linux/drivers/net/ioc3-eth.c
Ralf Baechle 10d024c1b2 [NET]: Nuke SET_MODULE_OWNER macro.
It's been a useless no-op for long enough in 2.6 so I figured it's time to
remove it.  The number of people that could object because they're
maintaining unified 2.4 and 2.6 drivers is probably rather small.

[ Handled drivers added by netdev tree and some missed IRDA cases... -DaveM ]

Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-10 16:51:13 -07:00

1722 lines
45 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
*
* Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
* Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
*
* References:
* o IOC3 ASIC specification 4.51, 1996-04-18
* o IEEE 802.3 specification, 2000 edition
* o DP38840A Specification, National Semiconductor, March 1997
*
* To do:
*
* o Handle allocation failures in ioc3_alloc_skb() more gracefully.
* o Handle allocation failures in ioc3_init_rings().
* o Use prefetching for large packets. What is a good lower limit for
* prefetching?
* o We're probably allocating a bit too much memory.
* o Use hardware checksums.
* o Convert to using a IOC3 meta driver.
* o Which PHYs might possibly be attached to the IOC3 in real live,
* which workarounds are required for them? Do we ever have Lucent's?
* o For the 2.5 branch kill the mii-tool ioctls.
*/
#define IOC3_NAME "ioc3-eth"
#define IOC3_VERSION "2.6.3-4"
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/dma-mapping.h>
#ifdef CONFIG_SERIAL_8250
#include <linux/serial_core.h>
#include <linux/serial_8250.h>
#include <linux/serial_reg.h>
#endif
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <net/ip.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/sn/types.h>
#include <asm/sn/ioc3.h>
#include <asm/pci/bridge.h>
/*
* 64 RX buffers. This is tunable in the range of 16 <= x < 512. The
* value must be a power of two.
*/
#define RX_BUFFS 64
#define ETCSR_FD ((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
#define ETCSR_HD ((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
/* Private per NIC data of the driver. */
struct ioc3_private {
struct ioc3 *regs;
unsigned long *rxr; /* pointer to receiver ring */
struct ioc3_etxd *txr;
struct sk_buff *rx_skbs[512];
struct sk_buff *tx_skbs[128];
struct net_device_stats stats;
int rx_ci; /* RX consumer index */
int rx_pi; /* RX producer index */
int tx_ci; /* TX consumer index */
int tx_pi; /* TX producer index */
int txqlen;
u32 emcr, ehar_h, ehar_l;
spinlock_t ioc3_lock;
struct mii_if_info mii;
unsigned long flags;
#define IOC3_FLAG_RX_CHECKSUMS 1
struct pci_dev *pdev;
/* Members used by autonegotiation */
struct timer_list ioc3_timer;
};
static inline struct net_device *priv_netdev(struct ioc3_private *dev)
{
return (void *)dev - ((sizeof(struct net_device) + 31) & ~31);
}
static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static void ioc3_set_multicast_list(struct net_device *dev);
static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void ioc3_timeout(struct net_device *dev);
static inline unsigned int ioc3_hash(const unsigned char *addr);
static inline void ioc3_stop(struct ioc3_private *ip);
static void ioc3_init(struct net_device *dev);
static const char ioc3_str[] = "IOC3 Ethernet";
static const struct ethtool_ops ioc3_ethtool_ops;
/* We use this to acquire receive skb's that we can DMA directly into. */
#define IOC3_CACHELINE 128UL
static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
{
return (~addr + 1) & (IOC3_CACHELINE - 1UL);
}
static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
unsigned int gfp_mask)
{
struct sk_buff *skb;
skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
if (likely(skb)) {
int offset = aligned_rx_skb_addr((unsigned long) skb->data);
if (offset)
skb_reserve(skb, offset);
}
return skb;
}
static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
{
#ifdef CONFIG_SGI_IP27
vdev <<= 57; /* Shift to PCI64_ATTR_VIRTUAL */
return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
((unsigned long)ptr & TO_PHYS_MASK);
#else
return virt_to_bus(ptr);
#endif
}
/* BEWARE: The IOC3 documentation documents the size of rx buffers as
1644 while it's actually 1664. This one was nasty to track down ... */
#define RX_OFFSET 10
#define RX_BUF_ALLOC_SIZE (1664 + RX_OFFSET + IOC3_CACHELINE)
/* DMA barrier to separate cached and uncached accesses. */
#define BARRIER() \
__asm__("sync" ::: "memory")
#define IOC3_SIZE 0x100000
/*
* IOC3 is a big endian device
*
* Unorthodox but makes the users of these macros more readable - the pointer
* to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
* in the environment.
