Linus Torvalds 35ce8ae9ae Merge branch 'signal-for-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull signal/exit/ptrace updates from Eric Biederman:
 "This set of changes deletes some dead code, makes a lot of cleanups
  which hopefully make the code easier to follow, and fixes bugs found
  along the way.

  The end-game which I have not yet reached yet is for fatal signals
  that generate coredumps to be short-circuit deliverable from
  complete_signal, for force_siginfo_to_task not to require changing
  userspace configured signal delivery state, and for the ptrace stops
  to always happen in locations where we can guarantee on all
  architectures that the all of the registers are saved and available on
  the stack.

  Removal of profile_task_ext, profile_munmap, and profile_handoff_task
  are the big successes for dead code removal this round.

  A bunch of small bug fixes are included, as most of the issues
  reported were small enough that they would not affect bisection so I
  simply added the fixes and did not fold the fixes into the changes
  they were fixing.

  There was a bug that broke coredumps piped to systemd-coredump. I
  dropped the change that caused that bug and replaced it entirely with
  something much more restrained. Unfortunately that required some
  rebasing.

  Some successes after this set of changes: There are few enough calls
  to do_exit to audit in a reasonable amount of time. The lifetime of
  struct kthread now matches the lifetime of struct task, and the
  pointer to struct kthread is no longer stored in set_child_tid. The
  flag SIGNAL_GROUP_COREDUMP is removed. The field group_exit_task is
  removed. Issues where task->exit_code was examined with
  signal->group_exit_code should been examined were fixed.

  There are several loosely related changes included because I am
  cleaning up and if I don't include them they will probably get lost.

  The original postings of these changes can be found at:
     https://lkml.kernel.org/r/87a6ha4zsd.fsf@email.froward.int.ebiederm.org
     https://lkml.kernel.org/r/87bl1kunjj.fsf@email.froward.int.ebiederm.org
     https://lkml.kernel.org/r/87r19opkx1.fsf_-_@email.froward.int.ebiederm.org

  I trimmed back the last set of changes to only the obviously correct
  once. Simply because there was less time for review than I had hoped"

* 'signal-for-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (44 commits)
  ptrace/m68k: Stop open coding ptrace_report_syscall
  ptrace: Remove unused regs argument from ptrace_report_syscall
  ptrace: Remove second setting of PT_SEIZED in ptrace_attach
  taskstats: Cleanup the use of task->exit_code
  exit: Use the correct exit_code in /proc/<pid>/stat
  exit: Fix the exit_code for wait_task_zombie
  exit: Coredumps reach do_group_exit
  exit: Remove profile_handoff_task
  exit: Remove profile_task_exit & profile_munmap
  signal: clean up kernel-doc comments
  signal: Remove the helper signal_group_exit
  signal: Rename group_exit_task group_exec_task
  coredump: Stop setting signal->group_exit_task
  signal: Remove SIGNAL_GROUP_COREDUMP
  signal: During coredumps set SIGNAL_GROUP_EXIT in zap_process
  signal: Make coredump handling explicit in complete_signal
  signal: Have prepare_signal detect coredumps using signal->core_state
  signal: Have the oom killer detect coredumps using signal->core_state
  exit: Move force_uaccess back into do_exit
  exit: Guarantee make_task_dead leaks the tsk when calling do_task_exit
  ...
2022-01-17 05:49:30 +02:00

1080 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Based on arch/arm/kernel/traps.c
*
* Copyright (C) 1995-2009 Russell King
* Copyright (C) 2012 ARM Ltd.
