5b3e5e5bf2
Adds a new important function in the main KVM/ARM code called handle_exit() which is called from kvm_arch_vcpu_ioctl_run() on returns from guest execution. This function examines the Hyp-Syndrome-Register (HSR), which contains information telling KVM what caused the exit from the guest. Some of the reasons for an exit are CP15 accesses, which are not allowed from the guest and this commit handles these exits by emulating the intended operation in software and skipping the guest instruction. Minor notes about the coproc register reset: 1) We reserve a value of 0 as an invalid cp15 offset, to catch bugs in our table, at cost of 4 bytes per vcpu. 2) Added comments on the table indicating how we handle each register, for simplicity of understanding. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
984 lines
23 KiB
C
984 lines
23 KiB
C
/*
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/module.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kvm.h>
|
|
#include <trace/events/kvm.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "trace.h"
|
|
|
|
#include <asm/unified.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/mman.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/virt.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_coproc.h>
|
|
#include <asm/opcodes.h>
|
|
|
|
#ifdef REQUIRES_VIRT
|
|
__asm__(".arch_extension virt");
|
|
#endif
|
|
|
|
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
|
|
static struct vfp_hard_struct __percpu *kvm_host_vfp_state;
|
|
static unsigned long hyp_default_vectors;
|
|
|
|
/* The VMID used in the VTTBR */
|
|
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
|
|
static u8 kvm_next_vmid;
|
|
static DEFINE_SPINLOCK(kvm_vmid_lock);
|
|
|
|
int kvm_arch_hardware_enable(void *garbage)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
|
|
}
|
|
|
|
void kvm_arch_hardware_disable(void *garbage)
|
|
{
|
|
}
|
|
|
|
int kvm_arch_hardware_setup(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_hardware_unsetup(void)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_check_processor_compat(void *rtn)
|
|
{
|
|
*(int *)rtn = 0;
|
|
}
|
|
|
|
void kvm_arch_sync_events(struct kvm *kvm)
|
|
{
|
|
}
|
|
|
|
/**
|
|
* kvm_arch_init_vm - initializes a VM data structure
|
|
* @kvm: pointer to the KVM struct
|
|
*/
|
|
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (type)
|
|
return -EINVAL;
|
|
|
|
ret = kvm_alloc_stage2_pgd(kvm);
|
|
if (ret)
|
|
goto out_fail_alloc;
|
|
|
|
ret = create_hyp_mappings(kvm, kvm + 1);
|
|
if (ret)
|
|
goto out_free_stage2_pgd;
|
|
|
|
/* Mark the initial VMID generation invalid */
|
|
kvm->arch.vmid_gen = 0;
|
|
|
|
return ret;
|
|
out_free_stage2_pgd:
|
|
kvm_free_stage2_pgd(kvm);
|
|
out_fail_alloc:
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
|
|
{
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
void kvm_arch_free_memslot(struct kvm_memory_slot *free,
|
|
struct kvm_memory_slot *dont)
|
|
{
|
|
}
|
|
|
|
int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_arch_destroy_vm - destroy the VM data structure
|
|
* @kvm: pointer to the KVM struct
|
|
*/
|
|
void kvm_arch_destroy_vm(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
|
|
kvm_free_stage2_pgd(kvm);
|
|
|
|
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
|
|
if (kvm->vcpus[i]) {
|
|
kvm_arch_vcpu_free(kvm->vcpus[i]);
|
|
kvm->vcpus[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
int kvm_dev_ioctl_check_extension(long ext)
|
|
{
|
|
int r;
|
|
switch (ext) {
|
|
case KVM_CAP_USER_MEMORY:
|
|
case KVM_CAP_SYNC_MMU:
|
|
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
|
|
case KVM_CAP_ONE_REG:
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_COALESCED_MMIO:
|
|
r = KVM_COALESCED_MMIO_PAGE_OFFSET;
|
|
break;
|
|
case KVM_CAP_NR_VCPUS:
|
|
r = num_online_cpus();
|
|
break;
|
|
case KVM_CAP_MAX_VCPUS:
|
|
r = KVM_MAX_VCPUS;
|
|
break;
|
|
default:
|
|
r = 0;
|
|
break;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
long kvm_arch_dev_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_arch_set_memory_region(struct kvm *kvm,
|
|
struct kvm_userspace_memory_region *mem,
|
|
struct kvm_memory_slot old,
|
|
int user_alloc)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_prepare_memory_region(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot,
|
|
struct kvm_memory_slot old,
|
|
struct kvm_userspace_memory_region *mem,
|
|
int user_alloc)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_commit_memory_region(struct kvm *kvm,
|
|
struct kvm_userspace_memory_region *mem,
|
|
struct kvm_memory_slot old,
|
|