*/
#define ioc3_r_mcr() be32_to_cpu(ioc3->mcr)
#define ioc3_w_mcr(v) do { ioc3->mcr = cpu_to_be32(v); } while (0)
#define ioc3_w_gpcr_s(v) do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
#define ioc3_r_emcr() be32_to_cpu(ioc3->emcr)
#define ioc3_w_emcr(v) do { ioc3->emcr = cpu_to_be32(v); } while (0)
#define ioc3_r_eisr() be32_to_cpu(ioc3->eisr)
#define ioc3_w_eisr(v) do { ioc3->eisr = cpu_to_be32(v); } while (0)
#define ioc3_r_eier() be32_to_cpu(ioc3->eier)
#define ioc3_w_eier(v) do { ioc3->eier = cpu_to_be32(v); } while (0)
#define ioc3_r_ercsr() be32_to_cpu(ioc3->ercsr)
#define ioc3_w_ercsr(v) do { ioc3->ercsr = cpu_to_be32(v); } while (0)
#define ioc3_r_erbr_h() be32_to_cpu(ioc3->erbr_h)
#define ioc3_w_erbr_h(v) do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
#define ioc3_r_erbr_l() be32_to_cpu(ioc3->erbr_l)
#define ioc3_w_erbr_l(v) do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
#define ioc3_r_erbar() be32_to_cpu(ioc3->erbar)
#define ioc3_w_erbar(v) do { ioc3->erbar = cpu_to_be32(v); } while (0)
#define ioc3_r_ercir() be32_to_cpu(ioc3->ercir)
#define ioc3_w_ercir(v) do { ioc3->ercir = cpu_to_be32(v); } while (0)
#define ioc3_r_erpir() be32_to_cpu(ioc3->erpir)
#define ioc3_w_erpir(v) do { ioc3->erpir = cpu_to_be32(v); } while (0)
#define ioc3_r_ertr() be32_to_cpu(ioc3->ertr)
#define ioc3_w_ertr(v) do { ioc3->ertr = cpu_to_be32(v); } while (0)
#define ioc3_r_etcsr() be32_to_cpu(ioc3->etcsr)
#define ioc3_w_etcsr(v) do { ioc3->etcsr = cpu_to_be32(v); } while (0)
#define ioc3_r_ersr() be32_to_cpu(ioc3->ersr)
#define ioc3_w_ersr(v) do { ioc3->ersr = cpu_to_be32(v); } while (0)
#define ioc3_r_etcdc() be32_to_cpu(ioc3->etcdc)
#define ioc3_w_etcdc(v) do { ioc3->etcdc = cpu_to_be32(v); } while (0)
#define ioc3_r_ebir() be32_to_cpu(ioc3->ebir)
#define ioc3_w_ebir(v) do { ioc3->ebir = cpu_to_be32(v); } while (0)
#define ioc3_r_etbr_h() be32_to_cpu(ioc3->etbr_h)
#define ioc3_w_etbr_h(v) do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
#define ioc3_r_etbr_l() be32_to_cpu(ioc3->etbr_l)
#define ioc3_w_etbr_l(v) do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
#define ioc3_r_etcir() be32_to_cpu(ioc3->etcir)
#define ioc3_w_etcir(v) do { ioc3->etcir = cpu_to_be32(v); } while (0)
#define ioc3_r_etpir() be32_to_cpu(ioc3->etpir)
#define ioc3_w_etpir(v) do { ioc3->etpir = cpu_to_be32(v); } while (0)
#define ioc3_r_emar_h() be32_to_cpu(ioc3->emar_h)
#define ioc3_w_emar_h(v) do { ioc3->emar_h = cpu_to_be32(v); } while (0)
#define ioc3_r_emar_l() be32_to_cpu(ioc3->emar_l)
#define ioc3_w_emar_l(v) do { ioc3->emar_l = cpu_to_be32(v); } while (0)
#define ioc3_r_ehar_h() be32_to_cpu(ioc3->ehar_h)
#define ioc3_w_ehar_h(v) do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
#define ioc3_r_ehar_l() be32_to_cpu(ioc3->ehar_l)
#define ioc3_w_ehar_l(v) do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
#define ioc3_r_micr() be32_to_cpu(ioc3->micr)
#define ioc3_w_micr(v) do { ioc3->micr = cpu_to_be32(v); } while (0)
#define ioc3_r_midr_r() be32_to_cpu(ioc3->midr_r)
#define ioc3_w_midr_r(v) do { ioc3->midr_r = cpu_to_be32(v); } while (0)
#define ioc3_r_midr_w() be32_to_cpu(ioc3->midr_w)
#define ioc3_w_midr_w(v) do { ioc3->midr_w = cpu_to_be32(v); } while (0)
static inline u32 mcr_pack(u32 pulse, u32 sample)
{
return (pulse << 10) | (sample << 2);
}
static int nic_wait(struct ioc3 *ioc3)
{
u32 mcr;
do {
mcr = ioc3_r_mcr();
} while (!(mcr & 2));
return mcr & 1;
}
static int nic_reset(struct ioc3 *ioc3)
{
int presence;
ioc3_w_mcr(mcr_pack(500, 65));
presence = nic_wait(ioc3);
ioc3_w_mcr(mcr_pack(0, 500));
nic_wait(ioc3);
return presence;
}
static inline int nic_read_bit(struct ioc3 *ioc3)
{
int result;
ioc3_w_mcr(mcr_pack(6, 13));
result = nic_wait(ioc3);
ioc3_w_mcr(mcr_pack(0, 100));
nic_wait(ioc3);
return result;
}
static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
{
if (bit)
ioc3_w_mcr(mcr_pack(6, 110));
else
ioc3_w_mcr(mcr_pack(80, 30));
nic_wait(ioc3);
}
/*
* Read a byte from an iButton device
*/
static u32 nic_read_byte(struct ioc3 *ioc3)
{
u32 result = 0;
int i;
for (i = 0; i < 8; i++)
result = (result >> 1) | (nic_read_bit(ioc3) << 7);
return result;
}
/*
* Write a byte to an iButton device
*/
static void nic_write_byte(struct ioc3 *ioc3, int byte)
{
int i, bit;
for (i = 8; i; i--) {
bit = byte & 1;
byte >>= 1;
nic_write_bit(ioc3, bit);
}
}
static u64 nic_find(struct ioc3 *ioc3, int *last)
{
int a, b, index, disc;
u64 address = 0;
nic_reset(ioc3);
/* Search ROM. */
nic_write_byte(ioc3, 0xf0);
/* Algorithm from ``Book of iButton Standards''. */
for (index = 0, disc = 0; index < 64; index++) {
a = nic_read_bit(ioc3);
b = nic_read_bit(ioc3);
if (a && b) {
printk("NIC search failed (not fatal).\n");
*last = 0;
return 0;
}
if (!a && !b) {
if (index == *last) {
address |= 1UL << index;
} else if (index > *last) {
address &= ~(1UL << index);
disc = index;
} else if ((address & (1UL << index)) == 0)
disc = index;
nic_write_bit(ioc3, address & (1UL << index));
continue;
} else {
if (a)
address |= 1UL << index;
else
address &= ~(1UL << index);
nic_write_bit(ioc3, a);
continue;
}
}
*last = disc;
return address;
}
static int nic_init(struct ioc3 *ioc3)
{
const char *unknown = "unknown";
const char *type = unknown;
u8 crc;
u8 serial[6];
int save = 0, i;
while (1) {
u64 reg;
reg = nic_find(ioc3, &save);
switch (reg & 0xff) {
case 0x91:
type = "DS1981U";
break;
default:
if (save == 0) {
/* Let the caller try again. */
return -1;
}
continue;
}
nic_reset(ioc3);
/* Match ROM. */
nic_write_byte(ioc3, 0x55);
for (i = 0; i < 8; i++)
nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
reg >>= 8; /* Shift out type. */
for (i = 0; i < 6; i++) {
serial[i] = reg & 0xff;
reg >>= 8;
}
crc = reg & 0xff;
break;
}
printk("Found %s NIC", type);
if (type != unknown) {
printk (" registration number %02x:%02x:%02x:%02x:%02x:%02x,"
" CRC %02x", serial[0], serial[1], serial[2],
serial[3], serial[4], serial[5], crc);
}
printk(".\n");
return 0;
}
/*
* Read the NIC (Number-In-a-Can) device used to store the MAC address on
* SN0 / SN00 nodeboards and PCI cards.