*/
#include <linux/bug.h>
#include <linux/context_tracking.h>
#include <linux/signal.h>
#include <linux/personality.h>
#include <linux/kallsyms.h>
#include <linux/kprobes.h>
#include <linux/spinlock.h>
#include <linux/uaccess.h>
#include <linux/hardirq.h>
#include <linux/kdebug.h>
#include <linux/module.h>
#include <linux/kexec.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/sched/signal.h>
#include <linux/sched/debug.h>
#include <linux/sched/task_stack.h>
#include <linux/sizes.h>
#include <linux/syscalls.h>
#include <linux/mm_types.h>
#include <linux/kasan.h>
#include <asm/atomic.h>
#include <asm/bug.h>
#include <asm/cpufeature.h>
#include <asm/daifflags.h>
#include <asm/debug-monitors.h>
#include <asm/esr.h>
#include <asm/exception.h>
#include <asm/extable.h>
#include <asm/insn.h>
#include <asm/kprobes.h>
#include <asm/patching.h>
#include <asm/traps.h>
#include <asm/smp.h>
#include <asm/stack_pointer.h>
#include <asm/stacktrace.h>
#include <asm/system_misc.h>
#include <asm/sysreg.h>
static bool __kprobes __check_eq(unsigned long pstate)
{
return (pstate & PSR_Z_BIT) != 0;
}
static bool __kprobes __check_ne(unsigned long pstate)
{
return (pstate & PSR_Z_BIT) == 0;
}
static bool __kprobes __check_cs(unsigned long pstate)
{
return (pstate & PSR_C_BIT) != 0;
}
static bool __kprobes __check_cc(unsigned long pstate)
{
return (pstate & PSR_C_BIT) == 0;
}
static bool __kprobes __check_mi(unsigned long pstate)
{
return (pstate & PSR_N_BIT) != 0;
}
static bool __kprobes __check_pl(unsigned long pstate)
{
return (pstate & PSR_N_BIT) == 0;
}
static bool __kprobes __check_vs(unsigned long pstate)
{
return (pstate & PSR_V_BIT) != 0;
}
static bool __kprobes __check_vc(unsigned long pstate)
{
return (pstate & PSR_V_BIT) == 0;
}
static bool __kprobes __check_hi(unsigned long pstate)
{
pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
return (pstate & PSR_C_BIT) != 0;
}
static bool __kprobes __check_ls(unsigned long pstate)
{
pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
return (pstate & PSR_C_BIT) == 0;
}
static bool __kprobes __check_ge(unsigned long pstate)
{
pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */
return (pstate & PSR_N_BIT) == 0;
}
static bool __kprobes __check_lt(unsigned long pstate)
{
pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */
return (pstate & PSR_N_BIT) != 0;
}
static bool __kprobes __check_gt(unsigned long pstate)
{
/*PSR_N_BIT ^= PSR_V_BIT */
unsigned long temp = pstate ^ (pstate << 3);
temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */
return (temp & PSR_N_BIT) == 0;
}
static bool __kprobes __check_le(unsigned long pstate)
{
/*PSR_N_BIT ^= PSR_V_BIT */
unsigned long temp = pstate ^ (pstate << 3);
temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */
return (temp & PSR_N_BIT) != 0;
}
static bool __kprobes __check_al(unsigned long pstate)
{
return true;
}
/*
* Note that the ARMv8 ARM calls condition code 0b1111 "nv", but states that
* it behaves identically to 0b1110 ("al").
*/
pstate_check_t * const aarch32_opcode_cond_checks[16] = {
__check_eq, __check_ne, __check_cs, __check_cc,
__check_mi, __check_pl, __check_vs, __check_vc,
__check_hi, __check_ls, __check_ge, __check_lt,
__check_gt, __check_le, __check_al, __check_al
};
int show_unhandled_signals = 0;
static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
{
unsigned long addr = instruction_pointer(regs);
char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
int i;
if (user_mode(regs))
return;
for (i = -4; i < 1; i++) {
unsigned int val, bad;
bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
if (!bad)
p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
else {
p += sprintf(p, "bad PC value");
break;
}
}
printk("%sCode: %s\n", lvl, str);
}
#ifdef CONFIG_PREEMPT
#define S_PREEMPT " PREEMPT"
#elif defined(CONFIG_PREEMPT_RT)
#define S_PREEMPT " PREEMPT_RT"
#else
#define S_PREEMPT ""
#endif
#define S_SMP " SMP"
static int __die(const char *str, int err, struct pt_regs *regs)
{
static int die_counter;
int ret;
pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n",
str, err, ++die_counter);
/* trap and error numbers are mostly meaningless on ARM */
ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
if (ret == NOTIFY_STOP)
return ret;
print_modules();
show_regs(regs);
dump_kernel_instr(KERN_EMERG, regs);
return ret;
}
static DEFINE_RAW_SPINLOCK(die_lock);
/*
* This function is protected against re-entrancy.
