parameter(adev,
PPSMC_MSG_API_GetSclkFrequency,
&sclk_freq);
if (smc_result != PPSMC_Result_OK)
sclk_freq = 0;
return sclk_freq;
}
static u32 ci_get_average_mclk_freq(struct amdgpu_device *adev)
{
u32 mclk_freq;
PPSMC_Result smc_result =
amdgpu_ci_send_msg_to_smc_return_parameter(adev,
PPSMC_MSG_API_GetMclkFrequency,
&mclk_freq);
if (smc_result != PPSMC_Result_OK)
mclk_freq = 0;
return mclk_freq;
}
static void ci_dpm_start_smc(struct amdgpu_device *adev)
{
int i;
amdgpu_ci_program_jump_on_start(adev);
amdgpu_ci_start_smc_clock(adev);
amdgpu_ci_start_smc(adev);
for (i = 0; i < adev->usec_timeout; i++) {
if (RREG32_SMC(ixFIRMWARE_FLAGS) & FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK)
break;
}
}
static void ci_dpm_stop_smc(struct amdgpu_device *adev)
{
amdgpu_ci_reset_smc(adev);
amdgpu_ci_stop_smc_clock(adev);
}
static int ci_process_firmware_header(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
u32 tmp;
int ret;
ret = amdgpu_ci_read_smc_sram_dword(adev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, DpmTable),
&tmp, pi->sram_end);
if (ret)
return ret;
pi->dpm_table_start = tmp;
ret = amdgpu_ci_read_smc_sram_dword(adev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, SoftRegisters),
&tmp, pi->sram_end);
if (ret)
return ret;
pi->soft_regs_start = tmp;
ret = amdgpu_ci_read_smc_sram_dword(adev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, mcRegisterTable),
&tmp, pi->sram_end);
if (ret)
return ret;
pi->mc_reg_table_start = tmp;
ret = amdgpu_ci_read_smc_sram_dword(adev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, FanTable),
&tmp, pi->sram_end);
if (ret)
return ret;
pi->fan_table_start = tmp;
ret = amdgpu_ci_read_smc_sram_dword(adev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
&tmp, pi->sram_end);
if (ret)
return ret;
pi->arb_table_start = tmp;
return 0;
}
static void ci_read_clock_registers(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
pi->clock_registers.cg_spll_func_cntl =
RREG32_SMC(ixCG_SPLL_FUNC_CNTL);
pi->clock_registers.cg_spll_func_cntl_2 =
RREG32_SMC(ixCG_SPLL_FUNC_CNTL_2);
pi->clock_registers.cg_spll_func_cntl_3 =
RREG32_SMC(ixCG_SPLL_FUNC_CNTL_3);
pi->clock_registers.cg_spll_func_cntl_4 =
RREG32_SMC(ixCG_SPLL_FUNC_CNTL_4);
pi->clock_registers.cg_spll_spread_spectrum =
RREG32_SMC(ixCG_SPLL_SPREAD_SPECTRUM);
pi->clock_registers.cg_spll_spread_spectrum_2 =
RREG32_SMC(ixCG_SPLL_SPREAD_SPECTRUM_2);
pi->clock_registers.dll_cntl = RREG32(mmDLL_CNTL);
pi->clock_registers.mclk_pwrmgt_cntl = RREG32(mmMCLK_PWRMGT_CNTL);
pi->clock_registers.mpll_ad_func_cntl = RREG32(mmMPLL_AD_FUNC_CNTL);
pi->clock_registers.mpll_dq_func_cntl = RREG32(mmMPLL_DQ_FUNC_CNTL);
pi->clock_registers.mpll_func_cntl = RREG32(mmMPLL_FUNC_CNTL);
pi->clock_registers.mpll_func_cntl_1 = RREG32(mmMPLL_FUNC_CNTL_1);
pi->clock_registers.mpll_func_cntl_2 = RREG32(mmMPLL_FUNC_CNTL_2);
pi->clock_registers.mpll_ss1 = RREG32(mmMPLL_SS1);
pi->clock_registers.mpll_ss2 = RREG32(mmMPLL_SS2);
}
static void ci_init_sclk_t(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
pi->low_sclk_interrupt_t = 0;
}
static void ci_enable_thermal_protection(struct amdgpu_device *adev,
bool enable)
{
u32 tmp = RREG32_SMC(ixGENERAL_PWRMGT);
if (enable)
tmp &= ~GENERAL_PWRMGT__THERMAL_PROTECTION_DIS_MASK;
else
tmp |= GENERAL_PWRMGT__THERMAL_PROTECTION_DIS_MASK;
WREG32_SMC(ixGENERAL_PWRMGT, tmp);
}
static void ci_enable_acpi_power_management(struct amdgpu_device *adev)
{
u32 tmp = RREG32_SMC(ixGENERAL_PWRMGT);
tmp |= GENERAL_PWRMGT__STATIC_PM_EN_MASK;
WREG32_SMC(ixGENERAL_PWRMGT, tmp);
}
#if 0
static int ci_enter_ulp_state(struct amdgpu_device *adev)
{
WREG32(mmSMC_MESSAGE_0, PPSMC_MSG_SwitchToMinimumPower);
udelay(25000);
return 0;
}
static int ci_exit_ulp_state(struct amdgpu_device *adev)
{
int i;
WREG32(mmSMC_MESSAGE_0, PPSMC_MSG_ResumeFromMinimumPower);
udelay(7000);
for (i = 0; i < adev->usec_timeout; i++) {
if (RREG32(mmSMC_RESP_0) == 1)
break;
udelay(1000);
}
return 0;
}
#endif
static int ci_notify_smc_display_change(struct amdgpu_device *adev,
bool has_display)
{
PPSMC_Msg msg = has_display ? PPSMC_MSG_HasDisplay : PPSMC_MSG_NoDisplay;
return (amdgpu_ci_send_msg_to_smc(adev, msg) == PPSMC_Result_OK) ? 0 : -EINVAL;
}
static int ci_enable_ds_master_switch(struct amdgpu_device *adev,
bool enable)
{
struct ci_power_info *pi = ci_get_pi(adev);
if (enable) {
if (pi->caps_sclk_ds) {
if (amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_MASTER_DeepSleep_ON) != PPSMC_Result_OK)
return -EINVAL;
} else {
if (amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_MASTER_DeepSleep_OFF) != PPSMC_Result_OK)
return -EINVAL;
}
} else {
if (pi->caps_sclk_ds) {
if (amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_MASTER_DeepSleep_OFF) != PPSMC_Result_OK)
return -EINVAL;
}
}
return 0;
}
static void ci_program_display_gap(struct amdgpu_device *adev)
{
u32 tmp = RREG32_SMC(ixCG_DISPLAY_GAP_CNTL);
u32 pre_vbi_time_in_us;
u32 frame_time_in_us;
u32 ref_clock = adev->clock.spll.reference_freq;
u32 refresh_rate = amdgpu_dpm_get_vrefresh(adev);
u32 vblank_time = amdgpu_dpm_get_vblank_time(adev);
tmp &= ~CG_DISPLAY_GAP_CNTL__DISP_GAP_MASK;
if (adev->pm.dpm.new_active_crtc_count > 0)
tmp |= (AMDGPU_PM_DISPLAY_GAP_VBLANK_OR_WM << CG_DISPLAY_GAP_CNTL__DISP_GAP__SHIFT);
else
tmp |= (AMDGPU_PM_DISPLAY_GAP_IGNORE << CG_DISPLAY_GAP_CNTL__DISP_GAP__SHIFT);
WREG32_SMC(ixCG_DISPLAY_GAP_CNTL, tmp);
if (refresh_rate == 0)
refresh_rate = 60;
if (vblank_time == 0xffffffff)
vblank_time = 500;
frame_time_in_us = 1000000 / refresh_rate;
pre_vbi_time_in_us =
frame_time_in_us - 200 - vblank_time;
tmp = pre_vbi_time_in_us * (ref_clock / 100);
WREG32_SMC(ixCG_DISPLAY_GAP_CNTL2, tmp);
ci_write_smc_soft_register(adev, offsetof(SMU7_SoftRegisters, PreVBlankGap), 0x64);
ci_write_smc_soft_register(adev, offsetof(SMU7_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us));
ci_notify_smc_display_change(adev, (adev->pm.dpm.new_active_crtc_count == 1));
}
static void ci_enable_spread_spectrum(struct amdgpu_device *adev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(adev);
u32 tmp;
if (enable) {
if (pi->caps_sclk_ss_support) {
tmp = RREG32_SMC(ixGENERAL_PWRMGT);
tmp |= GENERAL_PWRMGT__DYN_SPREAD_SPECTRUM_EN_MASK;
WREG32_SMC(ixGENERAL_PWRMGT, tmp);
}
} else {
tmp = RREG32_SMC(ixCG_SPLL_SPREAD_SPECTRUM);
tmp &= ~CG_SPLL_SPREAD_SPECTRUM__SSEN_MASK;
WREG32_SMC(ixCG_SPLL_SPREAD_SPECTRUM, tmp);
tmp = RREG32_SMC(ixGENERAL_PWRMGT);
tmp &= ~GENERAL_PWRMGT__DYN_SPREAD_SPECTRUM_EN_MASK;
WREG32_SMC(ixGENERAL_PWRMGT, tmp);
}
}
static void ci_program_sstp(struct amdgpu_device *adev)
{
WREG32_SMC(ixCG_STATIC_SCREEN_PARAMETER,
((CISLANDS_SSTU_DFLT << CG_STATIC_SCREEN_PARAMETER__STATIC_SCREEN_THRESHOLD_UNIT__SHIFT) |
(CISLANDS_SST_DFLT << CG_STATIC_SCREEN_PARAMETER__STATIC_SCREEN_THRESHOLD__SHIFT)));
}
static void ci_enable_display_gap(struct amdgpu_device *adev)
{
u32 tmp = RREG32_SMC(ixCG_DISPLAY_GAP_CNTL);
tmp &= ~(CG_DISPLAY_GAP_CNTL__DISP_GAP_MASK |
CG_DISPLAY_GAP_CNTL__DISP_GAP_MCHG_MASK);
tmp |= ((AMDGPU_PM_DISPLAY_GAP_IGNORE << CG_DISPLAY_GAP_CNTL__DISP_GAP__SHIFT) |
(AMDGPU_PM_DISPLAY_GAP_VBLANK << CG_DISPLAY_GAP_CNTL__DISP_GAP_MCHG__SHIFT));
WREG32_SMC(ixCG_DISPLAY_GAP_CNTL, tmp);
}
static void ci_program_vc(struct amdgpu_device *adev)
{
u32 tmp;
tmp = RREG32_SMC(ixSCLK_PWRMGT_CNTL);
tmp &= ~(SCLK_PWRMGT_CNTL__RESET_SCLK_CNT_MASK | SCLK_PWRMGT_CNTL__RESET_BUSY_CNT_MASK);
WREG32_SMC(ixSCLK_PWRMGT_CNTL, tmp);
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_0, CISLANDS_VRC_DFLT0);
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_1, CISLANDS_VRC_DFLT1);
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_2, CISLANDS_VRC_DFLT2);
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_3, CISLANDS_VRC_DFLT3);
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_4, CISLANDS_VRC_DFLT4);
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_5, CISLANDS_VRC_DFLT5);
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_6, CISLANDS_VRC_DFLT6);
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_7, CISLANDS_VRC_DFLT7);
}
static void ci_clear_vc(struct amdgpu_device *adev)
{
u32 tmp;
tmp = RREG32_SMC(ixSCLK_PWRMGT_CNTL);
tmp |= (SCLK_PWRMGT_CNTL__RESET_SCLK_CNT_MASK | SCLK_PWRMGT_CNTL__RESET_BUSY_CNT_MASK);
WREG32_SMC(ixSCLK_PWRMGT_CNTL, tmp);
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_0, 0);
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_1, 0);
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_2, 0);
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_3, 0);
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_4, 0);
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_5, 0);
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_6, 0);
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_7, 0);
}
static int ci_upload_firmware(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
int i, ret;
for (i = 0; i < adev->usec_timeout; i++) {
if (RREG32_SMC(ixRCU_UC_EVENTS) & RCU_UC_EVENTS__boot_seq_done_MASK)
break;
}
WREG32_SMC(ixSMC_SYSCON_MISC_CNTL, 1);
amdgpu_ci_stop_smc_clock(adev);
amdgpu_ci_reset_smc(adev);
ret = amdgpu_ci_load_smc_ucode(adev, pi->sram_end);
return ret;
}
static int ci_get_svi2_voltage_table(struct amdgpu_device *adev,
struct amdgpu_clock_voltage_dependency_table *voltage_dependency_table,
struct atom_voltage_table *voltage_table)
{
u32 i;
if (voltage_dependency_table == NULL)
return -EINVAL;
voltage_table->mask_low = 0;
voltage_table->phase_delay = 0;
voltage_table->count = voltage_dependency_table->count;
for (i = 0; i < voltage_table->count; i++) {
voltage_table->entries[i].value = voltage_dependency_table->entries[i].v;
voltage_table->entries[i].smio_low = 0;
}
return 0;
}
static int ci_construct_voltage_tables(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
int ret;
if (pi->voltage_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO) {
ret = amdgpu_atombios_get_voltage_table(adev, VOLTAGE_TYPE_VDDC,
VOLTAGE_OBJ_GPIO_LUT,
&pi->vddc_voltage_table);
if (ret)
return ret;
} else if (pi->voltage_control == CISLANDS_VOLTAGE_CONTROL_BY_SVID2) {
ret = ci_get_svi2_voltage_table(adev,
&adev->pm.dpm.dyn_state.vddc_dependency_on_mclk,
&pi->vddc_voltage_table);
if (ret)
return ret;
}
if (pi->vddc_voltage_table.count > SMU7_MAX_LEVELS_VDDC)
ci_trim_voltage_table_to_fit_state_table(adev, SMU7_MAX_LEVELS_VDDC,
&pi->vddc_voltage_table);
if (pi->vddci_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO) {
ret = amdgpu_atombios_get_voltage_table(adev, VOLTAGE_TYPE_VDDCI,
VOLTAGE_OBJ_GPIO_LUT,
&pi->vddci_voltage_table);
if (ret)
return ret;
} else if (pi->vddci_control == CISLANDS_VOLTAGE_CONTROL_BY_SVID2) {
ret = ci_get_svi2_voltage_table(adev,
&adev->pm.dpm.dyn_state.vddci_dependency_on_mclk,
&pi->vddci_voltage_table);
if (ret)
return ret;
}
if (pi->vddci_voltage_table.count > SMU7_MAX_LEVELS_VDDCI)
ci_trim_voltage_table_to_fit_state_table(adev, SMU7_MAX_LEVELS_VDDCI,
&pi->vddci_voltage_table);
if (pi->mvdd_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO) {
ret = amdgpu_atombios_get_voltage_table(adev, VOLTAGE_TYPE_MVDDC,
VOLTAGE_OBJ_GPIO_LUT,
&pi->mvdd_voltage_table);
if (ret)
return ret;
} else if (pi->mvdd_control == CISLANDS_VOLTAGE_CONTROL_BY_SVID2) {
ret = ci_get_svi2_voltage_table(adev,
&adev->pm.dpm.dyn_state.mvdd_dependency_on_mclk,
&pi->mvdd_voltage_table);
if (ret)
return ret;
}
if (pi->mvdd_voltage_table.count > SMU7_MAX_LEVELS_MVDD)
ci_trim_voltage_table_to_fit_state_table(adev, SMU7_MAX_LEVELS_MVDD,
&pi->mvdd_voltage_table);
return 0;
}
static void ci_populate_smc_voltage_table(struct amdgpu_device *adev,
struct atom_voltage_table_entry *voltage_table,
SMU7_Discrete_VoltageLevel *smc_voltage_table)
{
int ret;
ret = ci_get_std_voltage_value_sidd(adev, voltage_table,
&smc_voltage_table->StdVoltageHiSidd,
&smc_voltage_table->StdVoltageLoSidd);
if (ret) {
smc_voltage_table->StdVoltageHiSidd = voltage_table->value * VOLTAGE_SCALE;
smc_voltage_table->StdVoltageLoSidd = voltage_table->value * VOLTAGE_SCALE;
}
smc_voltage_table->Voltage = cpu_to_be16(voltage_table->value * VOLTAGE_SCALE);
smc_voltage_table->StdVoltageHiSidd =
cpu_to_be16(smc_voltage_table->StdVoltageHiSidd);
smc_voltage_table->StdVoltageLoSidd =
cpu_to_be16(smc_voltage_table->StdVoltageLoSidd);
}
static int ci_populate_smc_vddc_table(struct amdgpu_device *adev,
SMU7_Discrete_DpmTable *table)
{
struct ci_power_info *pi = ci_get_pi(adev);
unsigned int count;
table->VddcLevelCount = pi->vddc_voltage_table.count;
for (count = 0; count < table->VddcLevelCount; count++) {
ci_populate_smc_voltage_table(adev,
&pi->vddc_voltage_table.entries[count],
&table->VddcLevel[count]);
if (pi->voltage_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO)
table->VddcLevel[count].Smio |=
pi->vddc_voltage_table.entries[count].smio_low;
else
table->VddcLevel[count].Smio = 0;
}
table->VddcLevelCount = cpu_to_be32(table->VddcLevelCount);
return 0;
}
static int ci_populate_smc_vddci_table(struct amdgpu_device *adev,
SMU7_Discrete_DpmTable *table)
{
unsigned int count;
struct ci_power_info *pi = ci_get_pi(adev);
table->VddciLevelCount = pi->vddci_voltage_table.count;
for (count = 0; count < table->VddciLevelCount; count++) {
ci_populate_smc_voltage_table(adev,
&pi->vddci_voltage_table.entries[count],
&table->VddciLevel[count]);
if (pi->vddci_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO)
table->VddciLevel[count].Smio |=
pi->vddci_voltage_table.entries[count].smio_low;
else
table->VddciLevel[count].Smio = 0;
}
table->VddciLevelCount = cpu_to_be32(table->VddciLevelCount);
return 0;
}
static int ci_populate_smc_mvdd_table(struct amdgpu_device *adev,
SMU7_Discrete_DpmTable *table)
{
struct ci_power_info *pi = ci_get_pi(adev);
unsigned int count;
table->MvddLevelCount = pi->mvdd_voltage_table.count;
for (count = 0; count < table->MvddLevelCount; count++) {
ci_populate_smc_voltage_table(adev,
&pi->mvdd_voltage_table.entries[count],
&table->MvddLevel[count]);
if (pi->mvdd_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO)
table->MvddLevel[count].Smio |=
pi->mvdd_voltage_table.entries[count].smio_low;
else
table->MvddLevel[count].Smio = 0;
}
table->MvddLevelCount = cpu_to_be32(table->MvddLevelCount);
return 0;
}
static int ci_populate_smc_voltage_tables(struct amdgpu_device *adev,
SMU7_Discrete_DpmTable *table)
{
int ret;
ret = ci_populate_smc_vddc_table(adev, table);
if (ret)
return ret;
ret = ci_populate_smc_vddci_table(adev, table);
if (ret)
return ret;
ret = ci_populate_smc_mvdd_table(adev, table);
if (ret)
return ret;
return 0;
}
static int ci_populate_mvdd_value(struct amdgpu_device *adev, u32 mclk,
SMU7_Discrete_VoltageLevel *voltage)
{
struct ci_power_info *pi = ci_get_pi(adev);
u32 i = 0;
if (pi->mvdd_control != CISLANDS_VOLTAGE_CONTROL_NONE) {
for (i = 0; i < adev->pm.dpm.dyn_state.mvdd_dependency_on_mclk.count; i++) {
if (mclk <= adev->pm.dpm.dyn_state.mvdd_dependency_on_mclk.entries[i].clk) {
voltage->Voltage = pi->mvdd_voltage_table.entries[i].value;
break;
}
}
if (i >= adev->pm.dpm.dyn_state.mvdd_dependency_on_mclk.count)
return -EINVAL;
}
return -EINVAL;
}
static int ci_get_std_voltage_value_sidd(struct amdgpu_device *adev,
struct atom_voltage_table_entry *voltage_table,
u16 *std_voltage_hi_sidd, u16 *std_voltage_lo_sidd)
{
u16 v_index, idx;
bool voltage_found = false;
*std_voltage_hi_sidd = voltage_table->value * VOLTAGE_SCALE;
*std_voltage_lo_sidd = voltage_table->value * VOLTAGE_SCALE;
if (adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries == NULL)
return -EINVAL;
if (adev->pm.dpm.dyn_state.cac_leakage_table.entries) {
for (v_index = 0; (u32)v_index < adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count; v_index++) {
if (voltage_table->value ==
adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[v_index].v) {
voltage_found = true;
if ((u32)v_index < adev->pm.dpm.dyn_state.cac_leakage_table.count)
idx = v_index;
else
idx = adev->pm.dpm.dyn_state.cac_leakage_table.count - 1;
*std_voltage_lo_sidd =
adev->pm.dpm.dyn_state.cac_leakage_table.entries[idx].vddc * VOLTAGE_SCALE;
*std_voltage_hi_sidd =
adev->pm.dpm.dyn_state.cac_leakage_table.entries[idx].leakage * VOLTAGE_SCALE;
break;
}
}
if (!voltage_found) {
for (v_index = 0; (u32)v_index < adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count; v_index++) {
if (voltage_table->value <=
adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[v_index].v) {
voltage_found = true;