*/
static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
{
struct ioc3 *ioc3 = ip->regs;
u8 nic[14];
int tries = 2; /* There may be some problem with the battery? */
int i;
ioc3_w_gpcr_s(1 << 21);
while (tries--) {
if (!nic_init(ioc3))
break;
udelay(500);
}
if (tries < 0) {
printk("Failed to read MAC address\n");
return;
}
/* Read Memory. */
nic_write_byte(ioc3, 0xf0);
nic_write_byte(ioc3, 0x00);
nic_write_byte(ioc3, 0x00);
for (i = 13; i >= 0; i--)
nic[i] = nic_read_byte(ioc3);
for (i = 2; i < 8; i++)
priv_netdev(ip)->dev_addr[i - 2] = nic[i];
}
/*
* Ok, this is hosed by design. It's necessary to know what machine the
* NIC is in in order to know how to read the NIC address. We also have
* to know if it's a PCI card or a NIC in on the node board ...
*/
static void ioc3_get_eaddr(struct ioc3_private *ip)
{
int i;
ioc3_get_eaddr_nic(ip);
printk("Ethernet address is ");
for (i = 0; i < 6; i++) {
printk("%02x", priv_netdev(ip)->dev_addr[i]);
if (i < 5)
printk(":");
}
printk(".\n");
}
static void __ioc3_set_mac_address(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
ioc3_w_emar_h((dev->dev_addr[5] << 8) | dev->dev_addr[4]);
ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
(dev->dev_addr[1] << 8) | dev->dev_addr[0]);
}
static int ioc3_set_mac_address(struct net_device *dev, void *addr)
{
struct ioc3_private *ip = netdev_priv(dev);
struct sockaddr *sa = addr;
memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
spin_lock_irq(&ip->ioc3_lock);
__ioc3_set_mac_address(dev);
spin_unlock_irq(&ip->ioc3_lock);
return 0;
}
/*
* Caller must hold the ioc3_lock ever for MII readers. This is also
* used to protect the transmitter side but it's low contention.
*/
static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
while (ioc3_r_micr() & MICR_BUSY);
ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
while (ioc3_r_micr() & MICR_BUSY);
return ioc3_r_midr_r() & MIDR_DATA_MASK;
}
static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
while (ioc3_r_micr() & MICR_BUSY);
ioc3_w_midr_w(data);
ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
while (ioc3_r_micr() & MICR_BUSY);
}
static int ioc3_mii_init(struct ioc3_private *ip);
static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
ip->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
return &ip->stats;
}
static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
{
struct ethhdr *eh = eth_hdr(skb);
uint32_t csum, ehsum;
unsigned int proto;
struct iphdr *ih;
uint16_t *ew;
unsigned char *cp;
/*
* Did hardware handle the checksum at all? The cases we can handle
* are:
*
* - TCP and UDP checksums of IPv4 only.
* - IPv6 would be doable but we keep that for later ...
* - Only unfragmented packets. Did somebody already tell you
* fragmentation is evil?
* - don't care about packet size. Worst case when processing a
* malformed packet we'll try to access the packet at ip header +
* 64 bytes which is still inside the skb. Even in the unlikely
* case where the checksum is right the higher layers will still
* drop the packet as appropriate.