*/
void die(const char *str, struct pt_regs *regs, int err)
{
int ret;
unsigned long flags;
raw_spin_lock_irqsave(&die_lock, flags);
oops_enter();
console_verbose();
bust_spinlocks(1);
ret = __die(str, err, regs);
if (regs && kexec_should_crash(current))
crash_kexec(regs);
bust_spinlocks(0);
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
oops_exit();
if (in_interrupt())
panic("%s: Fatal exception in interrupt", str);
if (panic_on_oops)
panic("%s: Fatal exception", str);
raw_spin_unlock_irqrestore(&die_lock, flags);
if (ret != NOTIFY_STOP)
make_task_dead(SIGSEGV);
}
static void arm64_show_signal(int signo, const char *str)
{
static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
struct task_struct *tsk = current;
unsigned int esr = tsk->thread.fault_code;
struct pt_regs *regs = task_pt_regs(tsk);
/* Leave if the signal won't be shown */
if (!show_unhandled_signals ||
!unhandled_signal(tsk, signo) ||
!__ratelimit(&rs))
return;
pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
if (esr)
pr_cont("%s, ESR 0x%08x, ", esr_get_class_string(esr), esr);
pr_cont("%s", str);
print_vma_addr(KERN_CONT " in ", regs->pc);
pr_cont("\n");
__show_regs(regs);
}
void arm64_force_sig_fault(int signo, int code, unsigned long far,
const char *str)
{
arm64_show_signal(signo, str);
if (signo == SIGKILL)
force_sig(SIGKILL);
else
force_sig_fault(signo, code, (void __user *)far);
}
void arm64_force_sig_mceerr(int code, unsigned long far, short lsb,
const char *str)
{
arm64_show_signal(SIGBUS, str);
force_sig_mceerr(code, (void __user *)far, lsb);
}
void arm64_force_sig_ptrace_errno_trap(int errno, unsigned long far,
const char *str)
{
arm64_show_signal(SIGTRAP, str);
force_sig_ptrace_errno_trap(errno, (void __user *)far);
}
void arm64_notify_die(const char *str, struct pt_regs *regs,
int signo, int sicode, unsigned long far,
int err)
{
if (user_mode(regs)) {
WARN_ON(regs != current_pt_regs());
current->thread.fault_address = 0;
current->thread.fault_code = err;
arm64_force_sig_fault(signo, sicode, far, str);
} else {
die(str, regs, err);
}
}
#ifdef CONFIG_COMPAT
#define PSTATE_IT_1_0_SHIFT 25
#define PSTATE_IT_1_0_MASK (0x3 << PSTATE_IT_1_0_SHIFT)
#define PSTATE_IT_7_2_SHIFT 10
#define PSTATE_IT_7_2_MASK (0x3f << PSTATE_IT_7_2_SHIFT)
static u32 compat_get_it_state(struct pt_regs *regs)
{
u32 it, pstate = regs->pstate;
it = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
return it;
}
static void compat_set_it_state(struct pt_regs *regs, u32 it)
{
u32 pstate_it;
pstate_it = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
regs->pstate &= ~PSR_AA32_IT_MASK;
regs->pstate |= pstate_it;
}
static void advance_itstate(struct pt_regs *regs)
{
u32 it;
/* ARM mode */
if (!(regs->pstate & PSR_AA32_T_BIT) ||
!(regs->pstate & PSR_AA32_IT_MASK))
return;
it = compat_get_it_state(regs);
/*
* If this is the last instruction of the block, wipe the IT
* state. Otherwise advance it.
*/
if (!(it & 7))
it = 0;
else
it = (it & 0xe0) | ((it << 1) & 0x1f);
compat_set_it_state(regs, it);
}
#else
static void advance_itstate(struct pt_regs *regs)
{
}
#endif
void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
{
regs->pc += size;
/*
* If we were single stepping, we want to get the step exception after
* we return from the trap.