if ((u32)v_index < adev->pm.dpm.dyn_state.cac_leakage_table.count)
idx = v_index;
else
idx = adev->pm.dpm.dyn_state.cac_leakage_table.count - 1;
*std_voltage_lo_sidd =
adev->pm.dpm.dyn_state.cac_leakage_table.entries[idx].vddc * VOLTAGE_SCALE;
*std_voltage_hi_sidd =
adev->pm.dpm.dyn_state.cac_leakage_table.entries[idx].leakage * VOLTAGE_SCALE;
break;
}
}
}
}
return 0;
}
static void ci_populate_phase_value_based_on_sclk(struct amdgpu_device *adev,
const struct amdgpu_phase_shedding_limits_table *limits,
u32 sclk,
u32 *phase_shedding)
{
unsigned int i;
*phase_shedding = 1;
for (i = 0; i < limits->count; i++) {
if (sclk < limits->entries[i].sclk) {
*phase_shedding = i;
break;
}
}
}
static void ci_populate_phase_value_based_on_mclk(struct amdgpu_device *adev,
const struct amdgpu_phase_shedding_limits_table *limits,
u32 mclk,
u32 *phase_shedding)
{
unsigned int i;
*phase_shedding = 1;
for (i = 0; i < limits->count; i++) {
if (mclk < limits->entries[i].mclk) {
*phase_shedding = i;
break;
}
}
}
static int ci_init_arb_table_index(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
u32 tmp;
int ret;
ret = amdgpu_ci_read_smc_sram_dword(adev, pi->arb_table_start,
&tmp, pi->sram_end);
if (ret)
return ret;
tmp &= 0x00FFFFFF;
tmp |= MC_CG_ARB_FREQ_F1 << 24;
return amdgpu_ci_write_smc_sram_dword(adev, pi->arb_table_start,
tmp, pi->sram_end);
}
static int ci_get_dependency_volt_by_clk(struct amdgpu_device *adev,
struct amdgpu_clock_voltage_dependency_table *allowed_clock_voltage_table,
u32 clock, u32 *voltage)
{
u32 i = 0;
if (allowed_clock_voltage_table->count == 0)
return -EINVAL;
for (i = 0; i < allowed_clock_voltage_table->count; i++) {
if (allowed_clock_voltage_table->entries[i].clk >= clock) {
*voltage = allowed_clock_voltage_table->entries[i].v;
return 0;
}
}
*voltage = allowed_clock_voltage_table->entries[i-1].v;
return 0;
}
static u8 ci_get_sleep_divider_id_from_clock(u32 sclk, u32 min_sclk_in_sr)
{
u32 i;
u32 tmp;
u32 min = max(min_sclk_in_sr, (u32)CISLAND_MINIMUM_ENGINE_CLOCK);
if (sclk < min)
return 0;
for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
tmp = sclk >> i;
if (tmp >= min || i == 0)
break;
}
return (u8)i;
}
static int ci_initial_switch_from_arb_f0_to_f1(struct amdgpu_device *adev)
{
return ci_copy_and_switch_arb_sets(adev, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
}
static int ci_reset_to_default(struct amdgpu_device *adev)
{
return (amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_ResetToDefaults) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
static int ci_force_switch_to_arb_f0(struct amdgpu_device *adev)
{
u32 tmp;
tmp = (RREG32_SMC(ixSMC_SCRATCH9) & 0x0000ff00) >> 8;
if (tmp == MC_CG_ARB_FREQ_F0)
return 0;
return ci_copy_and_switch_arb_sets(adev, tmp, MC_CG_ARB_FREQ_F0);
}
static void ci_register_patching_mc_arb(struct amdgpu_device *adev,
const u32 engine_clock,
const u32 memory_clock,
u32 *dram_timimg2)
{
bool patch;
u32 tmp, tmp2;
tmp = RREG32(mmMC_SEQ_MISC0);
patch = ((tmp & 0x0000f00) == 0x300) ? true : false;
if (patch &&
((adev->pdev->device == 0x67B0) ||
(adev->pdev->device == 0x67B1))) {
if ((memory_clock > 100000) && (memory_clock <= 125000)) {
tmp2 = (((0x31 * engine_clock) / 125000) - 1) & 0xff;
*dram_timimg2 &= ~0x00ff0000;
*dram_timimg2 |= tmp2 << 16;
} else if ((memory_clock > 125000) && (memory_clock <= 137500)) {
tmp2 = (((0x36 * engine_clock) / 137500) - 1) & 0xff;
*dram_timimg2 &= ~0x00ff0000;
*dram_timimg2 |= tmp2 << 16;
}
}
}
static int ci_populate_memory_timing_parameters(struct amdgpu_device *adev,
u32 sclk,
u32 mclk,
SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs)
{
u32 dram_timing;
u32 dram_timing2;
u32 burst_time;
amdgpu_atombios_set_engine_dram_timings(adev, sclk, mclk);
dram_timing = RREG32(mmMC_ARB_DRAM_TIMING);
dram_timing2 = RREG32(mmMC_ARB_DRAM_TIMING2);
burst_time = RREG32(mmMC_ARB_BURST_TIME) & MC_ARB_BURST_TIME__STATE0_MASK;
ci_register_patching_mc_arb(adev, sclk, mclk, &dram_timing2);
arb_regs->McArbDramTiming = cpu_to_be32(dram_timing);
arb_regs->McArbDramTiming2 = cpu_to_be32(dram_timing2);
arb_regs->McArbBurstTime = (u8)burst_time;
return 0;
}
static int ci_do_program_memory_timing_parameters(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
SMU7_Discrete_MCArbDramTimingTable arb_regs;
u32 i, j;
int ret = 0;
memset(&arb_regs, 0, sizeof(SMU7_Discrete_MCArbDramTimingTable));
for (i = 0; i < pi->dpm_table.sclk_table.count; i++) {
for (j = 0; j < pi->dpm_table.mclk_table.count; j++) {
ret = ci_populate_memory_timing_parameters(adev,
pi->dpm_table.sclk_table.dpm_levels[i].value,
pi->dpm_table.mclk_table.dpm_levels[j].value,
&arb_regs.entries[i][j]);
if (ret)
break;
}
}
if (ret == 0)
ret = amdgpu_ci_copy_bytes_to_smc(adev,
pi->arb_table_start,
(u8 *)&arb_regs,
sizeof(SMU7_Discrete_MCArbDramTimingTable),
pi->sram_end);
return ret;
}
static int ci_program_memory_timing_parameters(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
if (pi->need_update_smu7_dpm_table == 0)
return 0;
return ci_do_program_memory_timing_parameters(adev);
}
static void ci_populate_smc_initial_state(struct amdgpu_device *adev,
struct amdgpu_ps *amdgpu_boot_state)
{
struct ci_ps *boot_state = ci_get_ps(amdgpu_boot_state);
struct ci_power_info *pi = ci_get_pi(adev);
u32 level = 0;
for (level = 0; level < adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count; level++) {
if (adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[level].clk >=
boot_state->performance_levels[0].sclk) {
pi->smc_state_table.GraphicsBootLevel = level;
break;
}
}
for (level = 0; level < adev->pm.dpm.dyn_state.vddc_dependency_on_mclk.count; level++) {
if (adev->pm.dpm.dyn_state.vddc_dependency_on_mclk.entries[level].clk >=
boot_state->performance_levels[0].mclk) {
pi->smc_state_table.MemoryBootLevel = level;
break;
}
}
}
static u32 ci_get_dpm_level_enable_mask_value(struct ci_single_dpm_table *dpm_table)
{
u32 i;
u32 mask_value = 0;
for (i = dpm_table->count; i > 0; i--) {
mask_value = mask_value << 1;
if (dpm_table->dpm_levels[i-1].enabled)
mask_value |= 0x1;
else
mask_value &= 0xFFFFFFFE;
}
return mask_value;
}
static void ci_populate_smc_link_level(struct amdgpu_device *adev,
SMU7_Discrete_DpmTable *table)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_dpm_table *dpm_table = &pi->dpm_table;
u32 i;
for (i = 0; i < dpm_table->pcie_speed_table.count; i++) {
table->LinkLevel[i].PcieGenSpeed =
(u8)dpm_table->pcie_speed_table.dpm_levels[i].value;
table->LinkLevel[i].PcieLaneCount =
amdgpu_encode_pci_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
table->LinkLevel[i].EnabledForActivity = 1;
table->LinkLevel[i].DownT = cpu_to_be32(5);
table->LinkLevel[i].UpT = cpu_to_be32(30);
}
pi->smc_state_table.LinkLevelCount = (u8)dpm_table->pcie_speed_table.count;
pi->dpm_level_enable_mask.pcie_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
}
static int ci_populate_smc_uvd_level(struct amdgpu_device *adev,
SMU7_Discrete_DpmTable *table)
{
u32 count;
struct atom_clock_dividers dividers;
int ret = -EINVAL;
table->UvdLevelCount =
adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count;
for (count = 0; count < table->UvdLevelCount; count++) {
table->UvdLevel[count].VclkFrequency =
adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[count].vclk;
table->UvdLevel[count].DclkFrequency =
adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[count].dclk;
table->UvdLevel[count].MinVddc =
adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[count].v * VOLTAGE_SCALE;
table->UvdLevel[count].MinVddcPhases = 1;
ret = amdgpu_atombios_get_clock_dividers(adev,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
table->UvdLevel[count].VclkFrequency, false, &dividers);
if (ret)
return ret;
table->UvdLevel[count].VclkDivider = (u8)dividers.post_divider;
ret = amdgpu_atombios_get_clock_dividers(adev,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
table->UvdLevel[count].DclkFrequency, false, &dividers);
if (ret)
return ret;
table->UvdLevel[count].DclkDivider = (u8)dividers.post_divider;
table->UvdLevel[count].VclkFrequency = cpu_to_be32(table->UvdLevel[count].VclkFrequency);
table->UvdLevel[count].DclkFrequency = cpu_to_be32(table->UvdLevel[count].DclkFrequency);
table->UvdLevel[count].MinVddc = cpu_to_be16(table->UvdLevel[count].MinVddc);
}
return ret;
}
static int ci_populate_smc_vce_level(struct amdgpu_device *adev,
SMU7_Discrete_DpmTable *table)
{
u32 count;
struct atom_clock_dividers dividers;
int ret = -EINVAL;
table->VceLevelCount =
adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.count;
for (count = 0; count < table->VceLevelCount; count++) {
table->VceLevel[count].Frequency =
adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[count].evclk;
table->VceLevel[count].MinVoltage =
(u16)adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[count].v * VOLTAGE_SCALE;
table->VceLevel[count].MinPhases = 1;
ret = amdgpu_atombios_get_clock_dividers(adev,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
table->VceLevel[count].Frequency, false, &dividers);
if (ret)
return ret;
table->VceLevel[count].Divider = (u8)dividers.post_divider;
table->VceLevel[count].Frequency = cpu_to_be32(table->VceLevel[count].Frequency);
table->VceLevel[count].MinVoltage = cpu_to_be16(table->VceLevel[count].MinVoltage);
}
return ret;
}
static int ci_populate_smc_acp_level(struct amdgpu_device *adev,
SMU7_Discrete_DpmTable *table)
{
u32 count;
struct atom_clock_dividers dividers;
int ret = -EINVAL;
table->AcpLevelCount = (u8)
(adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.count);
for (count = 0; count < table->AcpLevelCount; count++) {
table->AcpLevel[count].Frequency =
adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[count].clk;
table->AcpLevel[count].MinVoltage =
adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[count].v;
table->AcpLevel[count].MinPhases = 1;
ret = amdgpu_atombios_get_clock_dividers(adev,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
table->AcpLevel[count].Frequency, false, &dividers);
if (ret)
return ret;
table->AcpLevel[count].Divider = (u8)dividers.post_divider;
table->AcpLevel[count].Frequency = cpu_to_be32(table->AcpLevel[count].Frequency);
table->AcpLevel[count].MinVoltage = cpu_to_be16(table->AcpLevel[count].MinVoltage);
}
return ret;
}
static int ci_populate_smc_samu_level(struct amdgpu_device *adev,
SMU7_Discrete_DpmTable *table)
{
u32 count;
struct atom_clock_dividers dividers;
int ret = -EINVAL;
table->SamuLevelCount =
adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.count;
for (count = 0; count < table->SamuLevelCount; count++) {
table->SamuLevel[count].Frequency =
adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[count].clk;
table->SamuLevel[count].MinVoltage =
adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[count].v * VOLTAGE_SCALE;
table->SamuLevel[count].MinPhases = 1;
ret = amdgpu_atombios_get_clock_dividers(adev,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
table->SamuLevel[count].Frequency, false, &dividers);
if (ret)
return ret;
table->SamuLevel[count].Divider = (u8)dividers.post_divider;
table->SamuLevel[count].Frequency = cpu_to_be32(table->SamuLevel[count].Frequency);
table->SamuLevel[count].MinVoltage = cpu_to_be16(table->SamuLevel[count].MinVoltage);
}
return ret;
}
static int ci_calculate_mclk_params(struct amdgpu_device *adev,
u32 memory_clock,
SMU7_Discrete_MemoryLevel *mclk,
bool strobe_mode,
bool dll_state_on)
{
struct ci_power_info *pi = ci_get_pi(adev);
u32 dll_cntl = pi->clock_registers.dll_cntl;
u32 mclk_pwrmgt_cntl = pi->clock_registers.mclk_pwrmgt_cntl;
u32 mpll_ad_func_cntl = pi->clock_registers.mpll_ad_func_cntl;
u32 mpll_dq_func_cntl = pi->clock_registers.mpll_dq_func_cntl;
u32 mpll_func_cntl = pi->clock_registers.mpll_func_cntl;
u32 mpll_func_cntl_1 = pi->clock_registers.mpll_func_cntl_1;
u32 mpll_func_cntl_2 = pi->clock_registers.mpll_func_cntl_2;
u32 mpll_ss1 = pi->clock_registers.mpll_ss1;
u32 mpll_ss2 = pi->clock_registers.mpll_ss2;
struct atom_mpll_param mpll_param;
int ret;
ret = amdgpu_atombios_get_memory_pll_dividers(adev, memory_clock, strobe_mode, &mpll_param);
if (ret)
return ret;
mpll_func_cntl &= ~MPLL_FUNC_CNTL__BWCTRL_MASK;
mpll_func_cntl |= (mpll_param.bwcntl << MPLL_FUNC_CNTL__BWCTRL__SHIFT);
mpll_func_cntl_1 &= ~(MPLL_FUNC_CNTL_1__CLKF_MASK | MPLL_FUNC_CNTL_1__CLKFRAC_MASK |
MPLL_FUNC_CNTL_1__VCO_MODE_MASK);
mpll_func_cntl_1 |= (mpll_param.clkf) << MPLL_FUNC_CNTL_1__CLKF__SHIFT |
(mpll_param.clkfrac << MPLL_FUNC_CNTL_1__CLKFRAC__SHIFT) |
(mpll_param.vco_mode << MPLL_FUNC_CNTL_1__VCO_MODE__SHIFT);
mpll_ad_func_cntl &= ~MPLL_AD_FUNC_CNTL__YCLK_POST_DIV_MASK;
mpll_ad_func_cntl |= (mpll_param.post_div << MPLL_AD_FUNC_CNTL__YCLK_POST_DIV__SHIFT);
if (adev->mc.vram_type == AMDGPU_VRAM_TYPE_GDDR5) {
mpll_dq_func_cntl &= ~(MPLL_DQ_FUNC_CNTL__YCLK_SEL_MASK |
MPLL_AD_FUNC_CNTL__YCLK_POST_DIV_MASK);
mpll_dq_func_cntl |= (mpll_param.yclk_sel << MPLL_DQ_FUNC_CNTL__YCLK_SEL__SHIFT) |
(mpll_param.post_div << MPLL_AD_FUNC_CNTL__YCLK_POST_DIV__SHIFT);
}
if (pi->caps_mclk_ss_support) {
struct amdgpu_atom_ss ss;
u32 freq_nom;
u32 tmp;
u32 reference_clock = adev->clock.mpll.reference_freq;
if (mpll_param.qdr == 1)
freq_nom = memory_clock * 4 * (1 << mpll_param.post_div);
else
freq_nom = memory_clock * 2 * (1 << mpll_param.post_div);
tmp = (freq_nom / reference_clock);
tmp = tmp * tmp;
if (amdgpu_atombios_get_asic_ss_info(adev, &ss,
ASIC_INTERNAL_MEMORY_SS, freq_nom)) {
u32 clks = reference_clock * 5 / ss.rate;
u32 clkv = (u32)((((131 * ss.percentage * ss.rate) / 100) * tmp) / freq_nom);
mpll_ss1 &= ~MPLL_SS1__CLKV_MASK;
mpll_ss1 |= (clkv << MPLL_SS1__CLKV__SHIFT);
mpll_ss2 &= ~MPLL_SS2__CLKS_MASK;
mpll_ss2 |= (clks << MPLL_SS2__CLKS__SHIFT);
}
}
mclk_pwrmgt_cntl &= ~MCLK_PWRMGT_CNTL__DLL_SPEED_MASK;
mclk_pwrmgt_cntl |= (mpll_param.dll_speed << MCLK_PWRMGT_CNTL__DLL_SPEED__SHIFT);
if (dll_state_on)
mclk_pwrmgt_cntl |= MCLK_PWRMGT_CNTL__MRDCK0_PDNB_MASK |
MCLK_PWRMGT_CNTL__MRDCK1_PDNB_MASK;
else
mclk_pwrmgt_cntl &= ~(MCLK_PWRMGT_CNTL__MRDCK0_PDNB_MASK |
MCLK_PWRMGT_CNTL__MRDCK1_PDNB_MASK);
mclk->MclkFrequency = memory_clock;
mclk->MpllFuncCntl = mpll_func_cntl;
mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
mclk->DllCntl = dll_cntl;
mclk->MpllSs1 = mpll_ss1;
mclk->MpllSs2 = mpll_ss2;
return 0;
}
static int ci_populate_single_memory_level(struct amdgpu_device *adev,
u32 memory_clock,
SMU7_Discrete_MemoryLevel *memory_level)
{
struct ci_power_info *pi = ci_get_pi(adev);
int ret;
bool dll_state_on;
if (adev->pm.dpm.dyn_state.vddc_dependency_on_mclk.entries) {
ret = ci_get_dependency_volt_by_clk(adev,
&adev->pm.dpm.dyn_state.vddc_dependency_on_mclk,
memory_clock, &memory_level->MinVddc);
if (ret)
return ret;
}
if (adev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries) {
ret = ci_get_dependency_volt_by_clk(adev,
&adev->pm.dpm.dyn_state.vddci_dependency_on_mclk,
memory_clock, &memory_level->MinVddci);
if (ret)
return ret;
}
if (adev->pm.dpm.dyn_state.mvdd_dependency_on_mclk.entries) {
ret = ci_get_dependency_volt_by_clk(adev,
&adev->pm.dpm.dyn_state.mvdd_dependency_on_mclk,
memory_clock, &memory_level->MinMvdd);
if (ret)
return ret;
}
memory_level->MinVddcPhases = 1;
if (pi->vddc_phase_shed_control)
ci_populate_phase_value_based_on_mclk(adev,
&adev->pm.dpm.dyn_state.phase_shedding_limits_table,
memory_clock,
&memory_level->MinVddcPhases);
memory_level->EnabledForThrottle = 1;
memory_level->UpH = 0;
memory_level->DownH = 100;
memory_level->VoltageDownH = 0;
memory_level->ActivityLevel = (u16)pi->mclk_activity_target;
memory_level->StutterEnable = false;
memory_level->StrobeEnable = false;
memory_level->EdcReadEnable = false;
memory_level->EdcWriteEnable = false;
memory_level->RttEnable = false;
memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
if (pi->mclk_stutter_mode_threshold &&
(memory_clock <= pi->mclk_stutter_mode_threshold) &&
(!pi->uvd_enabled) &&
(RREG32(mmDPG_PIPE_STUTTER_CONTROL) & DPG_PIPE_STUTTER_CONTROL__STUTTER_ENABLE_MASK) &&
(adev->pm.dpm.new_active_crtc_count <= 2))
memory_level->StutterEnable = true;
if (pi->mclk_strobe_mode_threshold &&
(memory_clock <= pi->mclk_strobe_mode_threshold))
memory_level->StrobeEnable = 1;
if (adev->mc.vram_type == AMDGPU_VRAM_TYPE_GDDR5) {
memory_level->StrobeRatio =
ci_get_mclk_frequency_ratio(memory_clock, memory_level->StrobeEnable);
if (pi->mclk_edc_enable_threshold &&
(memory_clock > pi->mclk_edc_enable_threshold))