*/
if (eh->h_proto != ntohs(ETH_P_IP))
return;
ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
if (ih->frag_off & htons(IP_MF | IP_OFFSET))
return;
proto = ih->protocol;
if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
return;
/* Same as tx - compute csum of pseudo header */
csum = hwsum +
(ih->tot_len - (ih->ihl << 2)) +
htons((uint16_t)ih->protocol) +
(ih->saddr >> 16) + (ih->saddr & 0xffff) +
(ih->daddr >> 16) + (ih->daddr & 0xffff);
/* Sum up ethernet dest addr, src addr and protocol */
ew = (uint16_t *) eh;
ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
ehsum = (ehsum & 0xffff) + (ehsum >> 16);
ehsum = (ehsum & 0xffff) + (ehsum >> 16);
csum += 0xffff ^ ehsum;
/* In the next step we also subtract the 1's complement
checksum of the trailing ethernet CRC. */
cp = (char *)eh + len; /* points at trailing CRC */
if (len & 1) {
csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
} else {
csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
}
csum = (csum & 0xffff) + (csum >> 16);
csum = (csum & 0xffff) + (csum >> 16);
if (csum == 0xffff)
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
static inline void ioc3_rx(struct ioc3_private *ip)
{
struct sk_buff *skb, *new_skb;
struct ioc3 *ioc3 = ip->regs;
int rx_entry, n_entry, len;
struct ioc3_erxbuf *rxb;
unsigned long *rxr;
u32 w0, err;
rxr = (unsigned long *) ip->rxr; /* Ring base */
rx_entry = ip->rx_ci; /* RX consume index */
n_entry = ip->rx_pi;
skb = ip->rx_skbs[rx_entry];
rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
w0 = be32_to_cpu(rxb->w0);
while (w0 & ERXBUF_V) {
err = be32_to_cpu(rxb->err); /* It's valid ... */
if (err & ERXBUF_GOODPKT) {
len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
skb_trim(skb, len);
skb->protocol = eth_type_trans(skb, priv_netdev(ip));
new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
if (!new_skb) {
/* Ouch, drop packet and just recycle packet
to keep the ring filled. */
ip->stats.rx_dropped++;
new_skb = skb;
goto next;
}
if (likely(ip->flags & IOC3_FLAG_RX_CHECKSUMS))
ioc3_tcpudp_checksum(skb,
w0 & ERXBUF_IPCKSUM_MASK, len);
netif_rx(skb);
ip->rx_skbs[rx_entry] = NULL; /* Poison */
/* Because we reserve afterwards. */
skb_put(new_skb, (1664 + RX_OFFSET));
rxb = (struct ioc3_erxbuf *) new_skb->data;
skb_reserve(new_skb, RX_OFFSET);
priv_netdev(ip)->last_rx = jiffies;
ip->stats.rx_packets++; /* Statistics */
ip->stats.rx_bytes += len;
} else {
/* The frame is invalid and the skb never
reached the network layer so we can just
recycle it. */
new_skb = skb;
ip->stats.rx_errors++;
}
if (err & ERXBUF_CRCERR) /* Statistics */
ip->stats.rx_crc_errors++;
if (err & ERXBUF_FRAMERR)
ip->stats.rx_frame_errors++;
next:
ip->rx_skbs[n_entry] = new_skb;
rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
rxb->w0 = 0; /* Clear valid flag */
n_entry = (n_entry + 1) & 511; /* Update erpir */
/* Now go on to the next ring entry. */
rx_entry = (rx_entry + 1) & 511;
skb = ip->rx_skbs[rx_entry];
rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
w0 = be32_to_cpu(rxb->w0);
}
ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
ip->rx_pi = n_entry;
ip->rx_ci = rx_entry;
}
static inline void ioc3_tx(struct ioc3_private *ip)
{
unsigned long packets, bytes;
struct ioc3 *ioc3 = ip->regs;
int tx_entry, o_entry;
struct sk_buff *skb;
u32 etcir;
spin_lock(&ip->ioc3_lock);
etcir = ioc3_r_etcir();
tx_entry = (etcir >> 7) & 127;
o_entry = ip->tx_ci;
packets = 0;
bytes = 0;
while (o_entry != tx_entry) {
packets++;
skb = ip->tx_skbs[o_entry];
bytes += skb->len;
dev_kfree_skb_irq(skb);
ip->tx_skbs[o_entry] = NULL;
o_entry = (o_entry + 1) & 127; /* Next */
etcir = ioc3_r_etcir(); /* More pkts sent? */
tx_entry = (etcir >> 7) & 127;
}
ip->stats.tx_packets += packets;
ip->stats.tx_bytes += bytes;
ip->txqlen -= packets;
if (ip->txqlen < 128)
netif_wake_queue(priv_netdev(ip));
ip->tx_ci = o_entry;
spin_unlock(&ip->ioc3_lock);
}
/*
* Deal with fatal IOC3 errors. This condition might be caused by a hard or
* software problems, so we should try to recover
* more gracefully if this ever happens. In theory we might be flooded
* with such error interrupts if something really goes wrong, so we might
* also consider to take the interface down.
*/
static void ioc3_error(struct ioc3_private *ip, u32 eisr)
{
struct net_device *dev = priv_netdev(ip);
unsigned char *iface = dev->name;
spin_lock(&ip->ioc3_lock);
if (eisr & EISR_RXOFLO)
printk(KERN_ERR "%s: RX overflow.\n", iface);
if (eisr & EISR_RXBUFOFLO)
printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
if (eisr & EISR_RXMEMERR)
printk(KERN_ERR "%s: RX PCI error.\n", iface);
if (eisr & EISR_RXPARERR)
printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
if (eisr & EISR_TXBUFUFLO)
printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
if (eisr & EISR_TXMEMERR)
printk(KERN_ERR "%s: TX PCI error.\n", iface);
ioc3_stop(ip);
ioc3_init(dev);
ioc3_mii_init(ip);
netif_wake_queue(dev);
spin_unlock(&ip->ioc3_lock);
}
/* The interrupt handler does all of the Rx thread work and cleans up
after the Tx thread. */
static irqreturn_t ioc3_interrupt(int irq, void *_dev)
{
struct net_device *dev = (struct net_device *)_dev;
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
EISR_TXEXPLICIT | EISR_TXMEMERR;
u32 eisr;
eisr = ioc3_r_eisr() & enabled;
ioc3_w_eisr(eisr);
(void) ioc3_r_eisr(); /* Flush */
if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
ioc3_error(ip, eisr);
if (eisr & EISR_RXTIMERINT)
ioc3_rx(ip);
if (eisr & EISR_TXEXPLICIT)
ioc3_tx(ip);
return IRQ_HANDLED;
}
static inline void ioc3_setup_duplex(struct ioc3_private *ip)
{
struct ioc3 *ioc3 = ip->regs;
if (ip->mii.full_duplex) {
ioc3_w_etcsr(ETCSR_FD);
ip->emcr |= EMCR_DUPLEX;
} else {
ioc3_w_etcsr(ETCSR_HD);
ip->emcr &= ~EMCR_DUPLEX;
}
ioc3_w_emcr(ip->emcr);
}
static void ioc3_timer(unsigned long data)
{
struct ioc3_private *ip = (struct ioc3_private *) data;
/* Print the link status if it has changed */
mii_check_media(&ip->mii, 1, 0);
ioc3_setup_duplex(ip);
ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
add_timer(&ip->ioc3_timer);
}
/*
* Try to find a PHY. There is no apparent relation between the MII addresses
* in the SGI documentation and what we find in reality, so we simply probe
* for the PHY. It seems IOC3 PHYs usually live on address 31. One of my
* onboard IOC3s has the special oddity that probing doesn't seem to find it
* yet the interface seems to work fine, so if probing fails we for now will
* simply default to PHY 31 instead of bailing out.