*/
if (user_mode(regs))
user_fastforward_single_step(current);
if (compat_user_mode(regs))
advance_itstate(regs);
else
regs->pstate &= ~PSR_BTYPE_MASK;
}
static LIST_HEAD(undef_hook);
static DEFINE_RAW_SPINLOCK(undef_lock);
void register_undef_hook(struct undef_hook *hook)
{
unsigned long flags;
raw_spin_lock_irqsave(&undef_lock, flags);
list_add(&hook->node, &undef_hook);
raw_spin_unlock_irqrestore(&undef_lock, flags);
}
void unregister_undef_hook(struct undef_hook *hook)
{
unsigned long flags;
raw_spin_lock_irqsave(&undef_lock, flags);
list_del(&hook->node);
raw_spin_unlock_irqrestore(&undef_lock, flags);
}
static int call_undef_hook(struct pt_regs *regs)
{
struct undef_hook *hook;
unsigned long flags;
u32 instr;
int (*fn)(struct pt_regs *regs, u32 instr) = NULL;
unsigned long pc = instruction_pointer(regs);
if (!user_mode(regs)) {
__le32 instr_le;
if (get_kernel_nofault(instr_le, (__le32 *)pc))
goto exit;
instr = le32_to_cpu(instr_le);
} else if (compat_thumb_mode(regs)) {
/* 16-bit Thumb instruction */
__le16 instr_le;
if (get_user(instr_le, (__le16 __user *)pc))
goto exit;
instr = le16_to_cpu(instr_le);
if (aarch32_insn_is_wide(instr)) {
u32 instr2;
if (get_user(instr_le, (__le16 __user *)(pc + 2)))
goto exit;
instr2 = le16_to_cpu(instr_le);
instr = (instr << 16) | instr2;
}
} else {
/* 32-bit ARM instruction */
__le32 instr_le;
if (get_user(instr_le, (__le32 __user *)pc))
goto exit;
instr = le32_to_cpu(instr_le);
}
raw_spin_lock_irqsave(&undef_lock, flags);
list_for_each_entry(hook, &undef_hook, node)
if ((instr & hook->instr_mask) == hook->instr_val &&
(regs->pstate & hook->pstate_mask) == hook->pstate_val)
fn = hook->fn;
raw_spin_unlock_irqrestore(&undef_lock, flags);
exit:
return fn ? fn(regs, instr) : 1;
}
void force_signal_inject(int signal, int code, unsigned long address, unsigned int err)
{
const char *desc;
struct pt_regs *regs = current_pt_regs();
if (WARN_ON(!user_mode(regs)))
return;
switch (signal) {
case SIGILL:
desc = "undefined instruction";
break;
case SIGSEGV:
desc = "illegal memory access";
break;
default:
desc = "unknown or unrecoverable error";
break;
}
/* Force signals we don't understand to SIGKILL */
if (WARN_ON(signal != SIGKILL &&
siginfo_layout(signal, code) != SIL_FAULT)) {
signal = SIGKILL;
}
arm64_notify_die(desc, regs, signal, code, address, err);
}
/*
* Set up process info to signal segmentation fault - called on access error.
*/
void arm64_notify_segfault(unsigned long addr)
{
int code;
mmap_read_lock(current->mm);
if (find_vma(current->mm, untagged_addr(addr)) == NULL)
code = SEGV_MAPERR;
else
code = SEGV_ACCERR;
mmap_read_unlock(current->mm);
force_signal_inject(SIGSEGV, code, addr, 0);
}
void do_undefinstr(struct pt_regs *regs)
{
/* check for AArch32 breakpoint instructions */
if (!aarch32_break_handler(regs))
return;
if (call_undef_hook(regs) == 0)
return;
BUG_ON(!user_mode(regs));
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
}
NOKPROBE_SYMBOL(do_undefinstr);
void do_bti(struct pt_regs *regs)
{
BUG_ON(!user_mode(regs));
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
}
NOKPROBE_SYMBOL(do_bti);
void do_ptrauth_fault(struct pt_regs *regs, unsigned int esr)
{
/*
* Unexpected FPAC exception or pointer authentication failure in
* the kernel: kill the task before it does any more harm.