memory_level->EdcReadEnable = true;
if (pi->mclk_edc_wr_enable_threshold &&
(memory_clock > pi->mclk_edc_wr_enable_threshold))
memory_level->EdcWriteEnable = true;
if (memory_level->StrobeEnable) {
if (ci_get_mclk_frequency_ratio(memory_clock, true) >=
((RREG32(mmMC_SEQ_MISC7) >> 16) & 0xf))
dll_state_on = ((RREG32(mmMC_SEQ_MISC5) >> 1) & 0x1) ? true : false;
else
dll_state_on = ((RREG32(mmMC_SEQ_MISC6) >> 1) & 0x1) ? true : false;
} else {
dll_state_on = pi->dll_default_on;
}
} else {
memory_level->StrobeRatio = ci_get_ddr3_mclk_frequency_ratio(memory_clock);
dll_state_on = ((RREG32(mmMC_SEQ_MISC5) >> 1) & 0x1) ? true : false;
}
ret = ci_calculate_mclk_params(adev, memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
if (ret)
return ret;
memory_level->MinVddc = cpu_to_be32(memory_level->MinVddc * VOLTAGE_SCALE);
memory_level->MinVddcPhases = cpu_to_be32(memory_level->MinVddcPhases);
memory_level->MinVddci = cpu_to_be32(memory_level->MinVddci * VOLTAGE_SCALE);
memory_level->MinMvdd = cpu_to_be32(memory_level->MinMvdd * VOLTAGE_SCALE);
memory_level->MclkFrequency = cpu_to_be32(memory_level->MclkFrequency);
memory_level->ActivityLevel = cpu_to_be16(memory_level->ActivityLevel);
memory_level->MpllFuncCntl = cpu_to_be32(memory_level->MpllFuncCntl);
memory_level->MpllFuncCntl_1 = cpu_to_be32(memory_level->MpllFuncCntl_1);
memory_level->MpllFuncCntl_2 = cpu_to_be32(memory_level->MpllFuncCntl_2);
memory_level->MpllAdFuncCntl = cpu_to_be32(memory_level->MpllAdFuncCntl);
memory_level->MpllDqFuncCntl = cpu_to_be32(memory_level->MpllDqFuncCntl);
memory_level->MclkPwrmgtCntl = cpu_to_be32(memory_level->MclkPwrmgtCntl);
memory_level->DllCntl = cpu_to_be32(memory_level->DllCntl);
memory_level->MpllSs1 = cpu_to_be32(memory_level->MpllSs1);
memory_level->MpllSs2 = cpu_to_be32(memory_level->MpllSs2);
return 0;
}
static int ci_populate_smc_acpi_level(struct amdgpu_device *adev,
SMU7_Discrete_DpmTable *table)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct atom_clock_dividers dividers;
SMU7_Discrete_VoltageLevel voltage_level;
u32 spll_func_cntl = pi->clock_registers.cg_spll_func_cntl;
u32 spll_func_cntl_2 = pi->clock_registers.cg_spll_func_cntl_2;
u32 dll_cntl = pi->clock_registers.dll_cntl;
u32 mclk_pwrmgt_cntl = pi->clock_registers.mclk_pwrmgt_cntl;
int ret;
table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
if (pi->acpi_vddc)
table->ACPILevel.MinVddc = cpu_to_be32(pi->acpi_vddc * VOLTAGE_SCALE);
else
table->ACPILevel.MinVddc = cpu_to_be32(pi->min_vddc_in_pp_table * VOLTAGE_SCALE);
table->ACPILevel.MinVddcPhases = pi->vddc_phase_shed_control ? 0 : 1;
table->ACPILevel.SclkFrequency = adev->clock.spll.reference_freq;
ret = amdgpu_atombios_get_clock_dividers(adev,
COMPUTE_GPUCLK_INPUT_FLAG_SCLK,
table->ACPILevel.SclkFrequency, false, &dividers);
if (ret)
return ret;
table->ACPILevel.SclkDid = (u8)dividers.post_divider;
table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
table->ACPILevel.DeepSleepDivId = 0;
spll_func_cntl &= ~CG_SPLL_FUNC_CNTL__SPLL_PWRON_MASK;
spll_func_cntl |= CG_SPLL_FUNC_CNTL__SPLL_RESET_MASK;
spll_func_cntl_2 &= ~CG_SPLL_FUNC_CNTL_2__SCLK_MUX_SEL_MASK;
spll_func_cntl_2 |= (4 << CG_SPLL_FUNC_CNTL_2__SCLK_MUX_SEL__SHIFT);
table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
table->ACPILevel.CgSpllFuncCntl3 = pi->clock_registers.cg_spll_func_cntl_3;
table->ACPILevel.CgSpllFuncCntl4 = pi->clock_registers.cg_spll_func_cntl_4;
table->ACPILevel.SpllSpreadSpectrum = pi->clock_registers.cg_spll_spread_spectrum;
table->ACPILevel.SpllSpreadSpectrum2 = pi->clock_registers.cg_spll_spread_spectrum_2;
table->ACPILevel.CcPwrDynRm = 0;
table->ACPILevel.CcPwrDynRm1 = 0;
table->ACPILevel.Flags = cpu_to_be32(table->ACPILevel.Flags);
table->ACPILevel.MinVddcPhases = cpu_to_be32(table->ACPILevel.MinVddcPhases);
table->ACPILevel.SclkFrequency = cpu_to_be32(table->ACPILevel.SclkFrequency);
table->ACPILevel.CgSpllFuncCntl = cpu_to_be32(table->ACPILevel.CgSpllFuncCntl);
table->ACPILevel.CgSpllFuncCntl2 = cpu_to_be32(table->ACPILevel.CgSpllFuncCntl2);
table->ACPILevel.CgSpllFuncCntl3 = cpu_to_be32(table->ACPILevel.CgSpllFuncCntl3);
table->ACPILevel.CgSpllFuncCntl4 = cpu_to_be32(table->ACPILevel.CgSpllFuncCntl4);
table->ACPILevel.SpllSpreadSpectrum = cpu_to_be32(table->ACPILevel.SpllSpreadSpectrum);
table->ACPILevel.SpllSpreadSpectrum2 = cpu_to_be32(table->ACPILevel.SpllSpreadSpectrum2);
table->ACPILevel.CcPwrDynRm = cpu_to_be32(table->ACPILevel.CcPwrDynRm);
table->ACPILevel.CcPwrDynRm1 = cpu_to_be32(table->ACPILevel.CcPwrDynRm1);
table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
if (pi->vddci_control != CISLANDS_VOLTAGE_CONTROL_NONE) {
if (pi->acpi_vddci)
table->MemoryACPILevel.MinVddci =
cpu_to_be32(pi->acpi_vddci * VOLTAGE_SCALE);
else
table->MemoryACPILevel.MinVddci =
cpu_to_be32(pi->min_vddci_in_pp_table * VOLTAGE_SCALE);
}
if (ci_populate_mvdd_value(adev, 0, &voltage_level))
table->MemoryACPILevel.MinMvdd = 0;
else
table->MemoryACPILevel.MinMvdd =
cpu_to_be32(voltage_level.Voltage * VOLTAGE_SCALE);
mclk_pwrmgt_cntl |= MCLK_PWRMGT_CNTL__MRDCK0_RESET_MASK |
MCLK_PWRMGT_CNTL__MRDCK1_RESET_MASK;
mclk_pwrmgt_cntl &= ~(MCLK_PWRMGT_CNTL__MRDCK0_PDNB_MASK |
MCLK_PWRMGT_CNTL__MRDCK1_PDNB_MASK);
dll_cntl &= ~(DLL_CNTL__MRDCK0_BYPASS_MASK | DLL_CNTL__MRDCK1_BYPASS_MASK);
table->MemoryACPILevel.DllCntl = cpu_to_be32(dll_cntl);
table->MemoryACPILevel.MclkPwrmgtCntl = cpu_to_be32(mclk_pwrmgt_cntl);
table->MemoryACPILevel.MpllAdFuncCntl =
cpu_to_be32(pi->clock_registers.mpll_ad_func_cntl);
table->MemoryACPILevel.MpllDqFuncCntl =
cpu_to_be32(pi->clock_registers.mpll_dq_func_cntl);
table->MemoryACPILevel.MpllFuncCntl =
cpu_to_be32(pi->clock_registers.mpll_func_cntl);
table->MemoryACPILevel.MpllFuncCntl_1 =
cpu_to_be32(pi->clock_registers.mpll_func_cntl_1);
table->MemoryACPILevel.MpllFuncCntl_2 =
cpu_to_be32(pi->clock_registers.mpll_func_cntl_2);
table->MemoryACPILevel.MpllSs1 = cpu_to_be32(pi->clock_registers.mpll_ss1);
table->MemoryACPILevel.MpllSs2 = cpu_to_be32(pi->clock_registers.mpll_ss2);
table->MemoryACPILevel.EnabledForThrottle = 0;
table->MemoryACPILevel.EnabledForActivity = 0;
table->MemoryACPILevel.UpH = 0;
table->MemoryACPILevel.DownH = 100;
table->MemoryACPILevel.VoltageDownH = 0;
table->MemoryACPILevel.ActivityLevel =
cpu_to_be16((u16)pi->mclk_activity_target);
table->MemoryACPILevel.StutterEnable = false;
table->MemoryACPILevel.StrobeEnable = false;
table->MemoryACPILevel.EdcReadEnable = false;
table->MemoryACPILevel.EdcWriteEnable = false;
table->MemoryACPILevel.RttEnable = false;
return 0;
}
static int ci_enable_ulv(struct amdgpu_device *adev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_ulv_parm *ulv = &pi->ulv;
if (ulv->supported) {
if (enable)
return (amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_EnableULV) == PPSMC_Result_OK) ?
0 : -EINVAL;
else
return (amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_DisableULV) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
return 0;
}
static int ci_populate_ulv_level(struct amdgpu_device *adev,
SMU7_Discrete_Ulv *state)
{
struct ci_power_info *pi = ci_get_pi(adev);
u16 ulv_voltage = adev->pm.dpm.backbias_response_time;
state->CcPwrDynRm = 0;
state->CcPwrDynRm1 = 0;
if (ulv_voltage == 0) {
pi->ulv.supported = false;
return 0;
}
if (pi->voltage_control != CISLANDS_VOLTAGE_CONTROL_BY_SVID2) {
if (ulv_voltage > adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[0].v)
state->VddcOffset = 0;
else
state->VddcOffset =
adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[0].v - ulv_voltage;
} else {
if (ulv_voltage > adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[0].v)
state->VddcOffsetVid = 0;
else
state->VddcOffsetVid = (u8)
((adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[0].v - ulv_voltage) *
VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
}
state->VddcPhase = pi->vddc_phase_shed_control ? 0 : 1;
state->CcPwrDynRm = cpu_to_be32(state->CcPwrDynRm);
state->CcPwrDynRm1 = cpu_to_be32(state->CcPwrDynRm1);
state->VddcOffset = cpu_to_be16(state->VddcOffset);
return 0;
}
static int ci_calculate_sclk_params(struct amdgpu_device *adev,
u32 engine_clock,
SMU7_Discrete_GraphicsLevel *sclk)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct atom_clock_dividers dividers;
u32 spll_func_cntl_3 = pi->clock_registers.cg_spll_func_cntl_3;
u32 spll_func_cntl_4 = pi->clock_registers.cg_spll_func_cntl_4;
u32 cg_spll_spread_spectrum = pi->clock_registers.cg_spll_spread_spectrum;
u32 cg_spll_spread_spectrum_2 = pi->clock_registers.cg_spll_spread_spectrum_2;
u32 reference_clock = adev->clock.spll.reference_freq;
u32 reference_divider;
u32 fbdiv;
int ret;
ret = amdgpu_atombios_get_clock_dividers(adev,
COMPUTE_GPUCLK_INPUT_FLAG_SCLK,
engine_clock, false, &dividers);
if (ret)
return ret;
reference_divider = 1 + dividers.ref_div;
fbdiv = dividers.fb_div & 0x3FFFFFF;
spll_func_cntl_3 &= ~CG_SPLL_FUNC_CNTL_3__SPLL_FB_DIV_MASK;
spll_func_cntl_3 |= (fbdiv << CG_SPLL_FUNC_CNTL_3__SPLL_FB_DIV__SHIFT);
spll_func_cntl_3 |= CG_SPLL_FUNC_CNTL_3__SPLL_DITHEN_MASK;
if (pi->caps_sclk_ss_support) {
struct amdgpu_atom_ss ss;
u32 vco_freq = engine_clock * dividers.post_div;
if (amdgpu_atombios_get_asic_ss_info(adev, &ss,
ASIC_INTERNAL_ENGINE_SS, vco_freq)) {
u32 clk_s = reference_clock * 5 / (reference_divider * ss.rate);
u32 clk_v = 4 * ss.percentage * fbdiv / (clk_s * 10000);
cg_spll_spread_spectrum &= ~(CG_SPLL_SPREAD_SPECTRUM__CLKS_MASK | CG_SPLL_SPREAD_SPECTRUM__SSEN_MASK);
cg_spll_spread_spectrum |= (clk_s << CG_SPLL_SPREAD_SPECTRUM__CLKS__SHIFT);
cg_spll_spread_spectrum |= (1 << CG_SPLL_SPREAD_SPECTRUM__SSEN__SHIFT);
cg_spll_spread_spectrum_2 &= ~CG_SPLL_SPREAD_SPECTRUM_2__CLKV_MASK;
cg_spll_spread_spectrum_2 |= (clk_v << CG_SPLL_SPREAD_SPECTRUM_2__CLKV__SHIFT);
}
}
sclk->SclkFrequency = engine_clock;
sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
sclk->SclkDid = (u8)dividers.post_divider;
return 0;
}
static int ci_populate_single_graphic_level(struct amdgpu_device *adev,
u32 engine_clock,
u16 sclk_activity_level_t,
SMU7_Discrete_GraphicsLevel *graphic_level)
{
struct ci_power_info *pi = ci_get_pi(adev);
int ret;
ret = ci_calculate_sclk_params(adev, engine_clock, graphic_level);
if (ret)
return ret;
ret = ci_get_dependency_volt_by_clk(adev,
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk,
engine_clock, &graphic_level->MinVddc);
if (ret)
return ret;
graphic_level->SclkFrequency = engine_clock;
graphic_level->Flags = 0;
graphic_level->MinVddcPhases = 1;
if (pi->vddc_phase_shed_control)
ci_populate_phase_value_based_on_sclk(adev,
&adev->pm.dpm.dyn_state.phase_shedding_limits_table,
engine_clock,
&graphic_level->MinVddcPhases);
graphic_level->ActivityLevel = sclk_activity_level_t;
graphic_level->CcPwrDynRm = 0;
graphic_level->CcPwrDynRm1 = 0;
graphic_level->EnabledForThrottle = 1;
graphic_level->UpH = 0;
graphic_level->DownH = 0;
graphic_level->VoltageDownH = 0;
graphic_level->PowerThrottle = 0;
if (pi->caps_sclk_ds)
graphic_level->DeepSleepDivId = ci_get_sleep_divider_id_from_clock(engine_clock,
CISLAND_MINIMUM_ENGINE_CLOCK);
graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
graphic_level->Flags = cpu_to_be32(graphic_level->Flags);
graphic_level->MinVddc = cpu_to_be32(graphic_level->MinVddc * VOLTAGE_SCALE);
graphic_level->MinVddcPhases = cpu_to_be32(graphic_level->MinVddcPhases);
graphic_level->SclkFrequency = cpu_to_be32(graphic_level->SclkFrequency);
graphic_level->ActivityLevel = cpu_to_be16(graphic_level->ActivityLevel);
graphic_level->CgSpllFuncCntl3 = cpu_to_be32(graphic_level->CgSpllFuncCntl3);
graphic_level->CgSpllFuncCntl4 = cpu_to_be32(graphic_level->CgSpllFuncCntl4);
graphic_level->SpllSpreadSpectrum = cpu_to_be32(graphic_level->SpllSpreadSpectrum);
graphic_level->SpllSpreadSpectrum2 = cpu_to_be32(graphic_level->SpllSpreadSpectrum2);
graphic_level->CcPwrDynRm = cpu_to_be32(graphic_level->CcPwrDynRm);
graphic_level->CcPwrDynRm1 = cpu_to_be32(graphic_level->CcPwrDynRm1);
return 0;
}
static int ci_populate_all_graphic_levels(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_dpm_table *dpm_table = &pi->dpm_table;
u32 level_array_address = pi->dpm_table_start +
offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
u32 level_array_size = sizeof(SMU7_Discrete_GraphicsLevel) *
SMU7_MAX_LEVELS_GRAPHICS;
SMU7_Discrete_GraphicsLevel *levels = pi->smc_state_table.GraphicsLevel;
u32 i, ret;
memset(levels, 0, level_array_size);
for (i = 0; i < dpm_table->sclk_table.count; i++) {
ret = ci_populate_single_graphic_level(adev,
dpm_table->sclk_table.dpm_levels[i].value,
(u16)pi->activity_target[i],
&pi->smc_state_table.GraphicsLevel[i]);
if (ret)
return ret;
if (i > 1)
pi->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
if (i == (dpm_table->sclk_table.count - 1))
pi->smc_state_table.GraphicsLevel[i].DisplayWatermark =
PPSMC_DISPLAY_WATERMARK_HIGH;
}
pi->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
pi->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
pi->dpm_level_enable_mask.sclk_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
ret = amdgpu_ci_copy_bytes_to_smc(adev, level_array_address,
(u8 *)levels, level_array_size,
pi->sram_end);
if (ret)
return ret;
return 0;
}
static int ci_populate_ulv_state(struct amdgpu_device *adev,
SMU7_Discrete_Ulv *ulv_level)
{
return ci_populate_ulv_level(adev, ulv_level);
}
static int ci_populate_all_memory_levels(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_dpm_table *dpm_table = &pi->dpm_table;
u32 level_array_address = pi->dpm_table_start +
offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
u32 level_array_size = sizeof(SMU7_Discrete_MemoryLevel) *
SMU7_MAX_LEVELS_MEMORY;
SMU7_Discrete_MemoryLevel *levels = pi->smc_state_table.MemoryLevel;
u32 i, ret;
memset(levels, 0, level_array_size);
for (i = 0; i < dpm_table->mclk_table.count; i++) {
if (dpm_table->mclk_table.dpm_levels[i].value == 0)
return -EINVAL;
ret = ci_populate_single_memory_level(adev,
dpm_table->mclk_table.dpm_levels[i].value,
&pi->smc_state_table.MemoryLevel[i]);
if (ret)
return ret;
}
pi->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
if ((dpm_table->mclk_table.count >= 2) &&
((adev->pdev->device == 0x67B0) || (adev->pdev->device == 0x67B1))) {
pi->smc_state_table.MemoryLevel[1].MinVddc =
pi->smc_state_table.MemoryLevel[0].MinVddc;
pi->smc_state_table.MemoryLevel[1].MinVddcPhases =
pi->smc_state_table.MemoryLevel[0].MinVddcPhases;
}
pi->smc_state_table.MemoryLevel[0].ActivityLevel = cpu_to_be16(0x1F);
pi->smc_state_table.MemoryDpmLevelCount = (u8)dpm_table->mclk_table.count;
pi->dpm_level_enable_mask.mclk_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
pi->smc_state_table.MemoryLevel[dpm_table->mclk_table.count - 1].DisplayWatermark =
PPSMC_DISPLAY_WATERMARK_HIGH;
ret = amdgpu_ci_copy_bytes_to_smc(adev, level_array_address,
(u8 *)levels, level_array_size,
pi->sram_end);
if (ret)
return ret;
return 0;
}
static void ci_reset_single_dpm_table(struct amdgpu_device *adev,
struct ci_single_dpm_table* dpm_table,
u32 count)
{
u32 i;
dpm_table->count = count;
for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++)
dpm_table->dpm_levels[i].enabled = false;
}
static void ci_setup_pcie_table_entry(struct ci_single_dpm_table* dpm_table,
u32 index, u32 pcie_gen, u32 pcie_lanes)
{
dpm_table->dpm_levels[index].value = pcie_gen;
dpm_table->dpm_levels[index].param1 = pcie_lanes;
dpm_table->dpm_levels[index].enabled = true;
}
static int ci_setup_default_pcie_tables(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
if (!pi->use_pcie_performance_levels && !pi->use_pcie_powersaving_levels)
return -EINVAL;
if (pi->use_pcie_performance_levels && !pi->use_pcie_powersaving_levels) {
pi->pcie_gen_powersaving = pi->pcie_gen_performance;
pi->pcie_lane_powersaving = pi->pcie_lane_performance;
} else if (!pi->use_pcie_performance_levels && pi->use_pcie_powersaving_levels) {
pi->pcie_gen_performance = pi->pcie_gen_powersaving;
pi->pcie_lane_performance = pi->pcie_lane_powersaving;
}
ci_reset_single_dpm_table(adev,
&pi->dpm_table.pcie_speed_table,
SMU7_MAX_LEVELS_LINK);
if (adev->asic_type == CHIP_BONAIRE)
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 0,
pi->pcie_gen_powersaving.min,
pi->pcie_lane_powersaving.max);
else
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 0,
pi->pcie_gen_powersaving.min,
pi->pcie_lane_powersaving.min);