*/
static int ioc3_mii_init(struct ioc3_private *ip)
{
struct net_device *dev = priv_netdev(ip);
int i, found = 0, res = 0;
int ioc3_phy_workaround = 1;
u16 word;
for (i = 0; i < 32; i++) {
word = ioc3_mdio_read(dev, i, MII_PHYSID1);
if (word != 0xffff && word != 0x0000) {
found = 1;
break; /* Found a PHY */
}
}
if (!found) {
if (ioc3_phy_workaround)
i = 31;
else {
ip->mii.phy_id = -1;
res = -ENODEV;
goto out;
}
}
ip->mii.phy_id = i;
out:
return res;
}
static void ioc3_mii_start(struct ioc3_private *ip)
{
ip->ioc3_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
ip->ioc3_timer.data = (unsigned long) ip;
ip->ioc3_timer.function = &ioc3_timer;
add_timer(&ip->ioc3_timer);
}
static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
{
struct sk_buff *skb;
int i;
for (i = ip->rx_ci; i & 15; i++) {
ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
}
ip->rx_pi &= 511;
ip->rx_ci &= 511;
for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
struct ioc3_erxbuf *rxb;
skb = ip->rx_skbs[i];
rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
rxb->w0 = 0;
}
}
static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
{
struct sk_buff *skb;
int i;
for (i=0; i < 128; i++) {
skb = ip->tx_skbs[i];
if (skb) {
ip->tx_skbs[i] = NULL;
dev_kfree_skb_any(skb);
}
ip->txr[i].cmd = 0;
}
ip->tx_pi = 0;
ip->tx_ci = 0;
}
static void ioc3_free_rings(struct ioc3_private *ip)
{
struct sk_buff *skb;
int rx_entry, n_entry;
if (ip->txr) {
ioc3_clean_tx_ring(ip);
free_pages((unsigned long)ip->txr, 2);
ip->txr = NULL;
}
if (ip->rxr) {
n_entry = ip->rx_ci;
rx_entry = ip->rx_pi;
while (n_entry != rx_entry) {
skb = ip->rx_skbs[n_entry];
if (skb)
dev_kfree_skb_any(skb);
n_entry = (n_entry + 1) & 511;
}
free_page((unsigned long)ip->rxr);
ip->rxr = NULL;
}
}
static void ioc3_alloc_rings(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_erxbuf *rxb;
unsigned long *rxr;
int i;
if (ip->rxr == NULL) {
/* Allocate and initialize rx ring. 4kb = 512 entries */
ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
rxr = (unsigned long *) ip->rxr;
if (!rxr)
printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
/* Now the rx buffers. The RX ring may be larger but
we only allocate 16 buffers for now. Need to tune
this for performance and memory later. */
for (i = 0; i < RX_BUFFS; i++) {
struct sk_buff *skb;
skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
if (!skb) {
show_free_areas();
continue;
}
ip->rx_skbs[i] = skb;
/* Because we reserve afterwards. */
skb_put(skb, (1664 + RX_OFFSET));
rxb = (struct ioc3_erxbuf *) skb->data;
rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
skb_reserve(skb, RX_OFFSET);
}
ip->rx_ci = 0;
ip->rx_pi = RX_BUFFS;
}
if (ip->txr == NULL) {
/* Allocate and initialize tx rings. 16kb = 128 bufs. */
ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
if (!ip->txr)
printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
ip->tx_pi = 0;
ip->tx_ci = 0;
}
}
static void ioc3_init_rings(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
unsigned long ring;
ioc3_free_rings(ip);
ioc3_alloc_rings(dev);
ioc3_clean_rx_ring(ip);
ioc3_clean_tx_ring(ip);
/* Now the rx ring base, consume & produce registers. */
ring = ioc3_map(ip->rxr, 0);
ioc3_w_erbr_h(ring >> 32);
ioc3_w_erbr_l(ring & 0xffffffff);
ioc3_w_ercir(ip->rx_ci << 3);
ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
ring = ioc3_map(ip->txr, 0);
ip->txqlen = 0; /* nothing queued */
/* Now the tx ring base, consume & produce registers. */
ioc3_w_etbr_h(ring >> 32);
ioc3_w_etbr_l(ring & 0xffffffff);
ioc3_w_etpir(ip->tx_pi << 7);
ioc3_w_etcir(ip->tx_ci << 7);
(void) ioc3_r_etcir(); /* Flush */
}
static inline void ioc3_ssram_disc(struct ioc3_private *ip)
{
struct ioc3 *ioc3 = ip->regs;
volatile u32 *ssram0 = &ioc3->ssram[0x0000];
volatile u32 *ssram1 = &ioc3->ssram[0x4000];
unsigned int pattern = 0x5555;
/* Assume the larger size SSRAM and enable parity checking */
ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
*ssram0 = pattern;
*ssram1 = ~pattern & IOC3_SSRAM_DM;
if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
(*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
/* set ssram size to 64 KB */
ip->emcr = EMCR_RAMPAR;
ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
} else
ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
}
static void ioc3_init(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
del_timer_sync(&ip->ioc3_timer); /* Kill if running */
ioc3_w_emcr(EMCR_RST); /* Reset */
(void) ioc3_r_emcr(); /* Flush WB */
udelay(4); /* Give it time ... */
ioc3_w_emcr(0);
(void) ioc3_r_emcr();
/* Misc registers */
#ifdef CONFIG_SGI_IP27
ioc3_w_erbar(PCI64_ATTR_BAR >> 32); /* Barrier on last store */
#else
ioc3_w_erbar(0); /* Let PCI API get it right */
#endif
(void) ioc3_r_etcdc(); /* Clear on read */
ioc3_w_ercsr(15); /* RX low watermark */
ioc3_w_ertr(0); /* Interrupt immediately */
__ioc3_set_mac_address(dev);
ioc3_w_ehar_h(ip->ehar_h);
ioc3_w_ehar_l(ip->ehar_l);
ioc3_w_ersr(42); /* XXX should be random */
ioc3_init_rings(dev);
ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
ioc3_w_emcr(ip->emcr);
ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
EISR_TXEXPLICIT | EISR_TXMEMERR);
(void) ioc3_r_eier();
}
static inline void ioc3_stop(struct ioc3_private *ip)
{
struct ioc3 *ioc3 = ip->regs;
ioc3_w_emcr(0); /* Shutup */
ioc3_w_eier(0); /* Disable interrupts */
(void) ioc3_r_eier(); /* Flush */
}
static int ioc3_open(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
return -EAGAIN;
}
ip->ehar_h = 0;
ip->ehar_l = 0;
ioc3_init(dev);
ioc3_mii_start(ip);
netif_start_queue(dev);
return 0;
}
static int ioc3_close(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
del_timer_sync(&ip->ioc3_timer);
netif_stop_queue(dev);
ioc3_stop(ip);
free_irq(dev->irq, dev);
ioc3_free_rings(ip);
return 0;
}
/*
* MENET cards have four IOC3 chips, which are attached to two sets of
* PCI slot resources each: the primary connections are on slots
* 0..3 and the secondaries are on 4..7
*
* All four ethernets are brought out to connectors; six serial ports
* (a pair from each of the first three IOC3s) are brought out to
* MiniDINs; all other subdevices are left swinging in the wind, leave
* them disabled.