*/
BUG_ON(!user_mode(regs));
force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr);
}
NOKPROBE_SYMBOL(do_ptrauth_fault);
#define __user_cache_maint(insn, address, res) \
if (address >= user_addr_max()) { \
res = -EFAULT; \
} else { \
uaccess_ttbr0_enable(); \
asm volatile ( \
"1: " insn ", %1\n" \
" mov %w0, #0\n" \
"2:\n" \
_ASM_EXTABLE_UACCESS_ERR(1b, 2b, %w0) \
: "=r" (res) \
: "r" (address)); \
uaccess_ttbr0_disable(); \
}
static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs)
{
unsigned long tagged_address, address;
int rt = ESR_ELx_SYS64_ISS_RT(esr);
int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
int ret = 0;
tagged_address = pt_regs_read_reg(regs, rt);
address = untagged_addr(tagged_address);
switch (crm) {
case ESR_ELx_SYS64_ISS_CRM_DC_CVAU: /* DC CVAU, gets promoted */
__user_cache_maint("dc civac", address, ret);
break;
case ESR_ELx_SYS64_ISS_CRM_DC_CVAC: /* DC CVAC, gets promoted */
__user_cache_maint("dc civac", address, ret);
break;
case ESR_ELx_SYS64_ISS_CRM_DC_CVADP: /* DC CVADP */
__user_cache_maint("sys 3, c7, c13, 1", address, ret);
break;
case ESR_ELx_SYS64_ISS_CRM_DC_CVAP: /* DC CVAP */
__user_cache_maint("sys 3, c7, c12, 1", address, ret);
break;
case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC: /* DC CIVAC */
__user_cache_maint("dc civac", address, ret);
break;
case ESR_ELx_SYS64_ISS_CRM_IC_IVAU: /* IC IVAU */
__user_cache_maint("ic ivau", address, ret);
break;
default:
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
return;
}
if (ret)
arm64_notify_segfault(tagged_address);
else
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
}
static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
{
int rt = ESR_ELx_SYS64_ISS_RT(esr);
unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
if (cpus_have_const_cap(ARM64_WORKAROUND_1542419)) {
/* Hide DIC so that we can trap the unnecessary maintenance...*/
val &= ~BIT(CTR_DIC_SHIFT);
/* ... and fake IminLine to reduce the number of traps. */
val &= ~CTR_IMINLINE_MASK;
val |= (PAGE_SHIFT - 2) & CTR_IMINLINE_MASK;
}
pt_regs_write_reg(regs, rt, val);
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
}
static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
{
int rt = ESR_ELx_SYS64_ISS_RT(esr);
pt_regs_write_reg(regs, rt, arch_timer_read_counter());
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
}
static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
{
int rt = ESR_ELx_SYS64_ISS_RT(esr);
pt_regs_write_reg(regs, rt, arch_timer_get_rate());
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
}
static void mrs_handler(unsigned int esr, struct pt_regs *regs)
{
u32 sysreg, rt;
rt = ESR_ELx_SYS64_ISS_RT(esr);
sysreg = esr_sys64_to_sysreg(esr);
if (do_emulate_mrs(regs, sysreg, rt) != 0)
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
}
static void wfi_handler(unsigned int esr, struct pt_regs *regs)
{
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
}
struct sys64_hook {
unsigned int esr_mask;
unsigned int esr_val;
void (*handler)(unsigned int esr, struct pt_regs *regs);
};
static const struct sys64_hook sys64_hooks[] = {
{
.esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
.esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
.handler = user_cache_maint_handler,
},
{
/* Trap read access to CTR_EL0 */
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
.handler = ctr_read_handler,
},
{
/* Trap read access to CNTVCT_EL0 */
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
.handler = cntvct_read_handler,
},
{
/* Trap read access to CNTVCTSS_EL0 */