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 1,
pi->pcie_gen_performance.min,
pi->pcie_lane_performance.min);
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 2,
pi->pcie_gen_powersaving.min,
pi->pcie_lane_powersaving.max);
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 3,
pi->pcie_gen_performance.min,
pi->pcie_lane_performance.max);
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 4,
pi->pcie_gen_powersaving.max,
pi->pcie_lane_powersaving.max);
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 5,
pi->pcie_gen_performance.max,
pi->pcie_lane_performance.max);
pi->dpm_table.pcie_speed_table.count = 6;
return 0;
}
static int ci_setup_default_dpm_tables(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct amdgpu_clock_voltage_dependency_table *allowed_sclk_vddc_table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
struct amdgpu_clock_voltage_dependency_table *allowed_mclk_table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_mclk;
struct amdgpu_cac_leakage_table *std_voltage_table =
&adev->pm.dpm.dyn_state.cac_leakage_table;
u32 i;
if (allowed_sclk_vddc_table == NULL)
return -EINVAL;
if (allowed_sclk_vddc_table->count < 1)
return -EINVAL;
if (allowed_mclk_table == NULL)
return -EINVAL;
if (allowed_mclk_table->count < 1)
return -EINVAL;
memset(&pi->dpm_table, 0, sizeof(struct ci_dpm_table));
ci_reset_single_dpm_table(adev,
&pi->dpm_table.sclk_table,
SMU7_MAX_LEVELS_GRAPHICS);
ci_reset_single_dpm_table(adev,
&pi->dpm_table.mclk_table,
SMU7_MAX_LEVELS_MEMORY);
ci_reset_single_dpm_table(adev,
&pi->dpm_table.vddc_table,
SMU7_MAX_LEVELS_VDDC);
ci_reset_single_dpm_table(adev,
&pi->dpm_table.vddci_table,
SMU7_MAX_LEVELS_VDDCI);
ci_reset_single_dpm_table(adev,
&pi->dpm_table.mvdd_table,
SMU7_MAX_LEVELS_MVDD);
pi->dpm_table.sclk_table.count = 0;
for (i = 0; i < allowed_sclk_vddc_table->count; i++) {
if ((i == 0) ||
(pi->dpm_table.sclk_table.dpm_levels[pi->dpm_table.sclk_table.count-1].value !=
allowed_sclk_vddc_table->entries[i].clk)) {
pi->dpm_table.sclk_table.dpm_levels[pi->dpm_table.sclk_table.count].value =
allowed_sclk_vddc_table->entries[i].clk;
pi->dpm_table.sclk_table.dpm_levels[pi->dpm_table.sclk_table.count].enabled =
(i == 0) ? true : false;
pi->dpm_table.sclk_table.count++;
}
}
pi->dpm_table.mclk_table.count = 0;
for (i = 0; i < allowed_mclk_table->count; i++) {
if ((i == 0) ||
(pi->dpm_table.mclk_table.dpm_levels[pi->dpm_table.mclk_table.count-1].value !=
allowed_mclk_table->entries[i].clk)) {
pi->dpm_table.mclk_table.dpm_levels[pi->dpm_table.mclk_table.count].value =
allowed_mclk_table->entries[i].clk;
pi->dpm_table.mclk_table.dpm_levels[pi->dpm_table.mclk_table.count].enabled =
(i == 0) ? true : false;
pi->dpm_table.mclk_table.count++;
}
}
for (i = 0; i < allowed_sclk_vddc_table->count; i++) {
pi->dpm_table.vddc_table.dpm_levels[i].value =
allowed_sclk_vddc_table->entries[i].v;
pi->dpm_table.vddc_table.dpm_levels[i].param1 =
std_voltage_table->entries[i].leakage;
pi->dpm_table.vddc_table.dpm_levels[i].enabled = true;
}
pi->dpm_table.vddc_table.count = allowed_sclk_vddc_table->count;
allowed_mclk_table = &adev->pm.dpm.dyn_state.vddci_dependency_on_mclk;
if (allowed_mclk_table) {
for (i = 0; i < allowed_mclk_table->count; i++) {
pi->dpm_table.vddci_table.dpm_levels[i].value =
allowed_mclk_table->entries[i].v;
pi->dpm_table.vddci_table.dpm_levels[i].enabled = true;
}
pi->dpm_table.vddci_table.count = allowed_mclk_table->count;
}
allowed_mclk_table = &adev->pm.dpm.dyn_state.mvdd_dependency_on_mclk;
if (allowed_mclk_table) {
for (i = 0; i < allowed_mclk_table->count; i++) {
pi->dpm_table.mvdd_table.dpm_levels[i].value =
allowed_mclk_table->entries[i].v;
pi->dpm_table.mvdd_table.dpm_levels[i].enabled = true;
}
pi->dpm_table.mvdd_table.count = allowed_mclk_table->count;
}
ci_setup_default_pcie_tables(adev);
/* save a copy of the default DPM table */
memcpy(&(pi->golden_dpm_table), &(pi->dpm_table),
sizeof(struct ci_dpm_table));
return 0;
}
static int ci_find_boot_level(struct ci_single_dpm_table *table,
u32 value, u32 *boot_level)
{
u32 i;
int ret = -EINVAL;
for(i = 0; i < table->count; i++) {
if (value == table->dpm_levels[i].value) {
*boot_level = i;
ret = 0;
}
}
return ret;
}
static int ci_init_smc_table(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_ulv_parm *ulv = &pi->ulv;
struct amdgpu_ps *amdgpu_boot_state = adev->pm.dpm.boot_ps;
SMU7_Discrete_DpmTable *table = &pi->smc_state_table;
int ret;
ret = ci_setup_default_dpm_tables(adev);
if (ret)
return ret;
if (pi->voltage_control != CISLANDS_VOLTAGE_CONTROL_NONE)
ci_populate_smc_voltage_tables(adev, table);
ci_init_fps_limits(adev);
if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_HARDWAREDC)
table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC)
table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
if (adev->mc.vram_type == AMDGPU_VRAM_TYPE_GDDR5)
table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
if (ulv->supported) {
ret = ci_populate_ulv_state(adev, &pi->smc_state_table.Ulv);
if (ret)
return ret;
WREG32_SMC(ixCG_ULV_PARAMETER, ulv->cg_ulv_parameter);
}
ret = ci_populate_all_graphic_levels(adev);
if (ret)
return ret;
ret = ci_populate_all_memory_levels(adev);
if (ret)
return ret;
ci_populate_smc_link_level(adev, table);
ret = ci_populate_smc_acpi_level(adev, table);
if (ret)
return ret;
ret = ci_populate_smc_vce_level(adev, table);
if (ret)
return ret;
ret = ci_populate_smc_acp_level(adev, table);
if (ret)
return ret;
ret = ci_populate_smc_samu_level(adev, table);
if (ret)
return ret;
ret = ci_do_program_memory_timing_parameters(adev);
if (ret)
return ret;
ret = ci_populate_smc_uvd_level(adev, table);
if (ret)
return ret;
table->UvdBootLevel = 0;
table->VceBootLevel = 0;
table->AcpBootLevel = 0;
table->SamuBootLevel = 0;
table->GraphicsBootLevel = 0;
table->MemoryBootLevel = 0;
ret = ci_find_boot_level(&pi->dpm_table.sclk_table,
pi->vbios_boot_state.sclk_bootup_value,
(u32 *)&pi->smc_state_table.GraphicsBootLevel);
ret = ci_find_boot_level(&pi->dpm_table.mclk_table,
pi->vbios_boot_state.mclk_bootup_value,
(u32 *)&pi->smc_state_table.MemoryBootLevel);
table->BootVddc = pi->vbios_boot_state.vddc_bootup_value;
table->BootVddci = pi->vbios_boot_state.vddci_bootup_value;
table->BootMVdd = pi->vbios_boot_state.mvdd_bootup_value;
ci_populate_smc_initial_state(adev, amdgpu_boot_state);
ret = ci_populate_bapm_parameters_in_dpm_table(adev);
if (ret)
return ret;
table->UVDInterval = 1;
table->VCEInterval = 1;
table->ACPInterval = 1;
table->SAMUInterval = 1;
table->GraphicsVoltageChangeEnable = 1;
table->GraphicsThermThrottleEnable = 1;
table->GraphicsInterval = 1;
table->VoltageInterval = 1;
table->ThermalInterval = 1;
table->TemperatureLimitHigh = (u16)((pi->thermal_temp_setting.temperature_high *
CISLANDS_Q88_FORMAT_CONVERSION_UNIT) / 1000);
table->TemperatureLimitLow = (u16)((pi->thermal_temp_setting.temperature_low *
CISLANDS_Q88_FORMAT_CONVERSION_UNIT) / 1000);
table->MemoryVoltageChangeEnable = 1;
table->MemoryInterval = 1;
table->VoltageResponseTime = 0;
table->VddcVddciDelta = 4000;
table->PhaseResponseTime = 0;
table->MemoryThermThrottleEnable = 1;
table->PCIeBootLinkLevel = pi->dpm_table.pcie_speed_table.count - 1;
table->PCIeGenInterval = 1;
if (pi->voltage_control == CISLANDS_VOLTAGE_CONTROL_BY_SVID2)
table->SVI2Enable = 1;
else
table->SVI2Enable = 0;
table->ThermGpio = 17;
table->SclkStepSize = 0x4000;
table->SystemFlags = cpu_to_be32(table->SystemFlags);
table->SmioMaskVddcVid = cpu_to_be32(table->SmioMaskVddcVid);
table->SmioMaskVddcPhase = cpu_to_be32(table->SmioMaskVddcPhase);
table->SmioMaskVddciVid = cpu_to_be32(table->SmioMaskVddciVid);
table->SmioMaskMvddVid = cpu_to_be32(table->SmioMaskMvddVid);
table->SclkStepSize = cpu_to_be32(table->SclkStepSize);
table->TemperatureLimitHigh = cpu_to_be16(table->TemperatureLimitHigh);
table->TemperatureLimitLow = cpu_to_be16(table->TemperatureLimitLow);
table->VddcVddciDelta = cpu_to_be16(table->VddcVddciDelta);
table->VoltageResponseTime = cpu_to_be16(table->VoltageResponseTime);
table->PhaseResponseTime = cpu_to_be16(table->PhaseResponseTime);
table->BootVddc = cpu_to_be16(table->BootVddc * VOLTAGE_SCALE);
table->BootVddci = cpu_to_be16(table->BootVddci * VOLTAGE_SCALE);
table->BootMVdd = cpu_to_be16(table->BootMVdd * VOLTAGE_SCALE);
ret = amdgpu_ci_copy_bytes_to_smc(adev,
pi->dpm_table_start +
offsetof(SMU7_Discrete_DpmTable, SystemFlags),
(u8 *)&table->SystemFlags,
sizeof(SMU7_Discrete_DpmTable) - 3 * sizeof(SMU7_PIDController),
pi->sram_end);
if (ret)
return ret;
return 0;
}
static void ci_trim_single_dpm_states(struct amdgpu_device *adev,
struct ci_single_dpm_table *dpm_table,
u32 low_limit, u32 high_limit)
{
u32 i;
for (i = 0; i < dpm_table->count; i++) {
if ((dpm_table->dpm_levels[i].value < low_limit) ||
(dpm_table->dpm_levels[i].value > high_limit))
dpm_table->dpm_levels[i].enabled = false;
else
dpm_table->dpm_levels[i].enabled = true;
}
}
static void ci_trim_pcie_dpm_states(struct amdgpu_device *adev,
u32 speed_low, u32 lanes_low,
u32 speed_high, u32 lanes_high)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_single_dpm_table *pcie_table = &pi->dpm_table.pcie_speed_table;
u32 i, j;
for (i = 0; i < pcie_table->count; i++) {
if ((pcie_table->dpm_levels[i].value < speed_low) ||
(pcie_table->dpm_levels[i].param1 < lanes_low) ||
(pcie_table->dpm_levels[i].value > speed_high) ||
(pcie_table->dpm_levels[i].param1 > lanes_high))
pcie_table->dpm_levels[i].enabled = false;
else
pcie_table->dpm_levels[i].enabled = true;
}
for (i = 0; i < pcie_table->count; i++) {
if (pcie_table->dpm_levels[i].enabled) {
for (j = i + 1; j < pcie_table->count; j++) {
if (pcie_table->dpm_levels[j].enabled) {
if ((pcie_table->dpm_levels[i].value == pcie_table->dpm_levels[j].value) &&
(pcie_table->dpm_levels[i].param1 == pcie_table->dpm_levels[j].param1))
pcie_table->dpm_levels[j].enabled = false;
}
}
}
}
}
static int ci_trim_dpm_states(struct amdgpu_device *adev,
struct amdgpu_ps *amdgpu_state)
{
struct ci_ps *state = ci_get_ps(amdgpu_state);
struct ci_power_info *pi = ci_get_pi(adev);
u32 high_limit_count;
if (state->performance_level_count < 1)
return -EINVAL;
if (state->performance_level_count == 1)
high_limit_count = 0;
else
high_limit_count = 1;
ci_trim_single_dpm_states(adev,
&pi->dpm_table.sclk_table,
state->performance_levels[0].sclk,
state->performance_levels[high_limit_count].sclk);
ci_trim_single_dpm_states(adev,
&pi->dpm_table.mclk_table,
state->performance_levels[0].mclk,
state->performance_levels[high_limit_count].mclk);
ci_trim_pcie_dpm_states(adev,
state->performance_levels[0].pcie_gen,
state->performance_levels[0].pcie_lane,
state->performance_levels[high_limit_count].pcie_gen,
state->performance_levels[high_limit_count].pcie_lane);
return 0;
}
static int ci_apply_disp_minimum_voltage_request(struct amdgpu_device *adev)
{
struct amdgpu_clock_voltage_dependency_table *disp_voltage_table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk;
struct amdgpu_clock_voltage_dependency_table *vddc_table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
u32 requested_voltage = 0;
u32 i;
if (disp_voltage_table == NULL)
return -EINVAL;
if (!disp_voltage_table->count)
return -EINVAL;
for (i = 0; i < disp_voltage_table->count; i++) {
if (adev->clock.current_dispclk == disp_voltage_table->entries[i].clk)
requested_voltage = disp_voltage_table->entries[i].v;
}
for (i = 0; i < vddc_table->count; i++) {
if (requested_voltage <= vddc_table->entries[i].v) {
requested_voltage = vddc_table->entries[i].v;
return (amdgpu_ci_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_VddC_Request,
requested_voltage * VOLTAGE_SCALE) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
}
return -EINVAL;
}
static int ci_upload_dpm_level_enable_mask(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
PPSMC_Result result;
ci_apply_disp_minimum_voltage_request(adev);
if (!pi->sclk_dpm_key_disabled) {
if (pi->dpm_level_enable_mask.sclk_dpm_enable_mask) {
result = amdgpu_ci_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SCLKDPM_SetEnabledMask,
pi->dpm_level_enable_mask.sclk_dpm_enable_mask);
if (result != PPSMC_Result_OK)
return -EINVAL;
}
}
if (!pi->mclk_dpm_key_disabled) {
if (pi->dpm_level_enable_mask.mclk_dpm_enable_mask) {
result = amdgpu_ci_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_MCLKDPM_SetEnabledMask,
pi->dpm_level_enable_mask.mclk_dpm_enable_mask);
if (result != PPSMC_Result_OK)
return -EINVAL;
}
}
#if 0
if (!pi->pcie_dpm_key_disabled) {
if (pi->dpm_level_enable_mask.pcie_dpm_enable_mask) {
result = amdgpu_ci_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_PCIeDPM_SetEnabledMask,
pi->dpm_level_enable_mask.pcie_dpm_enable_mask);
if (result != PPSMC_Result_OK)
return -EINVAL;
}
}
#endif
return 0;
}
static void ci_find_dpm_states_clocks_in_dpm_table(struct amdgpu_device *adev,
struct amdgpu_ps *amdgpu_state)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_ps *state = ci_get_ps(amdgpu_state);
struct ci_single_dpm_table *sclk_table = &pi->dpm_table.sclk_table;
u32 sclk = state->performance_levels[state->performance_level_count-1].sclk;
struct ci_single_dpm_table *mclk_table = &pi->dpm_table.mclk_table;
u32 mclk = state->performance_levels[state->performance_level_count-1].mclk;
u32 i;
pi->need_update_smu7_dpm_table = 0;
for (i = 0; i < sclk_table->count; i++) {
if (sclk == sclk_table->dpm_levels[i].value)
break;
}
if (i >= sclk_table->count) {
pi->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
} else {
/* XXX check display min clock requirements */
if (CISLAND_MINIMUM_ENGINE_CLOCK != CISLAND_MINIMUM_ENGINE_CLOCK)
pi->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
}
for (i = 0; i < mclk_table->count; i++) {
if (mclk == mclk_table->dpm_levels[i].value)
break;
}
if (i >= mclk_table->count)
pi->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
if (adev->pm.dpm.current_active_crtc_count !=
adev->pm.dpm.new_active_crtc_count)
pi->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
}
static int ci_populate_and_upload_sclk_mclk_dpm_levels(struct amdgpu_device *adev,
struct amdgpu_ps *amdgpu_state)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_ps *state = ci_get_ps(amdgpu_state);
u32 sclk = state->performance_levels[state->performance_level_count-1].sclk;
u32 mclk = state->performance_levels[state->performance_level_count-1].mclk;
struct ci_dpm_table *dpm_table = &pi->dpm_table;
int ret;
if (!pi->need_update_smu7_dpm_table)
return 0;
if (pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK)
dpm_table->sclk_table.dpm_levels[dpm_table->sclk_table.count-1].value = sclk;
if (pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)
dpm_table->mclk_table.dpm_levels[dpm_table->mclk_table.count-1].value = mclk;
if (pi->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK)) {
ret = ci_populate_all_graphic_levels(adev);
if (ret)
return ret;
}
if (pi->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) {
ret = ci_populate_all_memory_levels(adev);
if (ret)
return ret;
}
return 0;
}
static int ci_enable_uvd_dpm(struct amdgpu_device *adev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(adev);
const struct amdgpu_clock_and_voltage_limits *max_limits;
int i;
if (adev->pm.dpm.ac_power)
max_limits = &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
else
max_limits = &adev->pm.dpm.dyn_state.max_clock_voltage_on_dc;
if (enable) {
pi->dpm_level_enable_mask.uvd_dpm_enable_mask = 0;
for (i = adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count - 1; i >= 0; i--) {
if (adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].v <= max_limits->vddc) {
pi->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i;
if (!pi->caps_uvd_dpm)
break;
}
}
amdgpu_ci_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_UVDDPM_SetEnabledMask,
pi->dpm_level_enable_mask.uvd_dpm_enable_mask);
if (pi->last_mclk_dpm_enable_mask & 0x1) {
pi->uvd_enabled = true;
pi->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
amdgpu_ci_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_MCLKDPM_SetEnabledMask,
pi->dpm_level_enable_mask.mclk_dpm_enable_mask);
}
} else {
if (pi->last_mclk_dpm_enable_mask & 0x1) {
pi->uvd_enabled = false;
pi->dpm_level_enable_mask.mclk_dpm_enable_mask |= 1;
amdgpu_ci_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_MCLKDPM_SetEnabledMask,
pi->dpm_level_enable_mask.mclk_dpm_enable_mask);
}
}
return (amdgpu_ci_send_msg_to_smc(adev, enable ?
PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
static int ci_enable_vce_dpm(struct amdgpu_device *adev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(adev);
const struct amdgpu_clock_and_voltage_limits *max_limits;
int i;
if (adev->pm.dpm.ac_power)
max_limits = &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
else
max_limits = &adev->pm.dpm.dyn_state.max_clock_voltage_on_dc;
if (enable) {
pi->dpm_level_enable_mask.vce_dpm_enable_mask = 0;
for (i = adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.count - 1; i >= 0; i--) {
if (adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].v <= max_limits->vddc) {
pi->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i;
if (!pi->caps_vce_dpm)
break;
}
}
amdgpu_ci_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_VCEDPM_SetEnabledMask,
pi->dpm_level_enable_mask.vce_dpm_enable_mask);
}
return (amdgpu_ci_send_msg_to_smc(adev, enable ?
PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
#if 0
static int ci_enable_samu_dpm(struct amdgpu_device *adev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(adev);
const struct amdgpu_clock_and_voltage_limits *max_limits;
int i;
if (adev->pm.dpm.ac_power)
max_limits = &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
else
max_limits = &adev->pm.dpm.dyn_state.max_clock_voltage_on_dc;
if (enable) {
pi->dpm_level_enable_mask.samu_dpm_enable_mask = 0;
for (i = adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.count - 1; i >= 0; i--) {
if (adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].v <= max_limits->vddc) {
pi->dpm_level_enable_mask.samu_dpm_enable_mask |= 1 << i;
if (!pi->caps_samu_dpm)
break;
}
}
amdgpu_ci_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SAMUDPM_SetEnabledMask,
pi->dpm_level_enable_mask.samu_dpm_enable_mask);
}
return (amdgpu_ci_send_msg_to_smc(adev, enable ?
PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
static int ci_enable_acp_dpm(struct amdgpu_device *adev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(adev);
const struct amdgpu_clock_and_voltage_limits *max_limits;
int i;
if (adev->pm.dpm.ac_power)
max_limits = &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
else
max_limits = &adev->pm.dpm.dyn_state.max_clock_voltage_on_dc;
if (enable) {
pi->dpm_level_enable_mask.acp_dpm_enable_mask = 0;
for (i = adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.count - 1; i >= 0; i--) {
if (adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].v <= max_limits->vddc) {
pi->dpm_level_enable_mask.acp_dpm_enable_mask |= 1 << i;
if (!pi->caps_acp_dpm)
break;
}
}
amdgpu_ci_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_ACPDPM_SetEnabledMask,
pi->dpm_level_enable_mask.acp_dpm_enable_mask);
}
return (amdgpu_ci_send_msg_to_smc(adev, enable ?
PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
#endif
static int ci_update_uvd_dpm(struct amdgpu_device *adev, bool gate)
{
struct ci_power_info *pi = ci_get_pi(adev);
u32 tmp;
if (!gate) {
if (pi->caps_uvd_dpm ||
(adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count <= 0))
pi->smc_state_table.UvdBootLevel = 0;
else
pi->smc_state_table.UvdBootLevel =
adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count - 1;
tmp = RREG32_SMC(ixDPM_TABLE_475);
tmp &= ~DPM_TABLE_475__UvdBootLevel_MASK;
tmp |= (pi->smc_state_table.UvdBootLevel << DPM_TABLE_475__UvdBootLevel__SHIFT);
WREG32_SMC(ixDPM_TABLE_475, tmp);
}
return ci_enable_uvd_dpm(adev, !gate);
}
static u8 ci_get_vce_boot_level(struct amdgpu_device *adev)
{
u8 i;
u32 min_evclk = 30000; /* ??? */
struct amdgpu_vce_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
for (i = 0; i < table->count; i++) {
if (table->entries[i].evclk >= min_evclk)
return i;
}
return table->count - 1;
}
static int ci_update_vce_dpm(struct amdgpu_device *adev,
struct amdgpu_ps *amdgpu_new_state,
struct amdgpu_ps *amdgpu_current_state)
{
struct ci_power_info *pi = ci_get_pi(adev);
int ret = 0;
u32 tmp;
if (amdgpu_current_state->evclk != amdgpu_new_state->evclk) {
if (amdgpu_new_state->evclk) {
/* turn the clocks on when encoding */
ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_CG_STATE_UNGATE);
if (ret)
return ret;
pi->smc_state_table.VceBootLevel = ci_get_vce_boot_level(adev);
tmp = RREG32_SMC(ixDPM_TABLE_475);
tmp &= ~DPM_TABLE_475__VceBootLevel_MASK;
tmp |= (pi->smc_state_table.VceBootLevel << DPM_TABLE_475__VceBootLevel__SHIFT);
WREG32_SMC(ixDPM_TABLE_475, tmp);
ret = ci_enable_vce_dpm(adev, true);
} else {
/* turn the clocks off when not encoding */
ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_CG_STATE_GATE);
if (ret)
return ret;
ret = ci_enable_vce_dpm(adev, false);
}
}
return ret;
}
#if 0
static int ci_update_samu_dpm(struct amdgpu_device *adev, bool gate)
{
return ci_enable_samu_dpm(adev, gate);
}
static int ci_update_acp_dpm(struct amdgpu_device *adev, bool gate)
{
struct ci_power_info *pi = ci_get_pi(adev);
u32 tmp;
if (!gate) {
pi->smc_state_table.AcpBootLevel = 0;
tmp = RREG32_SMC(ixDPM_TABLE_475);
tmp &= ~AcpBootLevel_MASK;
tmp |= AcpBootLevel(pi->smc_state_table.AcpBootLevel);
WREG32_SMC(ixDPM_TABLE_475, tmp);
}
return ci_enable_acp_dpm(adev, !gate);
}
#endif
static int ci_generate_dpm_level_enable_mask(struct amdgpu_device *adev,
struct amdgpu_ps *amdgpu_state)
{
struct ci_power_info *pi = ci_get_pi(adev);
int ret;
ret = ci_trim_dpm_states(adev, amdgpu_state);
if (ret)
return ret;
pi->dpm_level_enable_mask.sclk_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&pi->dpm_table.sclk_table);
pi->dpm_level_enable_mask.mclk_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&pi->dpm_table.mclk_table);
pi->last_mclk_dpm_enable_mask =
pi->dpm_level_enable_mask.mclk_dpm_enable_mask;
if (pi->uvd_enabled) {
if (pi->dpm_level_enable_mask.mclk_dpm_enable_mask & 1)
pi->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
}
pi->dpm_level_enable_mask.pcie_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&pi->dpm_table.pcie_speed_table);
return 0;
}
static u32 ci_get_lowest_enabled_level(struct amdgpu_device *adev,
u32 level_mask)
{
u32 level = 0;
while ((level_mask & (1 << level)) == 0)
level++;
return level;
}
static int ci_dpm_force_performance_level(struct amdgpu_device *adev,
enum amdgpu_dpm_forced_level level)
{
struct ci_power_info *pi = ci_get_pi(adev);
u32 tmp, levels, i;
int ret;
if (level == AMDGPU_DPM_FORCED_LEVEL_HIGH) {
if ((!pi->pcie_dpm_key_disabled) &&
pi->dpm_level_enable_mask.pcie_dpm_enable_mask) {
levels = 0;
tmp = pi->dpm_level_enable_mask.pcie_dpm_enable_mask;
while (tmp >>= 1)
levels++;
if (levels) {
ret = ci_dpm_force_state_pcie(adev, level);
if (ret)
return ret;
for (i = 0; i < adev->usec_timeout; i++) {
tmp = (RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX_1) &
TARGET_AND_CURRENT_PROFILE_INDEX_1__CURR_PCIE_INDEX_MASK) >>
TARGET_AND_CURRENT_PROFILE_INDEX_1__CURR_PCIE_INDEX__SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
}
if ((!pi->sclk_dpm_key_disabled) &&
pi->dpm_level_enable_mask.sclk_dpm_enable_mask) {
levels = 0;
tmp = pi->dpm_level_enable_mask.sclk_dpm_enable_mask;
while (tmp >>= 1)
levels++;
if (levels) {
ret = ci_dpm_force_state_sclk(adev, levels);
if (ret)
return ret;
for (i = 0; i < adev->usec_timeout; i++) {
tmp = (RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX) &
TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX_MASK) >>
TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX__SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
}
if ((!pi->mclk_dpm_key_disabled) &&
pi->dpm_level_enable_mask.mclk_dpm_enable_mask) {
levels = 0;
tmp = pi->dpm_level_enable_mask.mclk_dpm_enable_mask;
while (tmp >>= 1)
levels++;
if (levels) {
ret = ci_dpm_force_state_mclk(adev, levels);
if (ret)
return ret;
for (i = 0; i < adev->usec_timeout; i++) {
tmp = (RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX) &
TARGET_AND_CURRENT_PROFILE_INDEX__CURR_MCLK_INDEX_MASK) >>
TARGET_AND_CURRENT_PROFILE_INDEX__CURR_MCLK_INDEX__SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
}
} else if (level == AMDGPU_DPM_FORCED_LEVEL_LOW) {
if ((!pi->sclk_dpm_key_disabled) &&
pi->dpm_level_enable_mask.sclk_dpm_enable_mask) {
levels = ci_get_lowest_enabled_level(adev,
pi->dpm_level_enable_mask.sclk_dpm_enable_mask);
ret = ci_dpm_force_state_sclk(adev, levels);
if (ret)
return ret;
for (i = 0; i < adev->usec_timeout; i++) {
tmp = (RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX) &
TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX_MASK) >>
TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX__SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
if ((!pi->mclk_dpm_key_disabled) &&
pi->dpm_level_enable_mask.mclk_dpm_enable_mask) {
levels = ci_get_lowest_enabled_level(adev,
pi->dpm_level_enable_mask.mclk_dpm_enable_mask);
ret = ci_dpm_force_state_mclk(adev, levels);
if (ret)
return ret;
for (i = 0; i < adev->usec_timeout; i++) {
tmp = (RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX) &
TARGET_AND_CURRENT_PROFILE_INDEX__CURR_MCLK_INDEX_MASK) >>
TARGET_AND_CURRENT_PROFILE_INDEX__CURR_MCLK_INDEX__SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
if ((!pi->pcie_dpm_key_disabled) &&
pi->dpm_level_enable_mask.pcie_dpm_enable_mask) {
levels = ci_get_lowest_enabled_level(adev,
pi->dpm_level_enable_mask.pcie_dpm_enable_mask);
ret = ci_dpm_force_state_pcie(adev, levels);
if (ret)
return ret;
for (i = 0; i < adev->usec_timeout; i++) {
tmp = (RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX_1) &
TARGET_AND_CURRENT_PROFILE_INDEX_1__CURR_PCIE_INDEX_MASK) >>
TARGET_AND_CURRENT_PROFILE_INDEX_1__CURR_PCIE_INDEX__SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
} else if (level == AMDGPU_DPM_FORCED_LEVEL_AUTO) {
if (!pi->pcie_dpm_key_disabled) {
PPSMC_Result smc_result;
smc_result = amdgpu_ci_send_msg_to_smc(adev,
PPSMC_MSG_PCIeDPM_UnForceLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
ret = ci_upload_dpm_level_enable_mask(adev);
if (ret)
return ret;
}
adev->pm.dpm.forced_level = level;
return 0;
}
static int ci_set_mc_special_registers(struct amdgpu_device *adev,
struct ci_mc_reg_table *table)
{
u8 i, j, k;
u32 temp_reg;
for (i = 0, j = table->last; i < table->last; i++) {
if (j >= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
switch(table->mc_reg_address[i].s1) {
case mmMC_SEQ_MISC1:
temp_reg = RREG32(mmMC_PMG_CMD_EMRS);
table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
((temp_reg & 0xffff0000)) | ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
}
j++;
if (j >= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
temp_reg = RREG32(mmMC_PMG_CMD_MRS);
table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
if (adev->mc.vram_type != AMDGPU_VRAM_TYPE_GDDR5)
table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
}
j++;
if (j > SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
if (adev->mc.vram_type != AMDGPU_VRAM_TYPE_GDDR5) {
table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
}
j++;
if (j > SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
}
break;
case mmMC_SEQ_RESERVE_M:
temp_reg = RREG32(mmMC_PMG_CMD_MRS1);
table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
}
j++;
if (j > SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
break;
default:
break;
}
}
table->last = j;
return 0;
}
static bool ci_check_s0_mc_reg_index(u16 in_reg, u16 *out_reg)
{
bool result = true;
switch(in_reg) {
case mmMC_SEQ_RAS_TIMING:
*out_reg = mmMC_SEQ_RAS_TIMING_LP;
break;
case mmMC_SEQ_DLL_STBY:
*out_reg = mmMC_SEQ_DLL_STBY_LP;
break;
case mmMC_SEQ_G5PDX_CMD0:
*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
break;
case mmMC_SEQ_G5PDX_CMD1:
*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
break;
case mmMC_SEQ_G5PDX_CTRL:
*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
break;
case mmMC_SEQ_CAS_TIMING:
*out_reg = mmMC_SEQ_CAS_TIMING_LP;
break;
case mmMC_SEQ_MISC_TIMING:
*out_reg = mmMC_SEQ_MISC_TIMING_LP;
break;
case mmMC_SEQ_MISC_TIMING2:
*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
break;
case mmMC_SEQ_PMG_DVS_CMD:
*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
break;
case mmMC_SEQ_PMG_DVS_CTL:
*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
break;
case mmMC_SEQ_RD_CTL_D0:
*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
break;
case mmMC_SEQ_RD_CTL_D1:
*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
break;
case mmMC_SEQ_WR_CTL_D0:
*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
break;
case mmMC_SEQ_WR_CTL_D1:
*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
break;
case mmMC_PMG_CMD_EMRS:
*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
break;
case mmMC_PMG_CMD_MRS:
*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
break;
case mmMC_PMG_CMD_MRS1:
*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
break;
case mmMC_SEQ_PMG_TIMING:
*out_reg = mmMC_SEQ_PMG_TIMING_LP;
break;
case mmMC_PMG_CMD_MRS2:
*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
break;
case mmMC_SEQ_WR_CTL_2:
*out_reg = mmMC_SEQ_WR_CTL_2_LP;
break;
default:
result = false;
break;
}
return result;
}
static void ci_set_valid_flag(struct ci_mc_reg_table *table)
{
u8 i, j;
for (i = 0; i < table->last; i++) {
for (j = 1; j < table->num_entries; j++) {
if (table->mc_reg_table_entry[j-1].mc_data[i] !=
table->mc_reg_table_entry[j].mc_data[i]) {
table->valid_flag |= 1 << i;
break;
}
}
}
}
static void ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
{
u32 i;
u16 address;
for (i = 0; i < table->last; i++) {
table->mc_reg_address[i].s0 =
ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) ?