*/
static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
{
struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
int ret = 0;
if (dev) {
if (dev->vendor == PCI_VENDOR_ID_SGI &&
dev->device == PCI_DEVICE_ID_SGI_IOC3)
ret = 1;
pci_dev_put(dev);
}
return ret;
}
static int ioc3_is_menet(struct pci_dev *pdev)
{
return pdev->bus->parent == NULL &&
ioc3_adjacent_is_ioc3(pdev, 0) &&
ioc3_adjacent_is_ioc3(pdev, 1) &&
ioc3_adjacent_is_ioc3(pdev, 2);
}
#ifdef CONFIG_SERIAL_8250
/*
* Note about serial ports and consoles:
* For console output, everyone uses the IOC3 UARTA (offset 0x178)
* connected to the master node (look in ip27_setup_console() and
* ip27prom_console_write()).
*
* For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
* addresses on a partitioned machine. Since we currently use the ioc3
* serial ports, we use dynamic serial port discovery that the serial.c
* driver uses for pci/pnp ports (there is an entry for the SGI ioc3
* boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
* than UARTB's, although UARTA on o200s has traditionally been known as
* port 0. So, we just use one serial port from each ioc3 (since the
* serial driver adds addresses to get to higher ports).
*
* The first one to do a register_console becomes the preferred console
* (if there is no kernel command line console= directive). /dev/console
* (ie 5, 1) is then "aliased" into the device number returned by the
* "device" routine referred to in this console structure
* (ip27prom_console_dev).
*
* Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
* around ioc3 oddities in this respect.
*
* The IOC3 serials use a 22MHz clock rate with an additional divider which
* can be programmed in the SCR register if the DLAB bit is set.
*
* Register to interrupt zero because we share the interrupt with
* the serial driver which we don't properly support yet.
*
* Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
* registered.
*/
static void __devinit ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
{
#define COSMISC_CONSTANT 6
struct uart_port port = {
.irq = 0,
.flags = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
.iotype = UPIO_MEM,
.regshift = 0,
.uartclk = (22000000 << 1) / COSMISC_CONSTANT,
.membase = (unsigned char __iomem *) uart,
.mapbase = (unsigned long) uart,
};
unsigned char lcr;
lcr = uart->iu_lcr;
uart->iu_lcr = lcr | UART_LCR_DLAB;
uart->iu_scr = COSMISC_CONSTANT,
uart->iu_lcr = lcr;
uart->iu_lcr;
serial8250_register_port(&port);
}
static void __devinit ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
{
/*
* We need to recognice and treat the fourth MENET serial as it
* does not have an SuperIO chip attached to it, therefore attempting
* to access it will result in bus errors. We call something an
* MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
* in it. This is paranoid but we want to avoid blowing up on a
* showhorn PCI box that happens to have 4 IOC3 cards in it so it's
* not paranoid enough ...