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCTSS,
.handler = cntvct_read_handler,
},
{
/* Trap read access to CNTFRQ_EL0 */
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
.handler = cntfrq_read_handler,
},
{
/* Trap read access to CPUID registers */
.esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
.esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
.handler = mrs_handler,
},
{
/* Trap WFI instructions executed in userspace */
.esr_mask = ESR_ELx_WFx_MASK,
.esr_val = ESR_ELx_WFx_WFI_VAL,
.handler = wfi_handler,
},
{},
};
#ifdef CONFIG_COMPAT
static bool cp15_cond_valid(unsigned int esr, struct pt_regs *regs)
{
int cond;
/* Only a T32 instruction can trap without CV being set */
if (!(esr & ESR_ELx_CV)) {
u32 it;
it = compat_get_it_state(regs);
if (!it)
return true;
cond = it >> 4;
} else {
cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
}
return aarch32_opcode_cond_checks[cond](regs->pstate);
}
static void compat_cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
{
int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
pt_regs_write_reg(regs, reg, arch_timer_get_rate());
arm64_skip_faulting_instruction(regs, 4);
}
static const struct sys64_hook cp15_32_hooks[] = {
{
.esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
.esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
.handler = compat_cntfrq_read_handler,
},
{},
};
static void compat_cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
{
int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
u64 val = arch_timer_read_counter();
pt_regs_write_reg(regs, rt, lower_32_bits(val));
pt_regs_write_reg(regs, rt2, upper_32_bits(val));
arm64_skip_faulting_instruction(regs, 4);
}
static const struct sys64_hook cp15_64_hooks[] = {
{
.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
.handler = compat_cntvct_read_handler,
},
{
.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCTSS,
.handler = compat_cntvct_read_handler,
},
{},
};
void do_cp15instr(unsigned int esr, struct pt_regs *regs)
{
const struct sys64_hook *hook, *hook_base;
if (!cp15_cond_valid(esr, regs)) {
/*
* There is no T16 variant of a CP access, so we
* always advance PC by 4 bytes.
*/
arm64_skip_faulting_instruction(regs, 4);
return;
}
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_CP15_32:
hook_base = cp15_32_hooks;
break;
case ESR_ELx_EC_CP15_64:
hook_base = cp15_64_hooks;
break;
default:
do_undefinstr(regs);
return;
}
for (hook = hook_base; hook->handler; hook++)
if ((hook->esr_mask & esr) == hook->esr_val) {
hook->handler(esr, regs);
return;
}
/*
* New cp15 instructions may previously have been undefined at
* EL0. Fall back to our usual undefined instruction handler
* so that we handle these consistently.
*/
do_undefinstr(regs);
}
NOKPROBE_SYMBOL(do_cp15instr);
#endif
void do_sysinstr(unsigned int esr, struct pt_regs *regs)
{
const struct sys64_hook *hook;
for (hook = sys64_hooks; hook->handler; hook++)
if ((hook->esr_mask & esr) == hook->esr_val) {
hook->handler(esr, regs);
return;
}
/*
* New SYS instructions may previously have been undefined at EL0. Fall
* back to our usual undefined instruction handler so that we handle
* these consistently.
*/
do_undefinstr(regs);
}
NOKPROBE_SYMBOL(do_sysinstr);
static const char *esr_class_str[] = {
[0 ... ESR_ELx_EC_MAX] = "UNRECOGNIZED EC",
[ESR_ELx_EC_UNKNOWN] = "Unknown/Uncategorized",
[ESR_ELx_EC_WFx] = "WFI/WFE",
[ESR_ELx_EC_CP15_32] = "CP15 MCR/MRC",
[ESR_ELx_EC_CP15_64] = "CP15 MCRR/MRRC",
[ESR_ELx_EC_CP14_MR] = "CP14 MCR/MRC",
[ESR_ELx_EC_CP14_LS] = "CP14 LDC/STC",