address : table->mc_reg_address[i].s1;
}
}
static int ci_copy_vbios_mc_reg_table(const struct atom_mc_reg_table *table,
struct ci_mc_reg_table *ci_table)
{
u8 i, j;
if (table->last > SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
if (table->num_entries > MAX_AC_TIMING_ENTRIES)
return -EINVAL;
for (i = 0; i < table->last; i++)
ci_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
ci_table->last = table->last;
for (i = 0; i < table->num_entries; i++) {
ci_table->mc_reg_table_entry[i].mclk_max =
table->mc_reg_table_entry[i].mclk_max;
for (j = 0; j < table->last; j++)
ci_table->mc_reg_table_entry[i].mc_data[j] =
table->mc_reg_table_entry[i].mc_data[j];
}
ci_table->num_entries = table->num_entries;
return 0;
}
static int ci_register_patching_mc_seq(struct amdgpu_device *adev,
struct ci_mc_reg_table *table)
{
u8 i, k;
u32 tmp;
bool patch;
tmp = RREG32(mmMC_SEQ_MISC0);
patch = ((tmp & 0x0000f00) == 0x300) ? true : false;
if (patch &&
((adev->pdev->device == 0x67B0) ||
(adev->pdev->device == 0x67B1))) {
for (i = 0; i < table->last; i++) {
if (table->last >= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
switch (table->mc_reg_address[i].s1) {
case mmMC_SEQ_MISC1:
for (k = 0; k < table->num_entries; k++) {
if ((table->mc_reg_table_entry[k].mclk_max == 125000) ||
(table->mc_reg_table_entry[k].mclk_max == 137500))
table->mc_reg_table_entry[k].mc_data[i] =
(table->mc_reg_table_entry[k].mc_data[i] & 0xFFFFFFF8) |
0x00000007;
}
break;
case mmMC_SEQ_WR_CTL_D0:
for (k = 0; k < table->num_entries; k++) {
if ((table->mc_reg_table_entry[k].mclk_max == 125000) ||
(table->mc_reg_table_entry[k].mclk_max == 137500))
table->mc_reg_table_entry[k].mc_data[i] =
(table->mc_reg_table_entry[k].mc_data[i] & 0xFFFF0F00) |
0x0000D0DD;
}
break;
case mmMC_SEQ_WR_CTL_D1:
for (k = 0; k < table->num_entries; k++) {
if ((table->mc_reg_table_entry[k].mclk_max == 125000) ||
(table->mc_reg_table_entry[k].mclk_max == 137500))
table->mc_reg_table_entry[k].mc_data[i] =
(table->mc_reg_table_entry[k].mc_data[i] & 0xFFFF0F00) |
0x0000D0DD;
}
break;
case mmMC_SEQ_WR_CTL_2:
for (k = 0; k < table->num_entries; k++) {
if ((table->mc_reg_table_entry[k].mclk_max == 125000) ||
(table->mc_reg_table_entry[k].mclk_max == 137500))
table->mc_reg_table_entry[k].mc_data[i] = 0;
}
break;
case mmMC_SEQ_CAS_TIMING:
for (k = 0; k < table->num_entries; k++) {
if (table->mc_reg_table_entry[k].mclk_max == 125000)
table->mc_reg_table_entry[k].mc_data[i] =
(table->mc_reg_table_entry[k].mc_data[i] & 0xFFE0FE0F) |
0x000C0140;
else if (table->mc_reg_table_entry[k].mclk_max == 137500)
table->mc_reg_table_entry[k].mc_data[i] =
(table->mc_reg_table_entry[k].mc_data[i] & 0xFFE0FE0F) |
0x000C0150;
}
break;
case mmMC_SEQ_MISC_TIMING:
for (k = 0; k < table->num_entries; k++) {
if (table->mc_reg_table_entry[k].mclk_max == 125000)
table->mc_reg_table_entry[k].mc_data[i] =
(table->mc_reg_table_entry[k].mc_data[i] & 0xFFFFFFE0) |
0x00000030;
else if (table->mc_reg_table_entry[k].mclk_max == 137500)
table->mc_reg_table_entry[k].mc_data[i] =
(table->mc_reg_table_entry[k].mc_data[i] & 0xFFFFFFE0) |
0x00000035;
}
break;
default:
break;
}
}
WREG32(mmMC_SEQ_IO_DEBUG_INDEX, 3);
tmp = RREG32(mmMC_SEQ_IO_DEBUG_DATA);
tmp = (tmp & 0xFFF8FFFF) | (1 << 16);
WREG32(mmMC_SEQ_IO_DEBUG_INDEX, 3);
WREG32(mmMC_SEQ_IO_DEBUG_DATA, tmp);
}
return 0;
}
static int ci_initialize_mc_reg_table(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct atom_mc_reg_table *table;
struct ci_mc_reg_table *ci_table = &pi->mc_reg_table;
u8 module_index = ci_get_memory_module_index(adev);
int ret;
table = kzalloc(sizeof(struct atom_mc_reg_table), GFP_KERNEL);
if (!table)
return -ENOMEM;
WREG32(mmMC_SEQ_RAS_TIMING_LP, RREG32(mmMC_SEQ_RAS_TIMING));
WREG32(mmMC_SEQ_CAS_TIMING_LP, RREG32(mmMC_SEQ_CAS_TIMING));
WREG32(mmMC_SEQ_DLL_STBY_LP, RREG32(mmMC_SEQ_DLL_STBY));
WREG32(mmMC_SEQ_G5PDX_CMD0_LP, RREG32(mmMC_SEQ_G5PDX_CMD0));
WREG32(mmMC_SEQ_G5PDX_CMD1_LP, RREG32(mmMC_SEQ_G5PDX_CMD1));
WREG32(mmMC_SEQ_G5PDX_CTRL_LP, RREG32(mmMC_SEQ_G5PDX_CTRL));
WREG32(mmMC_SEQ_PMG_DVS_CMD_LP, RREG32(mmMC_SEQ_PMG_DVS_CMD));
WREG32(mmMC_SEQ_PMG_DVS_CTL_LP, RREG32(mmMC_SEQ_PMG_DVS_CTL));
WREG32(mmMC_SEQ_MISC_TIMING_LP, RREG32(mmMC_SEQ_MISC_TIMING));
WREG32(mmMC_SEQ_MISC_TIMING2_LP, RREG32(mmMC_SEQ_MISC_TIMING2));
WREG32(mmMC_SEQ_PMG_CMD_EMRS_LP, RREG32(mmMC_PMG_CMD_EMRS));
WREG32(mmMC_SEQ_PMG_CMD_MRS_LP, RREG32(mmMC_PMG_CMD_MRS));
WREG32(mmMC_SEQ_PMG_CMD_MRS1_LP, RREG32(mmMC_PMG_CMD_MRS1));
WREG32(mmMC_SEQ_WR_CTL_D0_LP, RREG32(mmMC_SEQ_WR_CTL_D0));
WREG32(mmMC_SEQ_WR_CTL_D1_LP, RREG32(mmMC_SEQ_WR_CTL_D1));
WREG32(mmMC_SEQ_RD_CTL_D0_LP, RREG32(mmMC_SEQ_RD_CTL_D0));
WREG32(mmMC_SEQ_RD_CTL_D1_LP, RREG32(mmMC_SEQ_RD_CTL_D1));
WREG32(mmMC_SEQ_PMG_TIMING_LP, RREG32(mmMC_SEQ_PMG_TIMING));
WREG32(mmMC_SEQ_PMG_CMD_MRS2_LP, RREG32(mmMC_PMG_CMD_MRS2));
WREG32(mmMC_SEQ_WR_CTL_2_LP, RREG32(mmMC_SEQ_WR_CTL_2));
ret = amdgpu_atombios_init_mc_reg_table(adev, module_index, table);
if (ret)
goto init_mc_done;
ret = ci_copy_vbios_mc_reg_table(table, ci_table);
if (ret)
goto init_mc_done;
ci_set_s0_mc_reg_index(ci_table);
ret = ci_register_patching_mc_seq(adev, ci_table);
if (ret)
goto init_mc_done;
ret = ci_set_mc_special_registers(adev, ci_table);
if (ret)
goto init_mc_done;
ci_set_valid_flag(ci_table);
init_mc_done:
kfree(table);
return ret;
}
static int ci_populate_mc_reg_addresses(struct amdgpu_device *adev,
SMU7_Discrete_MCRegisters *mc_reg_table)
{
struct ci_power_info *pi = ci_get_pi(adev);
u32 i, j;
for (i = 0, j = 0; j < pi->mc_reg_table.last; j++) {
if (pi->mc_reg_table.valid_flag & (1 << j)) {
if (i >= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
mc_reg_table->address[i].s0 = cpu_to_be16(pi->mc_reg_table.mc_reg_address[j].s0);
mc_reg_table->address[i].s1 = cpu_to_be16(pi->mc_reg_table.mc_reg_address[j].s1);
i++;
}
}
mc_reg_table->last = (u8)i;
return 0;
}
static void ci_convert_mc_registers(const struct ci_mc_reg_entry *entry,
SMU7_Discrete_MCRegisterSet *data,
u32 num_entries, u32 valid_flag)
{
u32 i, j;
for (i = 0, j = 0; j < num_entries; j++) {
if (valid_flag & (1 << j)) {
data->value[i] = cpu_to_be32(entry->mc_data[j]);
i++;
}
}
}
static void ci_convert_mc_reg_table_entry_to_smc(struct amdgpu_device *adev,
const u32 memory_clock,
SMU7_Discrete_MCRegisterSet *mc_reg_table_data)
{
struct ci_power_info *pi = ci_get_pi(adev);
u32 i = 0;
for(i = 0; i < pi->mc_reg_table.num_entries; i++) {
if (memory_clock <= pi->mc_reg_table.mc_reg_table_entry[i].mclk_max)
break;
}
if ((i == pi->mc_reg_table.num_entries) && (i > 0))
--i;
ci_convert_mc_registers(&pi->mc_reg_table.mc_reg_table_entry[i],
mc_reg_table_data, pi->mc_reg_table.last,
pi->mc_reg_table.valid_flag);
}
static void ci_convert_mc_reg_table_to_smc(struct amdgpu_device *adev,
SMU7_Discrete_MCRegisters *mc_reg_table)
{
struct ci_power_info *pi = ci_get_pi(adev);
u32 i;
for (i = 0; i < pi->dpm_table.mclk_table.count; i++)
ci_convert_mc_reg_table_entry_to_smc(adev,
pi->dpm_table.mclk_table.dpm_levels[i].value,
&mc_reg_table->data[i]);
}
static int ci_populate_initial_mc_reg_table(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
int ret;
memset(&pi->smc_mc_reg_table, 0, sizeof(SMU7_Discrete_MCRegisters));
ret = ci_populate_mc_reg_addresses(adev, &pi->smc_mc_reg_table);
if (ret)
return ret;
ci_convert_mc_reg_table_to_smc(adev, &pi->smc_mc_reg_table);
return amdgpu_ci_copy_bytes_to_smc(adev,
pi->mc_reg_table_start,
(u8 *)&pi->smc_mc_reg_table,
sizeof(SMU7_Discrete_MCRegisters),
pi->sram_end);
}
static int ci_update_and_upload_mc_reg_table(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
if (!(pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
return 0;
memset(&pi->smc_mc_reg_table, 0, sizeof(SMU7_Discrete_MCRegisters));
ci_convert_mc_reg_table_to_smc(adev, &pi->smc_mc_reg_table);
return amdgpu_ci_copy_bytes_to_smc(adev,
pi->mc_reg_table_start +
offsetof(SMU7_Discrete_MCRegisters, data[0]),
(u8 *)&pi->smc_mc_reg_table.data[0],
sizeof(SMU7_Discrete_MCRegisterSet) *
pi->dpm_table.mclk_table.count,
pi->sram_end);
}
static void ci_enable_voltage_control(struct amdgpu_device *adev)
{
u32 tmp = RREG32_SMC(ixGENERAL_PWRMGT);
tmp |= GENERAL_PWRMGT__VOLT_PWRMGT_EN_MASK;
WREG32_SMC(ixGENERAL_PWRMGT, tmp);
}
static enum amdgpu_pcie_gen ci_get_maximum_link_speed(struct amdgpu_device *adev,
struct amdgpu_ps *amdgpu_state)
{
struct ci_ps *state = ci_get_ps(amdgpu_state);
int i;
u16 pcie_speed, max_speed = 0;
for (i = 0; i < state->performance_level_count; i++) {
pcie_speed = state->performance_levels[i].pcie_gen;
if (max_speed < pcie_speed)
max_speed = pcie_speed;
}
return max_speed;
}
static u16 ci_get_current_pcie_speed(struct amdgpu_device *adev)
{
u32 speed_cntl = 0;
speed_cntl = RREG32_PCIE(ixPCIE_LC_SPEED_CNTL) &
PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK;
speed_cntl >>= PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT;
return (u16)speed_cntl;
}
static int ci_get_current_pcie_lane_number(struct amdgpu_device *adev)
{
u32 link_width = 0;
link_width = RREG32_PCIE(ixPCIE_LC_LINK_WIDTH_CNTL) &
PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK;
link_width >>= PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT;
switch (link_width) {
case 1:
return 1;
case 2:
return 2;
case 3:
return 4;
case 4:
return 8;
case 0:
case 6:
default:
return 16;
}
}
static void ci_request_link_speed_change_before_state_change(struct amdgpu_device *adev,
struct amdgpu_ps *amdgpu_new_state,
struct amdgpu_ps *amdgpu_current_state)
{
struct ci_power_info *pi = ci_get_pi(adev);
enum amdgpu_pcie_gen target_link_speed =
ci_get_maximum_link_speed(adev, amdgpu_new_state);
enum amdgpu_pcie_gen current_link_speed;
if (pi->force_pcie_gen == AMDGPU_PCIE_GEN_INVALID)
current_link_speed = ci_get_maximum_link_speed(adev, amdgpu_current_state);
else
current_link_speed = pi->force_pcie_gen;
pi->force_pcie_gen = AMDGPU_PCIE_GEN_INVALID;
pi->pspp_notify_required = false;
if (target_link_speed > current_link_speed) {
switch (target_link_speed) {
#ifdef CONFIG_ACPI
case AMDGPU_PCIE_GEN3:
if (amdgpu_acpi_pcie_performance_request(adev, PCIE_PERF_REQ_PECI_GEN3, false) == 0)
break;
pi->force_pcie_gen = AMDGPU_PCIE_GEN2;
if (current_link_speed == AMDGPU_PCIE_GEN2)
break;
case AMDGPU_PCIE_GEN2:
if (amdgpu_acpi_pcie_performance_request(adev, PCIE_PERF_REQ_PECI_GEN2, false) == 0)
break;
#endif
default:
pi->force_pcie_gen = ci_get_current_pcie_speed(adev);
break;
}
} else {
if (target_link_speed < current_link_speed)
pi->pspp_notify_required = true;
}
}
static void ci_notify_link_speed_change_after_state_change(struct amdgpu_device *adev,
struct amdgpu_ps *amdgpu_new_state,
struct amdgpu_ps *amdgpu_current_state)
{
struct ci_power_info *pi = ci_get_pi(adev);
enum amdgpu_pcie_gen target_link_speed =
ci_get_maximum_link_speed(adev, amdgpu_new_state);
u8 request;
if (pi->pspp_notify_required) {
if (target_link_speed == AMDGPU_PCIE_GEN3)
request = PCIE_PERF_REQ_PECI_GEN3;
else if (target_link_speed == AMDGPU_PCIE_GEN2)
request = PCIE_PERF_REQ_PECI_GEN2;
else
request = PCIE_PERF_REQ_PECI_GEN1;
if ((request == PCIE_PERF_REQ_PECI_GEN1) &&
(ci_get_current_pcie_speed(adev) > 0))
return;
#ifdef CONFIG_ACPI
amdgpu_acpi_pcie_performance_request(adev, request, false);
#endif
}
}
static int ci_set_private_data_variables_based_on_pptable(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct amdgpu_clock_voltage_dependency_table *allowed_sclk_vddc_table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
struct amdgpu_clock_voltage_dependency_table *allowed_mclk_vddc_table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_mclk;
struct amdgpu_clock_voltage_dependency_table *allowed_mclk_vddci_table =
&adev->pm.dpm.dyn_state.vddci_dependency_on_mclk;
if (allowed_sclk_vddc_table == NULL)
return -EINVAL;
if (allowed_sclk_vddc_table->count < 1)
return -EINVAL;
if (allowed_mclk_vddc_table == NULL)
return -EINVAL;
if (allowed_mclk_vddc_table->count < 1)
return -EINVAL;
if (allowed_mclk_vddci_table == NULL)
return -EINVAL;
if (allowed_mclk_vddci_table->count < 1)
return -EINVAL;
pi->min_vddc_in_pp_table = allowed_sclk_vddc_table->entries[0].v;
pi->max_vddc_in_pp_table =
allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
pi->min_vddci_in_pp_table = allowed_mclk_vddci_table->entries[0].v;
pi->max_vddci_in_pp_table =
allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
adev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk =
allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
adev->pm.dpm.dyn_state.max_clock_voltage_on_ac.mclk =
allowed_mclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
adev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddc =
allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
adev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddci =
allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
return 0;
}
static void ci_patch_with_vddc_leakage(struct amdgpu_device *adev, u16 *vddc)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_leakage_voltage *leakage_table = &pi->vddc_leakage;
u32 leakage_index;
for (leakage_index = 0; leakage_index < leakage_table->count; leakage_index++) {
if (leakage_table->leakage_id[leakage_index] == *vddc) {
*vddc = leakage_table->actual_voltage[leakage_index];
break;
}
}
}
static void ci_patch_with_vddci_leakage(struct amdgpu_device *adev, u16 *vddci)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_leakage_voltage *leakage_table = &pi->vddci_leakage;
u32 leakage_index;
for (leakage_index = 0; leakage_index < leakage_table->count; leakage_index++) {
if (leakage_table->leakage_id[leakage_index] == *vddci) {
*vddci = leakage_table->actual_voltage[leakage_index];
break;
}
}
}
static void ci_patch_clock_voltage_dependency_table_with_vddc_leakage(struct amdgpu_device *adev,
struct amdgpu_clock_voltage_dependency_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddc_leakage(adev, &table->entries[i].v);
}
}
static void ci_patch_clock_voltage_dependency_table_with_vddci_leakage(struct amdgpu_device *adev,
struct amdgpu_clock_voltage_dependency_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddci_leakage(adev, &table->entries[i].v);
}
}
static void ci_patch_vce_clock_voltage_dependency_table_with_vddc_leakage(struct amdgpu_device *adev,
struct amdgpu_vce_clock_voltage_dependency_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddc_leakage(adev, &table->entries[i].v);
}
}
static void ci_patch_uvd_clock_voltage_dependency_table_with_vddc_leakage(struct amdgpu_device *adev,
struct amdgpu_uvd_clock_voltage_dependency_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddc_leakage(adev, &table->entries[i].v);
}
}
static void ci_patch_vddc_phase_shed_limit_table_with_vddc_leakage(struct amdgpu_device *adev,
struct amdgpu_phase_shedding_limits_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddc_leakage(adev, &table->entries[i].voltage);
}
}
static void ci_patch_clock_voltage_limits_with_vddc_leakage(struct amdgpu_device *adev,
struct amdgpu_clock_and_voltage_limits *table)
{
if (table) {
ci_patch_with_vddc_leakage(adev, (u16 *)&table->vddc);
ci_patch_with_vddci_leakage(adev, (u16 *)&table->vddci);
}
}
static void ci_patch_cac_leakage_table_with_vddc_leakage(struct amdgpu_device *adev,
struct amdgpu_cac_leakage_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddc_leakage(adev, &table->entries[i].vddc);
}
}
static void ci_patch_dependency_tables_with_leakage(struct amdgpu_device *adev)
{
ci_patch_clock_voltage_dependency_table_with_vddc_leakage(adev,
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk);
ci_patch_clock_voltage_dependency_table_with_vddc_leakage(adev,
&adev->pm.dpm.dyn_state.vddc_dependency_on_mclk);
ci_patch_clock_voltage_dependency_table_with_vddc_leakage(adev,
&adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk);
ci_patch_clock_voltage_dependency_table_with_vddci_leakage(adev,
&adev->pm.dpm.dyn_state.vddci_dependency_on_mclk);
ci_patch_vce_clock_voltage_dependency_table_with_vddc_leakage(adev,
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table);
ci_patch_uvd_clock_voltage_dependency_table_with_vddc_leakage(adev,
&adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table);
ci_patch_clock_voltage_dependency_table_with_vddc_leakage(adev,
&adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table);
ci_patch_clock_voltage_dependency_table_with_vddc_leakage(adev,
&adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table);
ci_patch_vddc_phase_shed_limit_table_with_vddc_leakage(adev,
&adev->pm.dpm.dyn_state.phase_shedding_limits_table);
ci_patch_clock_voltage_limits_with_vddc_leakage(adev,
&adev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
ci_patch_clock_voltage_limits_with_vddc_leakage(adev,
&adev->pm.dpm.dyn_state.max_clock_voltage_on_dc);
ci_patch_cac_leakage_table_with_vddc_leakage(adev,
&adev->pm.dpm.dyn_state.cac_leakage_table);
}
static void ci_update_current_ps(struct amdgpu_device *adev,
struct amdgpu_ps *rps)
{
struct ci_ps *new_ps = ci_get_ps(rps);
struct ci_power_info *pi = ci_get_pi(adev);
pi->current_rps = *rps;
pi->current_ps = *new_ps;
pi->current_rps.ps_priv = &pi->current_ps;
}
static void ci_update_requested_ps(struct amdgpu_device *adev,
struct amdgpu_ps *rps)
{
struct ci_ps *new_ps = ci_get_ps(rps);
struct ci_power_info *pi = ci_get_pi(adev);
pi->requested_rps = *rps;
pi->requested_ps = *new_ps;
pi->requested_rps.ps_priv = &pi->requested_ps;
}
static int ci_dpm_pre_set_power_state(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct amdgpu_ps requested_ps = *adev->pm.dpm.requested_ps;
struct amdgpu_ps *new_ps = &requested_ps;
ci_update_requested_ps(adev, new_ps);
ci_apply_state_adjust_rules(adev, &pi->requested_rps);
return 0;
}
static void ci_dpm_post_set_power_state(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct amdgpu_ps *new_ps = &pi->requested_rps;
ci_update_current_ps(adev, new_ps);
}
static void ci_dpm_setup_asic(struct amdgpu_device *adev)
{
ci_read_clock_registers(adev);
ci_enable_acpi_power_management(adev);
ci_init_sclk_t(adev);
}
static int ci_dpm_enable(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct amdgpu_ps *boot_ps = adev->pm.dpm.boot_ps;
int ret;