*/
if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
return;
/*
* Switch IOC3 to PIO mode. It probably already was but let's be
* paranoid
*/
ioc3->gpcr_s = GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL;
ioc3->gpcr_s;
ioc3->gppr_6 = 0;
ioc3->gppr_6;
ioc3->gppr_7 = 0;
ioc3->gppr_7;
ioc3->sscr_a = ioc3->sscr_a & ~SSCR_DMA_EN;
ioc3->sscr_a;
ioc3->sscr_b = ioc3->sscr_b & ~SSCR_DMA_EN;
ioc3->sscr_b;
/* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
ioc3->sio_iec &= ~ (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
ioc3->sio_iec |= SIO_IR_SA_INT;
ioc3->sscr_a = 0;
ioc3->sio_iec &= ~ (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
ioc3->sio_iec |= SIO_IR_SB_INT;
ioc3->sscr_b = 0;
ioc3_8250_register(&ioc3->sregs.uarta);
ioc3_8250_register(&ioc3->sregs.uartb);
}
#endif
static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
unsigned int sw_physid1, sw_physid2;
struct net_device *dev = NULL;
struct ioc3_private *ip;
struct ioc3 *ioc3;
unsigned long ioc3_base, ioc3_size;
u32 vendor, model, rev;
int err, pci_using_dac;
/* Configure DMA attributes. */
err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
if (!err) {
pci_using_dac = 1;
err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
if (err < 0) {
printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
"for consistent allocations\n", pci_name(pdev));
goto out;
}
} else {
err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (err) {
printk(KERN_ERR "%s: No usable DMA configuration, "
"aborting.\n", pci_name(pdev));
goto out;
}
pci_using_dac = 0;
}
if (pci_enable_device(pdev))
return -ENODEV;
dev = alloc_etherdev(sizeof(struct ioc3_private));
if (!dev) {
err = -ENOMEM;
goto out_disable;
}
if (pci_using_dac)
dev->features |= NETIF_F_HIGHDMA;
err = pci_request_regions(pdev, "ioc3");
if (err)
goto out_free;
SET_NETDEV_DEV(dev, &pdev->dev);
ip = netdev_priv(dev);
dev->irq = pdev->irq;
ioc3_base = pci_resource_start(pdev, 0);
ioc3_size = pci_resource_len(pdev, 0);
ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
if (!ioc3) {
printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
pci_name(pdev));
err = -ENOMEM;
goto out_res;
}
ip->regs = ioc3;
#ifdef CONFIG_SERIAL_8250
ioc3_serial_probe(pdev, ioc3);
#endif
spin_lock_init(&ip->ioc3_lock);
init_timer(&ip->ioc3_timer);
ioc3_stop(ip);
ioc3_init(dev);
ip->pdev = pdev;
ip->mii.phy_id_mask = 0x1f;
ip->mii.reg_num_mask = 0x1f;
ip->mii.dev = dev;
ip->mii.mdio_read = ioc3_mdio_read;
ip->mii.mdio_write = ioc3_mdio_write;
ioc3_mii_init(ip);
if (ip->mii.phy_id == -1) {
printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
pci_name(pdev));
err = -ENODEV;
goto out_stop;
}
ioc3_mii_start(ip);
ioc3_ssram_disc(ip);
ioc3_get_eaddr(ip);
/* The IOC3-specific entries in the device structure. */
dev->open = ioc3_open;
dev->hard_start_xmit = ioc3_start_xmit;
dev->tx_timeout = ioc3_timeout;
dev->watchdog_timeo = 5 * HZ;
dev->stop = ioc3_close;
dev->get_stats = ioc3_get_stats;
dev->do_ioctl = ioc3_ioctl;
dev->set_multicast_list = ioc3_set_multicast_list;
dev->set_mac_address = ioc3_set_mac_address;
dev->ethtool_ops = &ioc3_ethtool_ops;
dev->features = NETIF_F_IP_CSUM;
sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
err = register_netdev(dev);
if (err)
goto out_stop;
mii_check_media(&ip->mii, 1, 1);
ioc3_setup_duplex(ip);
vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
model = (sw_physid2 >> 4) & 0x3f;
rev = sw_physid2 & 0xf;
printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
"rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
ip->emcr & EMCR_BUFSIZ ? 128 : 64);
return 0;
out_stop:
ioc3_stop(ip);
del_timer_sync(&ip->ioc3_timer);
ioc3_free_rings(ip);
out_res:
pci_release_regions(pdev);
out_free:
free_netdev(dev);
out_disable:
/*
* We should call pci_disable_device(pdev); here if the IOC3 wasn't
* such a weird device ...
*/
out:
return err;
}
static void __devexit ioc3_remove_one (struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
unregister_netdev(dev);
del_timer_sync(&ip->ioc3_timer);
iounmap(ioc3);
pci_release_regions(pdev);
free_netdev(dev);
/*
* We should call pci_disable_device(pdev); here if the IOC3 wasn't
* such a weird device ...
*/
}
static struct pci_device_id ioc3_pci_tbl[] = {
{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
static struct pci_driver ioc3_driver = {
.name = "ioc3-eth",
.id_table = ioc3_pci_tbl,
.probe = ioc3_probe,
.remove = __devexit_p(ioc3_remove_one),
};
static int __init ioc3_init_module(void)
{
return pci_register_driver(&ioc3_driver);
}
static void __exit ioc3_cleanup_module(void)
{
pci_unregister_driver(&ioc3_driver);
}
static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
unsigned long data;
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
unsigned int len;
struct ioc3_etxd *desc;
uint32_t w0 = 0;
int produce;
/*
* IOC3 has a fairly simple minded checksumming hardware which simply
* adds up the 1's complement checksum for the entire packet and
* inserts it at an offset which can be specified in the descriptor
* into the transmit packet. This means we have to compensate for the
* MAC header which should not be summed and the TCP/UDP pseudo headers
* manually.