[ESR_ELx_EC_FP_ASIMD] = "ASIMD",
[ESR_ELx_EC_CP10_ID] = "CP10 MRC/VMRS",
[ESR_ELx_EC_PAC] = "PAC",
[ESR_ELx_EC_CP14_64] = "CP14 MCRR/MRRC",
[ESR_ELx_EC_BTI] = "BTI",
[ESR_ELx_EC_ILL] = "PSTATE.IL",
[ESR_ELx_EC_SVC32] = "SVC (AArch32)",
[ESR_ELx_EC_HVC32] = "HVC (AArch32)",
[ESR_ELx_EC_SMC32] = "SMC (AArch32)",
[ESR_ELx_EC_SVC64] = "SVC (AArch64)",
[ESR_ELx_EC_HVC64] = "HVC (AArch64)",
[ESR_ELx_EC_SMC64] = "SMC (AArch64)",
[ESR_ELx_EC_SYS64] = "MSR/MRS (AArch64)",
[ESR_ELx_EC_SVE] = "SVE",
[ESR_ELx_EC_ERET] = "ERET/ERETAA/ERETAB",
[ESR_ELx_EC_FPAC] = "FPAC",
[ESR_ELx_EC_IMP_DEF] = "EL3 IMP DEF",
[ESR_ELx_EC_IABT_LOW] = "IABT (lower EL)",
[ESR_ELx_EC_IABT_CUR] = "IABT (current EL)",
[ESR_ELx_EC_PC_ALIGN] = "PC Alignment",
[ESR_ELx_EC_DABT_LOW] = "DABT (lower EL)",
[ESR_ELx_EC_DABT_CUR] = "DABT (current EL)",
[ESR_ELx_EC_SP_ALIGN] = "SP Alignment",
[ESR_ELx_EC_FP_EXC32] = "FP (AArch32)",
[ESR_ELx_EC_FP_EXC64] = "FP (AArch64)",
[ESR_ELx_EC_SERROR] = "SError",
[ESR_ELx_EC_BREAKPT_LOW] = "Breakpoint (lower EL)",
[ESR_ELx_EC_BREAKPT_CUR] = "Breakpoint (current EL)",
[ESR_ELx_EC_SOFTSTP_LOW] = "Software Step (lower EL)",
[ESR_ELx_EC_SOFTSTP_CUR] = "Software Step (current EL)",
[ESR_ELx_EC_WATCHPT_LOW] = "Watchpoint (lower EL)",
[ESR_ELx_EC_WATCHPT_CUR] = "Watchpoint (current EL)",
[ESR_ELx_EC_BKPT32] = "BKPT (AArch32)",
[ESR_ELx_EC_VECTOR32] = "Vector catch (AArch32)",
[ESR_ELx_EC_BRK64] = "BRK (AArch64)",
};
const char *esr_get_class_string(u32 esr)
{
return esr_class_str[ESR_ELx_EC(esr)];
}
/*
* bad_el0_sync handles unexpected, but potentially recoverable synchronous
* exceptions taken from EL0.
*/
void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr)
{
unsigned long pc = instruction_pointer(regs);
current->thread.fault_address = 0;
current->thread.fault_code = esr;
arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
"Bad EL0 synchronous exception");
}
#ifdef CONFIG_VMAP_STACK
DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
__aligned(16);
void panic_bad_stack(struct pt_regs *regs, unsigned int esr, unsigned long far)
{
unsigned long tsk_stk = (unsigned long)current->stack;
unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
console_verbose();
pr_emerg("Insufficient stack space to handle exception!");
pr_emerg("ESR: 0x%08x -- %s\n", esr, esr_get_class_string(esr));
pr_emerg("FAR: 0x%016lx\n", far);
pr_emerg("Task stack: [0x%016lx..0x%016lx]\n",
tsk_stk, tsk_stk + THREAD_SIZE);
pr_emerg("IRQ stack: [0x%016lx..0x%016lx]\n",
irq_stk, irq_stk + IRQ_STACK_SIZE);
pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
__show_regs(regs);
/*
* We use nmi_panic to limit the potential for recusive overflows, and
* to get a better stack trace.
*/
nmi_panic(NULL, "kernel stack overflow");
cpu_park_loop();
}
#endif
void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr)
{
console_verbose();
pr_crit("SError Interrupt on CPU%d, code 0x%08x -- %s\n",
smp_processor_id(), esr, esr_get_class_string(esr));
if (regs)
__show_regs(regs);
nmi_panic(regs, "Asynchronous SError Interrupt");
cpu_park_loop();
unreachable();
}
bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr)
{
u32 aet = arm64_ras_serror_get_severity(esr);
switch (aet) {
case ESR_ELx_AET_CE: /* corrected error */
case ESR_ELx_AET_UEO: /* restartable, not yet consumed */
/*
* The CPU can make progress. We may take UEO again as
* a more severe error.
*/
return false;
case ESR_ELx_AET_UEU: /* Uncorrected Unrecoverable */
case ESR_ELx_AET_UER: /* Uncorrected Recoverable */
/*
* The CPU can't make progress. The exception may have
* been imprecise.