if (amdgpu_ci_is_smc_running(adev))
return -EINVAL;
if (pi->voltage_control != CISLANDS_VOLTAGE_CONTROL_NONE) {
ci_enable_voltage_control(adev);
ret = ci_construct_voltage_tables(adev);
if (ret) {
DRM_ERROR("ci_construct_voltage_tables failed\n");
return ret;
}
}
if (pi->caps_dynamic_ac_timing) {
ret = ci_initialize_mc_reg_table(adev);
if (ret)
pi->caps_dynamic_ac_timing = false;
}
if (pi->dynamic_ss)
ci_enable_spread_spectrum(adev, true);
if (pi->thermal_protection)
ci_enable_thermal_protection(adev, true);
ci_program_sstp(adev);
ci_enable_display_gap(adev);
ci_program_vc(adev);
ret = ci_upload_firmware(adev);
if (ret) {
DRM_ERROR("ci_upload_firmware failed\n");
return ret;
}
ret = ci_process_firmware_header(adev);
if (ret) {
DRM_ERROR("ci_process_firmware_header failed\n");
return ret;
}
ret = ci_initial_switch_from_arb_f0_to_f1(adev);
if (ret) {
DRM_ERROR("ci_initial_switch_from_arb_f0_to_f1 failed\n");
return ret;
}
ret = ci_init_smc_table(adev);
if (ret) {
DRM_ERROR("ci_init_smc_table failed\n");
return ret;
}
ret = ci_init_arb_table_index(adev);
if (ret) {
DRM_ERROR("ci_init_arb_table_index failed\n");
return ret;
}
if (pi->caps_dynamic_ac_timing) {
ret = ci_populate_initial_mc_reg_table(adev);
if (ret) {
DRM_ERROR("ci_populate_initial_mc_reg_table failed\n");
return ret;
}
}
ret = ci_populate_pm_base(adev);
if (ret) {
DRM_ERROR("ci_populate_pm_base failed\n");
return ret;
}
ci_dpm_start_smc(adev);
ci_enable_vr_hot_gpio_interrupt(adev);
ret = ci_notify_smc_display_change(adev, false);
if (ret) {
DRM_ERROR("ci_notify_smc_display_change failed\n");
return ret;
}
ci_enable_sclk_control(adev, true);
ret = ci_enable_ulv(adev, true);
if (ret) {
DRM_ERROR("ci_enable_ulv failed\n");
return ret;
}
ret = ci_enable_ds_master_switch(adev, true);
if (ret) {
DRM_ERROR("ci_enable_ds_master_switch failed\n");
return ret;
}
ret = ci_start_dpm(adev);
if (ret) {
DRM_ERROR("ci_start_dpm failed\n");
return ret;
}
ret = ci_enable_didt(adev, true);
if (ret) {
DRM_ERROR("ci_enable_didt failed\n");
return ret;
}
ret = ci_enable_smc_cac(adev, true);
if (ret) {
DRM_ERROR("ci_enable_smc_cac failed\n");
return ret;
}
ret = ci_enable_power_containment(adev, true);
if (ret) {
DRM_ERROR("ci_enable_power_containment failed\n");
return ret;
}
ret = ci_power_control_set_level(adev);
if (ret) {
DRM_ERROR("ci_power_control_set_level failed\n");
return ret;
}
ci_enable_auto_throttle_source(adev, AMDGPU_DPM_AUTO_THROTTLE_SRC_THERMAL, true);
ret = ci_enable_thermal_based_sclk_dpm(adev, true);
if (ret) {
DRM_ERROR("ci_enable_thermal_based_sclk_dpm failed\n");
return ret;
}
ci_thermal_start_thermal_controller(adev);
ci_update_current_ps(adev, boot_ps);
return 0;
}
static void ci_dpm_disable(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct amdgpu_ps *boot_ps = adev->pm.dpm.boot_ps;
amdgpu_irq_put(adev, &adev->pm.dpm.thermal.irq,
AMDGPU_THERMAL_IRQ_LOW_TO_HIGH);
amdgpu_irq_put(adev, &adev->pm.dpm.thermal.irq,
AMDGPU_THERMAL_IRQ_HIGH_TO_LOW);
ci_dpm_powergate_uvd(adev, true);
if (!amdgpu_ci_is_smc_running(adev))
return;
ci_thermal_stop_thermal_controller(adev);
if (pi->thermal_protection)
ci_enable_thermal_protection(adev, false);
ci_enable_power_containment(adev, false);
ci_enable_smc_cac(adev, false);
ci_enable_didt(adev, false);
ci_enable_spread_spectrum(adev, false);
ci_enable_auto_throttle_source(adev, AMDGPU_DPM_AUTO_THROTTLE_SRC_THERMAL, false);
ci_stop_dpm(adev);
ci_enable_ds_master_switch(adev, false);
ci_enable_ulv(adev, false);
ci_clear_vc(adev);
ci_reset_to_default(adev);
ci_dpm_stop_smc(adev);
ci_force_switch_to_arb_f0(adev);
ci_enable_thermal_based_sclk_dpm(adev, false);
ci_update_current_ps(adev, boot_ps);
}
static int ci_dpm_set_power_state(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct amdgpu_ps *new_ps = &pi->requested_rps;
struct amdgpu_ps *old_ps = &pi->current_rps;
int ret;
ci_find_dpm_states_clocks_in_dpm_table(adev, new_ps);
if (pi->pcie_performance_request)
ci_request_link_speed_change_before_state_change(adev, new_ps, old_ps);
ret = ci_freeze_sclk_mclk_dpm(adev);
if (ret) {
DRM_ERROR("ci_freeze_sclk_mclk_dpm failed\n");
return ret;
}
ret = ci_populate_and_upload_sclk_mclk_dpm_levels(adev, new_ps);
if (ret) {
DRM_ERROR("ci_populate_and_upload_sclk_mclk_dpm_levels failed\n");
return ret;
}
ret = ci_generate_dpm_level_enable_mask(adev, new_ps);
if (ret) {
DRM_ERROR("ci_generate_dpm_level_enable_mask failed\n");
return ret;
}
ret = ci_update_vce_dpm(adev, new_ps, old_ps);
if (ret) {
DRM_ERROR("ci_update_vce_dpm failed\n");
return ret;
}
ret = ci_update_sclk_t(adev);
if (ret) {
DRM_ERROR("ci_update_sclk_t failed\n");
return ret;
}
if (pi->caps_dynamic_ac_timing) {
ret = ci_update_and_upload_mc_reg_table(adev);
if (ret) {
DRM_ERROR("ci_update_and_upload_mc_reg_table failed\n");
return ret;
}
}
ret = ci_program_memory_timing_parameters(adev);
if (ret) {
DRM_ERROR("ci_program_memory_timing_parameters failed\n");
return ret;
}
ret = ci_unfreeze_sclk_mclk_dpm(adev);
if (ret) {
DRM_ERROR("ci_unfreeze_sclk_mclk_dpm failed\n");
return ret;
}
ret = ci_upload_dpm_level_enable_mask(adev);
if (ret) {
DRM_ERROR("ci_upload_dpm_level_enable_mask failed\n");
return ret;
}
if (pi->pcie_performance_request)
ci_notify_link_speed_change_after_state_change(adev, new_ps, old_ps);
return 0;
}
#if 0
static void ci_dpm_reset_asic(struct amdgpu_device *adev)
{
ci_set_boot_state(adev);
}
#endif
static void ci_dpm_display_configuration_changed(struct amdgpu_device *adev)
{
ci_program_display_gap(adev);
}
union power_info {
struct _ATOM_POWERPLAY_INFO info;
struct _ATOM_POWERPLAY_INFO_V2 info_2;
struct _ATOM_POWERPLAY_INFO_V3 info_3;
struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
};
union pplib_clock_info {
struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
struct _ATOM_PPLIB_SI_CLOCK_INFO si;
struct _ATOM_PPLIB_CI_CLOCK_INFO ci;
};
union pplib_power_state {
struct _ATOM_PPLIB_STATE v1;
struct _ATOM_PPLIB_STATE_V2 v2;
};
static void ci_parse_pplib_non_clock_info(struct amdgpu_device *adev,
struct amdgpu_ps *rps,
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
u8 table_rev)
{
rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
rps->class = le16_to_cpu(non_clock_info->usClassification);
rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
} else {
rps->vclk = 0;
rps->dclk = 0;
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT)
adev->pm.dpm.boot_ps = rps;
if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
adev->pm.dpm.uvd_ps = rps;
}
static void ci_parse_pplib_clock_info(struct amdgpu_device *adev,
struct amdgpu_ps *rps, int index,
union pplib_clock_info *clock_info)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_ps *ps = ci_get_ps(rps);
struct ci_pl *pl = &ps->performance_levels[index];
ps->performance_level_count = index + 1;
pl->sclk = le16_to_cpu(clock_info->ci.usEngineClockLow);
pl->sclk |= clock_info->ci.ucEngineClockHigh << 16;
pl->mclk = le16_to_cpu(clock_info->ci.usMemoryClockLow);
pl->mclk |= clock_info->ci.ucMemoryClockHigh << 16;
pl->pcie_gen = amdgpu_get_pcie_gen_support(adev,
pi->sys_pcie_mask,
pi->vbios_boot_state.pcie_gen_bootup_value,
clock_info->ci.ucPCIEGen);
pl->pcie_lane = amdgpu_get_pcie_lane_support(adev,
pi->vbios_boot_state.pcie_lane_bootup_value,
le16_to_cpu(clock_info->ci.usPCIELane));
if (rps->class & ATOM_PPLIB_CLASSIFICATION_ACPI) {
pi->acpi_pcie_gen = pl->pcie_gen;
}
if (rps->class2 & ATOM_PPLIB_CLASSIFICATION2_ULV) {
pi->ulv.supported = true;
pi->ulv.pl = *pl;
pi->ulv.cg_ulv_parameter = CISLANDS_CGULVPARAMETER_DFLT;
}
/* patch up boot state */
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
pl->mclk = pi->vbios_boot_state.mclk_bootup_value;
pl->sclk = pi->vbios_boot_state.sclk_bootup_value;
pl->pcie_gen = pi->vbios_boot_state.pcie_gen_bootup_value;
pl->pcie_lane = pi->vbios_boot_state.pcie_lane_bootup_value;
}
switch (rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) {
case ATOM_PPLIB_CLASSIFICATION_UI_BATTERY:
pi->use_pcie_powersaving_levels = true;
if (pi->pcie_gen_powersaving.max < pl->pcie_gen)
pi->pcie_gen_powersaving.max = pl->pcie_gen;
if (pi->pcie_gen_powersaving.min > pl->pcie_gen)
pi->pcie_gen_powersaving.min = pl->pcie_gen;
if (pi->pcie_lane_powersaving.max < pl->pcie_lane)
pi->pcie_lane_powersaving.max = pl->pcie_lane;
if (pi->pcie_lane_powersaving.min > pl->pcie_lane)
pi->pcie_lane_powersaving.min = pl->pcie_lane;
break;
case ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE:
pi->use_pcie_performance_levels = true;
if (pi->pcie_gen_performance.max < pl->pcie_gen)
pi->pcie_gen_performance.max = pl->pcie_gen;
if (pi->pcie_gen_performance.min > pl->pcie_gen)
pi->pcie_gen_performance.min = pl->pcie_gen;
if (pi->pcie_lane_performance.max < pl->pcie_lane)
pi->pcie_lane_performance.max = pl->pcie_lane;
if (pi->pcie_lane_performance.min > pl->pcie_lane)
pi->pcie_lane_performance.min = pl->pcie_lane;
break;
default:
break;
}
}
static int ci_parse_power_table(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
union pplib_power_state *power_state;
int i, j, k, non_clock_array_index, clock_array_index;
union pplib_clock_info *clock_info;
struct _StateArray *state_array;
struct _ClockInfoArray *clock_info_array;
struct _NonClockInfoArray *non_clock_info_array;
union power_info *power_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
u8 *power_state_offset;
struct ci_ps *ps;
if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return -EINVAL;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
amdgpu_add_thermal_controller(adev);
state_array = (struct _StateArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usStateArrayOffset));
clock_info_array = (struct _ClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
non_clock_info_array = (struct _NonClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
adev->pm.dpm.ps = kzalloc(sizeof(struct amdgpu_ps) *
state_array->ucNumEntries, GFP_KERNEL);
if (!adev->pm.dpm.ps)
return -ENOMEM;
power_state_offset = (u8 *)state_array->states;
for (i = 0; i < state_array->ucNumEntries; i++) {
u8 *idx;
power_state = (union pplib_power_state *)power_state_offset;
non_clock_array_index = power_state->v2.nonClockInfoIndex;
non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
&non_clock_info_array->nonClockInfo[non_clock_array_index];
ps = kzalloc(sizeof(struct ci_ps), GFP_KERNEL);
if (ps == NULL) {
kfree(adev->pm.dpm.ps);
return -ENOMEM;
}
adev->pm.dpm.ps[i].ps_priv = ps;
ci_parse_pplib_non_clock_info(adev, &adev->pm.dpm.ps[i],
non_clock_info,
non_clock_info_array->ucEntrySize);
k = 0;
idx = (u8 *)&power_state->v2.clockInfoIndex[0];
for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
clock_array_index = idx[j];
if (clock_array_index >= clock_info_array->ucNumEntries)
continue;
if (k >= CISLANDS_MAX_HARDWARE_POWERLEVELS)
break;
clock_info = (union pplib_clock_info *)
((u8 *)&clock_info_array->clockInfo[0] +
(clock_array_index * clock_info_array->ucEntrySize));
ci_parse_pplib_clock_info(adev,
&adev->pm.dpm.ps[i], k,
clock_info);
k++;
}
power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
}
adev->pm.dpm.num_ps = state_array->ucNumEntries;
/* fill in the vce power states */
for (i = 0; i < AMDGPU_MAX_VCE_LEVELS; i++) {
u32 sclk, mclk;
clock_array_index = adev->pm.dpm.vce_states[i].clk_idx;
clock_info = (union pplib_clock_info *)
&clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize];
sclk = le16_to_cpu(clock_info->ci.usEngineClockLow);
sclk |= clock_info->ci.ucEngineClockHigh << 16;
mclk = le16_to_cpu(clock_info->ci.usMemoryClockLow);
mclk |= clock_info->ci.ucMemoryClockHigh << 16;
adev->pm.dpm.vce_states[i].sclk = sclk;
adev->pm.dpm.vce_states[i].mclk = mclk;
}
return 0;
}
static int ci_get_vbios_boot_values(struct amdgpu_device *adev,
struct ci_vbios_boot_state *boot_state)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
ATOM_FIRMWARE_INFO_V2_2 *firmware_info;
u8 frev, crev;
u16 data_offset;
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
firmware_info =
(ATOM_FIRMWARE_INFO_V2_2 *)(mode_info->atom_context->bios +
data_offset);
boot_state->mvdd_bootup_value = le16_to_cpu(firmware_info->usBootUpMVDDCVoltage);
boot_state->vddc_bootup_value = le16_to_cpu(firmware_info->usBootUpVDDCVoltage);
boot_state->vddci_bootup_value = le16_to_cpu(firmware_info->usBootUpVDDCIVoltage);
boot_state->pcie_gen_bootup_value = ci_get_current_pcie_speed(adev);
boot_state->pcie_lane_bootup_value = ci_get_current_pcie_lane_number(adev);
boot_state->sclk_bootup_value = le32_to_cpu(firmware_info->ulDefaultEngineClock);
boot_state->mclk_bootup_value = le32_to_cpu(firmware_info->ulDefaultMemoryClock);
return 0;
}
return -EINVAL;
}
static void ci_dpm_fini(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->pm.dpm.num_ps; i++) {
kfree(adev->pm.dpm.ps[i].ps_priv);
}
kfree(adev->pm.dpm.ps);
kfree(adev->pm.dpm.priv);
kfree(adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries);
amdgpu_free_extended_power_table(adev);
}
/**
* ci_dpm_init_microcode - load ucode images from disk
*
* @adev: amdgpu_device pointer
*
* Use the firmware interface to load the ucode images into
* the driver (not loaded into hw).
* Returns 0 on success, error on failure.
*/
static int ci_dpm_init_microcode(struct amdgpu_device *adev)
{
const char *chip_name;
char fw_name[30];
int err;
DRM_DEBUG("\n");
switch (adev->asic_type) {
case CHIP_BONAIRE:
if ((adev->pdev->revision == 0x80) ||
(adev->pdev->revision == 0x81) ||
(adev->pdev->device == 0x665f))
chip_name = "bonaire_k";
else
chip_name = "bonaire";
break;
case CHIP_HAWAII:
if (adev->pdev->revision == 0x80)
chip_name = "hawaii_k";
else
chip_name = "hawaii";
break;
case CHIP_KAVERI:
case CHIP_KABINI:
case CHIP_MULLINS:
default: BUG();
}
snprintf(fw_name, sizeof(fw_name), "radeon/%s_smc.bin", chip_name);
err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->pm.fw);
out:
if (err) {
printk(KERN_ERR
"cik_smc: Failed to load firmware \"%s\"\n",
fw_name);
release_firmware(adev->pm.fw);
adev->pm.fw = NULL;
}
return err;
}
static int ci_dpm_init(struct amdgpu_device *adev)
{
int index = GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info);
SMU7_Discrete_DpmTable *dpm_table;
struct amdgpu_gpio_rec gpio;
u16 data_offset, size;
u8 frev, crev;
struct ci_power_info *pi;
int ret;
pi = kzalloc(sizeof(struct ci_power_info), GFP_KERNEL);
if (pi == NULL)
return -ENOMEM;
adev->pm.dpm.priv = pi;
pi->sys_pcie_mask =
(adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_MASK) >>
CAIL_PCIE_LINK_SPEED_SUPPORT_SHIFT;
pi->force_pcie_gen = AMDGPU_PCIE_GEN_INVALID;
pi->pcie_gen_performance.max = AMDGPU_PCIE_GEN1;
pi->pcie_gen_performance.min = AMDGPU_PCIE_GEN3;
pi->pcie_gen_powersaving.max = AMDGPU_PCIE_GEN1;
pi->pcie_gen_powersaving.min = AMDGPU_PCIE_GEN3;
pi->pcie_lane_performance.max = 0;
pi->pcie_lane_performance.min = 16;
pi->pcie_lane_powersaving.max = 0;
pi->pcie_lane_powersaving.min = 16;
ret = ci_get_vbios_boot_values(adev, &pi->vbios_boot_state);
if (ret) {
ci_dpm_fini(adev);
return ret;
}
ret = amdgpu_get_platform_caps(adev);
if (ret) {
ci_dpm_fini(adev);
return ret;
}
ret = amdgpu_parse_extended_power_table(adev);
if (ret) {
ci_dpm_fini(adev);
return ret;
}
ret = ci_parse_power_table(adev);
if (ret) {
ci_dpm_fini(adev);
return ret;
}
pi->dll_default_on = false;
pi->sram_end = SMC_RAM_END;
pi->activity_target[0] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[1] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[2] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[3] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[4] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[5] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[6] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[7] = CISLAND_TARGETACTIVITY_DFLT;
pi->mclk_activity_target = CISLAND_MCLK_TARGETACTIVITY_DFLT;
pi->sclk_dpm_key_disabled = 0;
pi->mclk_dpm_key_disabled = 0;
pi->pcie_dpm_key_disabled = 0;
pi->thermal_sclk_dpm_enabled = 0;
if (amdgpu_sclk_deep_sleep_en)
pi->caps_sclk_ds = true;
else
pi->caps_sclk_ds = false;
pi->mclk_strobe_mode_threshold = 40000;
pi->mclk_stutter_mode_threshold = 40000;
pi->mclk_edc_enable_threshold = 40000;
pi->mclk_edc_wr_enable_threshold = 40000;
ci_initialize_powertune_defaults(adev);
pi->caps_fps = false;
pi->caps_sclk_throttle_low_notification = false;
pi->caps_uvd_dpm = true;
pi->caps_vce_dpm = true;
ci_get_leakage_voltages(adev);
ci_patch_dependency_tables_with_leakage(adev);
ci_set_private_data_variables_based_on_pptable(adev);
adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries =
kzalloc(4 * sizeof(struct amdgpu_clock_voltage_dependency_entry), GFP_KERNEL);
if (!adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries) {
ci_dpm_fini(adev);
return -ENOMEM;
}
adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.count = 4;
adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[0].clk = 0;
adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[0].v = 0;
adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[1].clk = 36000;
adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[1].v = 720;
adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[2].clk = 54000;
adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[2].v = 810;
adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[3].clk = 72000;
adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[3].v = 900;
adev->pm.dpm.dyn_state.mclk_sclk_ratio = 4;
adev->pm.dpm.dyn_state.sclk_mclk_delta = 15000;
adev->pm.dpm.dyn_state.vddc_vddci_delta = 200;
adev->pm.dpm.dyn_state.valid_sclk_values.count = 0;
adev->pm.dpm.dyn_state.valid_sclk_values.values = NULL;
adev->pm.dpm.dyn_state.valid_mclk_values.count = 0;
adev->pm.dpm.dyn_state.valid_mclk_values.values = NULL;
if (adev->asic_type == CHIP_HAWAII) {
pi->thermal_temp_setting.temperature_low = 94500;
pi->thermal_temp_setting.temperature_high = 95000;
pi->thermal_temp_setting.temperature_shutdown = 104000;
} else {
pi->thermal_temp_setting.temperature_low = 99500;
pi->thermal_temp_setting.temperature_high = 100000;
pi->thermal_temp_setting.temperature_shutdown = 104000;
}
pi->uvd_enabled = false;
dpm_table = &pi->smc_state_table;
gpio = amdgpu_atombios_lookup_gpio(adev, VDDC_VRHOT_GPIO_PINID);