*/
if (skb->ip_summed == CHECKSUM_PARTIAL) {
const struct iphdr *ih = ip_hdr(skb);
const int proto = ntohs(ih->protocol);
unsigned int csoff;
uint32_t csum, ehsum;
uint16_t *eh;
/* The MAC header. skb->mac seem the logic approach
to find the MAC header - except it's a NULL pointer ... */
eh = (uint16_t *) skb->data;
/* Sum up dest addr, src addr and protocol */
ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
/* Fold ehsum. can't use csum_fold which negates also ... */
ehsum = (ehsum & 0xffff) + (ehsum >> 16);
ehsum = (ehsum & 0xffff) + (ehsum >> 16);
/* Skip IP header; it's sum is always zero and was
already filled in by ip_output.c */
csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
ih->tot_len - (ih->ihl << 2),
proto, 0xffff ^ ehsum);
csum = (csum & 0xffff) + (csum >> 16); /* Fold again */
csum = (csum & 0xffff) + (csum >> 16);
csoff = ETH_HLEN + (ih->ihl << 2);
if (proto == IPPROTO_UDP) {
csoff += offsetof(struct udphdr, check);
udp_hdr(skb)->check = csum;
}
if (proto == IPPROTO_TCP) {
csoff += offsetof(struct tcphdr, check);
tcp_hdr(skb)->check = csum;
}
w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
}
spin_lock_irq(&ip->ioc3_lock);
data = (unsigned long) skb->data;
len = skb->len;
produce = ip->tx_pi;
desc = &ip->txr[produce];
if (len <= 104) {
/* Short packet, let's copy it directly into the ring. */
skb_copy_from_linear_data(skb, desc->data, skb->len);
if (len < ETH_ZLEN) {
/* Very short packet, pad with zeros at the end. */
memset(desc->data + len, 0, ETH_ZLEN - len);
len = ETH_ZLEN;
}
desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
desc->bufcnt = cpu_to_be32(len);
} else if ((data ^ (data + len - 1)) & 0x4000) {
unsigned long b2 = (data | 0x3fffUL) + 1UL;
unsigned long s1 = b2 - data;
unsigned long s2 = data + len - b2;
desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE |
ETXD_B1V | ETXD_B2V | w0);
desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
(s2 << ETXD_B2CNT_SHIFT));
desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
desc->p2 = cpu_to_be64(ioc3_map((void *) b2, 1));
} else {
/* Normal sized packet that doesn't cross a page boundary. */
desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
}
BARRIER();
dev->trans_start = jiffies;
ip->tx_skbs[produce] = skb; /* Remember skb */
produce = (produce + 1) & 127;
ip->tx_pi = produce;
ioc3_w_etpir(produce << 7); /* Fire ... */
ip->txqlen++;
if (ip->txqlen >= 127)
netif_stop_queue(dev);
spin_unlock_irq(&ip->ioc3_lock);
return 0;
}
static void ioc3_timeout(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
spin_lock_irq(&ip->ioc3_lock);
ioc3_stop(ip);
ioc3_init(dev);
ioc3_mii_init(ip);
ioc3_mii_start(ip);
spin_unlock_irq(&ip->ioc3_lock);
netif_wake_queue(dev);
}
/*
* Given a multicast ethernet address, this routine calculates the
* address's bit index in the logical address filter mask
*/
static inline unsigned int ioc3_hash(const unsigned char *addr)
{
unsigned int temp = 0;
u32 crc;
int bits;
crc = ether_crc_le(ETH_ALEN, addr);
crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */
for (bits = 6; --bits >= 0; ) {
temp <<= 1;
temp |= (crc & 0x1);
crc >>= 1;
}
return temp;
}
static void ioc3_get_drvinfo (struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct ioc3_private *ip = netdev_priv(dev);
strcpy (info->driver, IOC3_NAME);
strcpy (info->version, IOC3_VERSION);
strcpy (info->bus_info, pci_name(ip->pdev));
}
static int ioc3_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct ioc3_private *ip = netdev_priv(dev);
int rc;
spin_lock_irq(&ip->ioc3_lock);
rc = mii_ethtool_gset(&ip->mii, cmd);
spin_unlock_irq(&ip->ioc3_lock);
return rc;
}
static int ioc3_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct ioc3_private *ip = netdev_priv(dev);
int rc;
spin_lock_irq(&ip->ioc3_lock);
rc = mii_ethtool_sset(&ip->mii, cmd);
spin_unlock_irq(&ip->ioc3_lock);
return rc;
}
static int ioc3_nway_reset(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
int rc;
spin_lock_irq(&ip->ioc3_lock);
rc = mii_nway_restart(&ip->mii);
spin_unlock_irq(&ip->ioc3_lock);
return rc;
}
static u32 ioc3_get_link(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
int rc;
spin_lock_irq(&ip->ioc3_lock);
rc = mii_link_ok(&ip->mii);
spin_unlock_irq(&ip->ioc3_lock);
return rc;
}
static u32 ioc3_get_rx_csum(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
return ip->flags & IOC3_FLAG_RX_CHECKSUMS;
}
static int ioc3_set_rx_csum(struct net_device *dev, u32 data)
{
struct ioc3_private *ip = netdev_priv(dev);
spin_lock_bh(&ip->ioc3_lock);
if (data)
ip->flags |= IOC3_FLAG_RX_CHECKSUMS;
else
ip->flags &= ~IOC3_FLAG_RX_CHECKSUMS;
spin_unlock_bh(&ip->ioc3_lock);
return 0;
}
static const struct ethtool_ops ioc3_ethtool_ops = {
.get_drvinfo = ioc3_get_drvinfo,
.get_settings = ioc3_get_settings,
.set_settings = ioc3_set_settings,
.nway_reset = ioc3_nway_reset,
.get_link = ioc3_get_link,
.get_rx_csum = ioc3_get_rx_csum,
.set_rx_csum = ioc3_set_rx_csum,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = ethtool_op_set_tx_csum
};
static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct ioc3_private *ip = netdev_priv(dev);
int rc;
spin_lock_irq(&ip->ioc3_lock);
rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
spin_unlock_irq(&ip->ioc3_lock);
return rc;
}
static void ioc3_set_multicast_list(struct net_device *dev)
{
struct dev_mc_list *dmi = dev->mc_list;
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3 *ioc3 = ip->regs;
u64 ehar = 0;
int i;
netif_stop_queue(dev); /* Lock out others. */
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
ip->emcr |= EMCR_PROMISC;
ioc3_w_emcr(ip->emcr);
(void) ioc3_r_emcr();
} else {
ip->emcr &= ~EMCR_PROMISC;
ioc3_w_emcr(ip->emcr); /* Clear promiscuous. */
(void) ioc3_r_emcr();
if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
/* Too many for hashing to make sense or we want all
multicast packets anyway, so skip computing all the
hashes and just accept all packets. */
ip->ehar_h = 0xffffffff;
ip->ehar_l = 0xffffffff;
} else {
for (i = 0; i < dev->mc_count; i++) {
char *addr = dmi->dmi_addr;
dmi = dmi->next;
if (!(*addr & 1))
continue;
ehar |= (1UL << ioc3_hash(addr));
}
ip->ehar_h = ehar >> 32;
ip->ehar_l = ehar & 0xffffffff;
}
ioc3_w_ehar_h(ip->ehar_h);
ioc3_w_ehar_l(ip->ehar_l);
}
netif_wake_queue(dev); /* Let us get going again. */
}
MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
MODULE_LICENSE("GPL");
module_init(ioc3_init_module);
module_exit(ioc3_cleanup_module);