*
* Neoverse-N1 #1349291 means a non-KVM SError reported as
* Unrecoverable should be treated as Uncontainable. We
* call arm64_serror_panic() in both cases.
*/
return true;
case ESR_ELx_AET_UC: /* Uncontainable or Uncategorized error */
default:
/* Error has been silently propagated */
arm64_serror_panic(regs, esr);
}
}
void do_serror(struct pt_regs *regs, unsigned int esr)
{
/* non-RAS errors are not containable */
if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
arm64_serror_panic(regs, esr);
}
/* GENERIC_BUG traps */
int is_valid_bugaddr(unsigned long addr)
{
/*
* bug_handler() only called for BRK #BUG_BRK_IMM.
* So the answer is trivial -- any spurious instances with no
* bug table entry will be rejected by report_bug() and passed
* back to the debug-monitors code and handled as a fatal
* unexpected debug exception.
*/
return 1;
}
static int bug_handler(struct pt_regs *regs, unsigned int esr)
{
switch (report_bug(regs->pc, regs)) {
case BUG_TRAP_TYPE_BUG:
die("Oops - BUG", regs, 0);
break;
case BUG_TRAP_TYPE_WARN:
break;
default:
/* unknown/unrecognised bug trap type */
return DBG_HOOK_ERROR;
}
/* If thread survives, skip over the BUG instruction and continue: */
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
return DBG_HOOK_HANDLED;
}
static struct break_hook bug_break_hook = {
.fn = bug_handler,
.imm = BUG_BRK_IMM,
};
static int reserved_fault_handler(struct pt_regs *regs, unsigned int esr)
{
pr_err("%s generated an invalid instruction at %pS!\n",
"Kernel text patching",
(void *)instruction_pointer(regs));
/* We cannot handle this */
return DBG_HOOK_ERROR;
}
static struct break_hook fault_break_hook = {
.fn = reserved_fault_handler,
.imm = FAULT_BRK_IMM,
};
#ifdef CONFIG_KASAN_SW_TAGS
#define KASAN_ESR_RECOVER 0x20
#define KASAN_ESR_WRITE 0x10
#define KASAN_ESR_SIZE_MASK 0x0f
#define KASAN_ESR_SIZE(esr) (1 << ((esr) & KASAN_ESR_SIZE_MASK))
static int kasan_handler(struct pt_regs *regs, unsigned int esr)
{
bool recover = esr & KASAN_ESR_RECOVER;
bool write = esr & KASAN_ESR_WRITE;
size_t size = KASAN_ESR_SIZE(esr);
u64 addr = regs->regs[0];
u64 pc = regs->pc;
kasan_report(addr, size, write, pc);
/*
* The instrumentation allows to control whether we can proceed after
* a crash was detected. This is done by passing the -recover flag to
* the compiler. Disabling recovery allows to generate more compact
* code.
*
* Unfortunately disabling recovery doesn't work for the kernel right
* now. KASAN reporting is disabled in some contexts (for example when
* the allocator accesses slab object metadata; this is controlled by
* current->kasan_depth). All these accesses are detected by the tool,
* even though the reports for them are not printed.
*
* This is something that might be fixed at some point in the future.
*/
if (!recover)
die("Oops - KASAN", regs, 0);
/* If thread survives, skip over the brk instruction and continue: */
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
return DBG_HOOK_HANDLED;
}
static struct break_hook kasan_break_hook = {
.fn = kasan_handler,
.imm = KASAN_BRK_IMM,
.mask = KASAN_BRK_MASK,
};
#endif
/*
* Initial handler for AArch64 BRK exceptions
* This handler only used until debug_traps_init().
*/
int __init early_brk64(unsigned long addr, unsigned int esr,
struct pt_regs *regs)
{
#ifdef CONFIG_KASAN_SW_TAGS
unsigned int comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
#endif
return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
}
void __init trap_init(void)
{
register_kernel_break_hook(&bug_break_hook);
register_kernel_break_hook(&fault_break_hook);
#ifdef CONFIG_KASAN_SW_TAGS
register_kernel_break_hook(&kasan_break_hook);
#endif
debug_traps_init();
}