if (gpio.valid) {
dpm_table->VRHotGpio = gpio.shift;
adev->pm.dpm.platform_caps |= ATOM_PP_PLATFORM_CAP_REGULATOR_HOT;
} else {
dpm_table->VRHotGpio = CISLANDS_UNUSED_GPIO_PIN;
adev->pm.dpm.platform_caps &= ~ATOM_PP_PLATFORM_CAP_REGULATOR_HOT;
}
gpio = amdgpu_atombios_lookup_gpio(adev, PP_AC_DC_SWITCH_GPIO_PINID);
if (gpio.valid) {
dpm_table->AcDcGpio = gpio.shift;
adev->pm.dpm.platform_caps |= ATOM_PP_PLATFORM_CAP_HARDWAREDC;
} else {
dpm_table->AcDcGpio = CISLANDS_UNUSED_GPIO_PIN;
adev->pm.dpm.platform_caps &= ~ATOM_PP_PLATFORM_CAP_HARDWAREDC;
}
gpio = amdgpu_atombios_lookup_gpio(adev, VDDC_PCC_GPIO_PINID);
if (gpio.valid) {
u32 tmp = RREG32_SMC(ixCNB_PWRMGT_CNTL);
switch (gpio.shift) {
case 0:
tmp &= ~CNB_PWRMGT_CNTL__GNB_SLOW_MODE_MASK;
tmp |= 1 << CNB_PWRMGT_CNTL__GNB_SLOW_MODE__SHIFT;
break;
case 1:
tmp &= ~CNB_PWRMGT_CNTL__GNB_SLOW_MODE_MASK;
tmp |= 2 << CNB_PWRMGT_CNTL__GNB_SLOW_MODE__SHIFT;
break;
case 2:
tmp |= CNB_PWRMGT_CNTL__GNB_SLOW_MASK;
break;
case 3:
tmp |= CNB_PWRMGT_CNTL__FORCE_NB_PS1_MASK;
break;
case 4:
tmp |= CNB_PWRMGT_CNTL__DPM_ENABLED_MASK;
break;
default:
DRM_ERROR("Invalid PCC GPIO: %u!\n", gpio.shift);
break;
}
WREG32_SMC(ixCNB_PWRMGT_CNTL, tmp);
}
pi->voltage_control = CISLANDS_VOLTAGE_CONTROL_NONE;
pi->vddci_control = CISLANDS_VOLTAGE_CONTROL_NONE;
pi->mvdd_control = CISLANDS_VOLTAGE_CONTROL_NONE;
if (amdgpu_atombios_is_voltage_gpio(adev, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT))
pi->voltage_control = CISLANDS_VOLTAGE_CONTROL_BY_GPIO;
else if (amdgpu_atombios_is_voltage_gpio(adev, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
pi->voltage_control = CISLANDS_VOLTAGE_CONTROL_BY_SVID2;
if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_VDDCI_CONTROL) {
if (amdgpu_atombios_is_voltage_gpio(adev, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
pi->vddci_control = CISLANDS_VOLTAGE_CONTROL_BY_GPIO;
else if (amdgpu_atombios_is_voltage_gpio(adev, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
pi->vddci_control = CISLANDS_VOLTAGE_CONTROL_BY_SVID2;
else
adev->pm.dpm.platform_caps &= ~ATOM_PP_PLATFORM_CAP_VDDCI_CONTROL;
}
if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_MVDDCONTROL) {
if (amdgpu_atombios_is_voltage_gpio(adev, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
pi->mvdd_control = CISLANDS_VOLTAGE_CONTROL_BY_GPIO;
else if (amdgpu_atombios_is_voltage_gpio(adev, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
pi->mvdd_control = CISLANDS_VOLTAGE_CONTROL_BY_SVID2;
else
adev->pm.dpm.platform_caps &= ~ATOM_PP_PLATFORM_CAP_MVDDCONTROL;
}
pi->vddc_phase_shed_control = true;
#if defined(CONFIG_ACPI)
pi->pcie_performance_request =
amdgpu_acpi_is_pcie_performance_request_supported(adev);
#else
pi->pcie_performance_request = false;
#endif
if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset)) {
pi->caps_sclk_ss_support = true;
pi->caps_mclk_ss_support = true;
pi->dynamic_ss = true;
} else {
pi->caps_sclk_ss_support = false;
pi->caps_mclk_ss_support = false;
pi->dynamic_ss = true;
}
if (adev->pm.int_thermal_type != THERMAL_TYPE_NONE)
pi->thermal_protection = true;
else
pi->thermal_protection = false;
pi->caps_dynamic_ac_timing = true;
pi->uvd_power_gated = true;
/* make sure dc limits are valid */
if ((adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.sclk == 0) ||
(adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.mclk == 0))
adev->pm.dpm.dyn_state.max_clock_voltage_on_dc =
adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
pi->fan_ctrl_is_in_default_mode = true;
return 0;
}
static void
ci_dpm_debugfs_print_current_performance_level(struct amdgpu_device *adev,
struct seq_file *m)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct amdgpu_ps *rps = &pi->current_rps;
u32 sclk = ci_get_average_sclk_freq(adev);
u32 mclk = ci_get_average_mclk_freq(adev);
u32 activity_percent = 50;
int ret;
ret = ci_read_smc_soft_register(adev, offsetof(SMU7_SoftRegisters, AverageGraphicsA),
&activity_percent);
if (ret == 0) {
activity_percent += 0x80;
activity_percent >>= 8;
activity_percent = activity_percent > 100 ? 100 : activity_percent;
}
seq_printf(m, "uvd %sabled\n", pi->uvd_enabled ? "en" : "dis");
seq_printf(m, "vce %sabled\n", rps->vce_active ? "en" : "dis");
seq_printf(m, "power level avg sclk: %u mclk: %u\n",
sclk, mclk);
seq_printf(m, "GPU load: %u %%\n", activity_percent);
}
static void ci_dpm_print_power_state(struct amdgpu_device *adev,
struct amdgpu_ps *rps)
{
struct ci_ps *ps = ci_get_ps(rps);
struct ci_pl *pl;
int i;
amdgpu_dpm_print_class_info(rps->class, rps->class2);
amdgpu_dpm_print_cap_info(rps->caps);
printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
for (i = 0; i < ps->performance_level_count; i++) {
pl = &ps->performance_levels[i];
printk("\t\tpower level %d sclk: %u mclk: %u pcie gen: %u pcie lanes: %u\n",
i, pl->sclk, pl->mclk, pl->pcie_gen + 1, pl->pcie_lane);
}
amdgpu_dpm_print_ps_status(adev, rps);
}
static u32 ci_dpm_get_sclk(struct amdgpu_device *adev, bool low)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_ps *requested_state = ci_get_ps(&pi->requested_rps);
if (low)
return requested_state->performance_levels[0].sclk;
else
return requested_state->performance_levels[requested_state->performance_level_count - 1].sclk;
}
static u32 ci_dpm_get_mclk(struct amdgpu_device *adev, bool low)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_ps *requested_state = ci_get_ps(&pi->requested_rps);
if (low)
return requested_state->performance_levels[0].mclk;
else
return requested_state->performance_levels[requested_state->performance_level_count - 1].mclk;
}
/* get temperature in millidegrees */
static int ci_dpm_get_temp(struct amdgpu_device *adev)
{
u32 temp;
int actual_temp = 0;
temp = (RREG32_SMC(ixCG_MULT_THERMAL_STATUS) & CG_MULT_THERMAL_STATUS__CTF_TEMP_MASK) >>
CG_MULT_THERMAL_STATUS__CTF_TEMP__SHIFT;
if (temp & 0x200)
actual_temp = 255;
else
actual_temp = temp & 0x1ff;
actual_temp = actual_temp * 1000;
return actual_temp;
}
static int ci_set_temperature_range(struct amdgpu_device *adev)
{
int ret;
ret = ci_thermal_enable_alert(adev, false);
if (ret)
return ret;
ret = ci_thermal_set_temperature_range(adev, CISLANDS_TEMP_RANGE_MIN,
CISLANDS_TEMP_RANGE_MAX);
if (ret)
return ret;
ret = ci_thermal_enable_alert(adev, true);
if (ret)
return ret;
return ret;
}
static int ci_dpm_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
ci_dpm_set_dpm_funcs(adev);
ci_dpm_set_irq_funcs(adev);
return 0;
}
static int ci_dpm_late_init(void *handle)
{
int ret;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (!amdgpu_dpm)
return 0;
/* init the sysfs and debugfs files late */
ret = amdgpu_pm_sysfs_init(adev);
if (ret)
return ret;
ret = ci_set_temperature_range(adev);
if (ret)
return ret;
return 0;
}
static int ci_dpm_sw_init(void *handle)
{
int ret;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
ret = amdgpu_irq_add_id(adev, 230, &adev->pm.dpm.thermal.irq);
if (ret)
return ret;
ret = amdgpu_irq_add_id(adev, 231, &adev->pm.dpm.thermal.irq);
if (ret)
return ret;
/* default to balanced state */
adev->pm.dpm.state = POWER_STATE_TYPE_BALANCED;
adev->pm.dpm.user_state = POWER_STATE_TYPE_BALANCED;
adev->pm.dpm.forced_level = AMDGPU_DPM_FORCED_LEVEL_AUTO;
adev->pm.default_sclk = adev->clock.default_sclk;
adev->pm.default_mclk = adev->clock.default_mclk;
adev->pm.current_sclk = adev->clock.default_sclk;
adev->pm.current_mclk = adev->clock.default_mclk;
adev->pm.int_thermal_type = THERMAL_TYPE_NONE;
if (amdgpu_dpm == 0)
return 0;
ret = ci_dpm_init_microcode(adev);
if (ret)
return ret;
INIT_WORK(&adev->pm.dpm.thermal.work, amdgpu_dpm_thermal_work_handler);
mutex_lock(&adev->pm.mutex);
ret = ci_dpm_init(adev);
if (ret)
goto dpm_failed;
adev->pm.dpm.current_ps = adev->pm.dpm.requested_ps = adev->pm.dpm.boot_ps;
if (amdgpu_dpm == 1)
amdgpu_pm_print_power_states(adev);
mutex_unlock(&adev->pm.mutex);
DRM_INFO("amdgpu: dpm initialized\n");
return 0;
dpm_failed:
ci_dpm_fini(adev);
mutex_unlock(&adev->pm.mutex);
DRM_ERROR("amdgpu: dpm initialization failed\n");
return ret;
}
static int ci_dpm_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
mutex_lock(&adev->pm.mutex);
amdgpu_pm_sysfs_fini(adev);
ci_dpm_fini(adev);
mutex_unlock(&adev->pm.mutex);
release_firmware(adev->pm.fw);
adev->pm.fw = NULL;
return 0;
}
static int ci_dpm_hw_init(void *handle)
{
int ret;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (!amdgpu_dpm)
return 0;
mutex_lock(&adev->pm.mutex);
ci_dpm_setup_asic(adev);
ret = ci_dpm_enable(adev);
if (ret)
adev->pm.dpm_enabled = false;
else
adev->pm.dpm_enabled = true;
mutex_unlock(&adev->pm.mutex);
return ret;
}
static int ci_dpm_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (adev->pm.dpm_enabled) {
mutex_lock(&adev->pm.mutex);
ci_dpm_disable(adev);
mutex_unlock(&adev->pm.mutex);
}
return 0;
}
static int ci_dpm_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (adev->pm.dpm_enabled) {
mutex_lock(&adev->pm.mutex);
/* disable dpm */
ci_dpm_disable(adev);
/* reset the power state */
adev->pm.dpm.current_ps = adev->pm.dpm.requested_ps = adev->pm.dpm.boot_ps;
mutex_unlock(&adev->pm.mutex);
}
return 0;
}
static int ci_dpm_resume(void *handle)
{
int ret;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (adev->pm.dpm_enabled) {
/* asic init will reset to the boot state */
mutex_lock(&adev->pm.mutex);
ci_dpm_setup_asic(adev);
ret = ci_dpm_enable(adev);
if (ret)
adev->pm.dpm_enabled = false;
else
adev->pm.dpm_enabled = true;
mutex_unlock(&adev->pm.mutex);
if (adev->pm.dpm_enabled)
amdgpu_pm_compute_clocks(adev);
}
return 0;
}
static bool ci_dpm_is_idle(void *handle)
{
/* XXX */
return true;
}
static int ci_dpm_wait_for_idle(void *handle)
{
/* XXX */
return 0;
}
static int ci_dpm_soft_reset(void *handle)
{
return 0;
}
static int ci_dpm_set_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 cg_thermal_int;
switch (type) {
case AMDGPU_THERMAL_IRQ_LOW_TO_HIGH:
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT);
cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
WREG32_SMC(ixCG_THERMAL_INT, cg_thermal_int);
break;
case AMDGPU_IRQ_STATE_ENABLE:
cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT);
cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
WREG32_SMC(ixCG_THERMAL_INT, cg_thermal_int);
break;
default:
break;
}
break;
case AMDGPU_THERMAL_IRQ_HIGH_TO_LOW:
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT);
cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
WREG32_SMC(ixCG_THERMAL_INT, cg_thermal_int);
break;
case AMDGPU_IRQ_STATE_ENABLE:
cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT);
cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
WREG32_SMC(ixCG_THERMAL_INT, cg_thermal_int);
break;
default:
break;
}
break;
default:
break;
}
return 0;
}
static int ci_dpm_process_interrupt(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
bool queue_thermal = false;
if (entry == NULL)
return -EINVAL;
switch (entry->src_id) {
case 230: /* thermal low to high */
DRM_DEBUG("IH: thermal low to high\n");
adev->pm.dpm.thermal.high_to_low = false;
queue_thermal = true;
break;
case 231: /* thermal high to low */
DRM_DEBUG("IH: thermal high to low\n");
adev->pm.dpm.thermal.high_to_low = true;
queue_thermal = true;
break;
default:
break;
}
if (queue_thermal)
schedule_work(&adev->pm.dpm.thermal.work);
return 0;
}
static int ci_dpm_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
return 0;
}
static int ci_dpm_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
static int ci_dpm_print_clock_levels(struct amdgpu_device *adev,
enum pp_clock_type type, char *buf)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_single_dpm_table *sclk_table = &pi->dpm_table.sclk_table;
struct ci_single_dpm_table *mclk_table = &pi->dpm_table.mclk_table;
struct ci_single_dpm_table *pcie_table = &pi->dpm_table.pcie_speed_table;
int i, now, size = 0;
uint32_t clock, pcie_speed;
switch (type) {
case PP_SCLK:
amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_API_GetSclkFrequency);
clock = RREG32(mmSMC_MSG_ARG_0);
for (i = 0; i < sclk_table->count; i++) {
if (clock > sclk_table->dpm_levels[i].value)
continue;
break;
}
now = i;
for (i = 0; i < sclk_table->count; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, sclk_table->dpm_levels[i].value / 100,
(i == now) ? "*" : "");
break;
case PP_MCLK:
amdgpu_ci_send_msg_to_smc(adev, PPSMC_MSG_API_GetMclkFrequency);
clock = RREG32(mmSMC_MSG_ARG_0);
for (i = 0; i < mclk_table->count; i++) {
if (clock > mclk_table->dpm_levels[i].value)
continue;
break;
}
now = i;
for (i = 0; i < mclk_table->count; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, mclk_table->dpm_levels[i].value / 100,
(i == now) ? "*" : "");
break;
case PP_PCIE:
pcie_speed = ci_get_current_pcie_speed(adev);
for (i = 0; i < pcie_table->count; i++) {
if (pcie_speed != pcie_table->dpm_levels[i].value)
continue;
break;
}
now = i;
for (i = 0; i < pcie_table->count; i++)
size += sprintf(buf + size, "%d: %s %s\n", i,
(pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x1" :
(pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" :
(pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "",
(i == now) ? "*" : "");
break;
default:
break;
}
return size;
}
static int ci_dpm_force_clock_level(struct amdgpu_device *adev,
enum pp_clock_type type, uint32_t mask)
{
struct ci_power_info *pi = ci_get_pi(adev);
if (adev->pm.dpm.forced_level
!= AMDGPU_DPM_FORCED_LEVEL_MANUAL)
return -EINVAL;
switch (type) {
case PP_SCLK:
if (!pi->sclk_dpm_key_disabled)
amdgpu_ci_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SCLKDPM_SetEnabledMask,
pi->dpm_level_enable_mask.sclk_dpm_enable_mask & mask);
break;
case PP_MCLK:
if (!pi->mclk_dpm_key_disabled)
amdgpu_ci_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_MCLKDPM_SetEnabledMask,
pi->dpm_level_enable_mask.mclk_dpm_enable_mask & mask);
break;
case PP_PCIE:
{
uint32_t tmp = mask & pi->dpm_level_enable_mask.pcie_dpm_enable_mask;
uint32_t level = 0;
while (tmp >>= 1)
level++;
if (!pi->pcie_dpm_key_disabled)
amdgpu_ci_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_PCIeDPM_ForceLevel,
level);
break;
}
default:
break;
}
return 0;
}
static int ci_dpm_get_sclk_od(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_single_dpm_table *sclk_table = &(pi->dpm_table.sclk_table);
struct ci_single_dpm_table *golden_sclk_table =
&(pi->golden_dpm_table.sclk_table);
int value;
value = (sclk_table->dpm_levels[sclk_table->count - 1].value -
golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value) *
100 /
golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
return value;
}
static int ci_dpm_set_sclk_od(struct amdgpu_device *adev, uint32_t value)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_ps *ps = ci_get_ps(adev->pm.dpm.requested_ps);
struct ci_single_dpm_table *golden_sclk_table =
&(pi->golden_dpm_table.sclk_table);
if (value > 20)
value = 20;
ps->performance_levels[ps->performance_level_count - 1].sclk =
golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value *
value / 100 +
golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
return 0;
}
static int ci_dpm_get_mclk_od(struct amdgpu_device *adev)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_single_dpm_table *mclk_table = &(pi->dpm_table.mclk_table);
struct ci_single_dpm_table *golden_mclk_table =
&(pi->golden_dpm_table.mclk_table);
int value;
value = (mclk_table->dpm_levels[mclk_table->count - 1].value -
golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value) *
100 /
golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
return value;
}
static int ci_dpm_set_mclk_od(struct amdgpu_device *adev, uint32_t value)
{
struct ci_power_info *pi = ci_get_pi(adev);
struct ci_ps *ps = ci_get_ps(adev->pm.dpm.requested_ps);
struct ci_single_dpm_table *golden_mclk_table =
&(pi->golden_dpm_table.mclk_table);
if (value > 20)
value = 20;
ps->performance_levels[ps->performance_level_count - 1].mclk =
golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value *
value / 100 +
golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
return 0;
}
const struct amd_ip_funcs ci_dpm_ip_funcs = {
.name = "ci_dpm",
.early_init = ci_dpm_early_init,
.late_init = ci_dpm_late_init,
.sw_init = ci_dpm_sw_init,
.sw_fini = ci_dpm_sw_fini,
.hw_init = ci_dpm_hw_init,
.hw_fini = ci_dpm_hw_fini,
.suspend = ci_dpm_suspend,
.resume = ci_dpm_resume,
.is_idle = ci_dpm_is_idle,
.wait_for_idle = ci_dpm_wait_for_idle,
.soft_reset = ci_dpm_soft_reset,
.set_clockgating_state = ci_dpm_set_clockgating_state,
.set_powergating_state = ci_dpm_set_powergating_state,
};
static const struct amdgpu_dpm_funcs ci_dpm_funcs = {
.get_temperature = &ci_dpm_get_temp,
.pre_set_power_state = &ci_dpm_pre_set_power_state,
.set_power_state = &ci_dpm_set_power_state,
.post_set_power_state = &ci_dpm_post_set_power_state,
.display_configuration_changed = &ci_dpm_display_configuration_changed,
.get_sclk = &ci_dpm_get_sclk,
.get_mclk = &ci_dpm_get_mclk,
.print_power_state = &ci_dpm_print_power_state,
.debugfs_print_current_performance_level = &ci_dpm_debugfs_print_current_performance_level,
.force_performance_level = &ci_dpm_force_performance_level,
.vblank_too_short = &ci_dpm_vblank_too_short,
.powergate_uvd = &ci_dpm_powergate_uvd,
.set_fan_control_mode = &ci_dpm_set_fan_control_mode,
.get_fan_control_mode = &ci_dpm_get_fan_control_mode,
.set_fan_speed_percent = &ci_dpm_set_fan_speed_percent,
.get_fan_speed_percent = &ci_dpm_get_fan_speed_percent,
.print_clock_levels = ci_dpm_print_clock_levels,
.force_clock_level = ci_dpm_force_clock_level,
.get_sclk_od = ci_dpm_get_sclk_od,
.set_sclk_od = ci_dpm_set_sclk_od,
.get_mclk_od = ci_dpm_get_mclk_od,
.set_mclk_od = ci_dpm_set_mclk_od,
};
static void ci_dpm_set_dpm_funcs(struct amdgpu_device *adev)
{
if (adev->pm.funcs == NULL)
adev->pm.funcs = &ci_dpm_funcs;
}
static const struct amdgpu_irq_src_funcs ci_dpm_irq_funcs = {
.set = ci_dpm_set_interrupt_state,
.process = ci_dpm_process_interrupt,
};
static void ci_dpm_set_irq_funcs(struct amdgpu_device *adev)
{
adev->pm.dpm.thermal.irq.num_types = AMDGPU_THERMAL_IRQ_LAST;
adev->pm.dpm.thermal.irq.funcs = &ci_dpm_irq_funcs;
}