int user_alloc)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_all(struct kvm *kvm)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot)
|
|
{
|
|
}
|
|
|
|
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
|
|
{
|
|
int err;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
|
|
if (!vcpu) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
err = kvm_vcpu_init(vcpu, kvm, id);
|
|
if (err)
|
|
goto free_vcpu;
|
|
|
|
err = create_hyp_mappings(vcpu, vcpu + 1);
|
|
if (err)
|
|
goto vcpu_uninit;
|
|
|
|
return vcpu;
|
|
vcpu_uninit:
|
|
kvm_vcpu_uninit(vcpu);
|
|
free_vcpu:
|
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
|
out:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_mmu_free_memory_caches(vcpu);
|
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_arch_vcpu_free(vcpu);
|
|
}
|
|
|
|
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int __attribute_const__ kvm_target_cpu(void)
|
|
{
|
|
unsigned long implementor = read_cpuid_implementor();
|
|
unsigned long part_number = read_cpuid_part_number();
|
|
|
|
if (implementor != ARM_CPU_IMP_ARM)
|
|
return -EINVAL;
|
|
|
|
switch (part_number) {
|
|
case ARM_CPU_PART_CORTEX_A15:
|
|
return KVM_ARM_TARGET_CORTEX_A15;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Force users to call KVM_ARM_VCPU_INIT */
|
|
vcpu->arch.target = -1;
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
vcpu->cpu = cpu;
|
|
vcpu->arch.vfp_host = this_cpu_ptr(kvm_host_vfp_state);
|
|
|
|
/*
|
|
* Check whether this vcpu requires the cache to be flushed on
|
|
* this physical CPU. This is a consequence of doing dcache
|
|
* operations by set/way on this vcpu. We do it here to be in
|
|
* a non-preemptible section.
|
|
*/
|
|
if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
|
|
flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
|
|
}
|
|
|
|
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
|
|
struct kvm_guest_debug *dbg)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
|
|
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
|
|
* @v: The VCPU pointer
|
|
*
|
|
* If the guest CPU is not waiting for interrupts or an interrupt line is
|
|
* asserted, the CPU is by definition runnable.
|
|
*/
|
|
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
|
|
{
|
|
return !!v->arch.irq_lines;
|
|
}
|
|
|
|
/* Just ensure a guest exit from a particular CPU */
|
|
static void exit_vm_noop(void *info)
|
|
{
|
|
}
|
|
|
|
void force_vm_exit(const cpumask_t *mask)
|
|
{
|
|
smp_call_function_many(mask, exit_vm_noop, NULL, true);
|
|
}
|
|
|
|
/**
|
|
* need_new_vmid_gen - check that the VMID is still valid
|
|
* @kvm: The VM's VMID to checkt
|
|
*
|
|
* return true if there is a new generation of VMIDs being used
|
|
*
|
|
* The hardware supports only 256 values with the value zero reserved for the
|
|
* host, so we check if an assigned value belongs to a previous generation,
|
|
* which which requires us to assign a new value. If we're the first to use a
|
|
* VMID for the new generation, we must flush necessary caches and TLBs on all
|
|
* CPUs.
|
|
*/
|
|
static bool need_new_vmid_gen(struct kvm *kvm)
|
|
{
|
|
return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
|
|
}
|
|
|
|
/**
|
|
* update_vttbr - Update the VTTBR with a valid VMID before the guest runs
|
|
* @kvm The guest that we are about to run
|
|
*
|
|
* Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
|
|
* VM has a valid VMID, otherwise assigns a new one and flushes corresponding
|
|
* caches and TLBs.
|
|
*/
|
|
static void update_vttbr(struct kvm *kvm)
|
|
{
|
|
phys_addr_t pgd_phys;
|
|
u64 vmid;
|
|
|
|
if (!need_new_vmid_gen(kvm))
|
|
return;
|
|
|
|
spin_lock(&kvm_vmid_lock);
|
|
|
|
/*
|
|
* We need to re-check the vmid_gen here to ensure that if another vcpu
|
|
* already allocated a valid vmid for this vm, then this vcpu should
|
|
* use the same vmid.
|
|
*/
|
|
if (!need_new_vmid_gen(kvm)) {
|
|
spin_unlock(&kvm_vmid_lock);
|
|
return;
|
|
}
|
|
|
|
/* First user of a new VMID generation? */
|
|
if (unlikely(kvm_next_vmid == 0)) {
|
|
atomic64_inc(&kvm_vmid_gen);
|
|
kvm_next_vmid = 1;
|
|
|
|
/*
|
|
* On SMP we know no other CPUs can use this CPU's or each
|
|
* other's VMID after force_vm_exit returns since the
|
|
* kvm_vmid_lock blocks them from reentry to the guest.
|
|
*/
|
|
force_vm_exit(cpu_all_mask);
|
|
/*
|
|
* Now broadcast TLB + ICACHE invalidation over the inner
|
|
* shareable domain to make sure all data structures are
|
|
* clean.
|
|
*/
|
|
kvm_call_hyp(__kvm_flush_vm_context);
|
|
}
|
|
|
|
kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
|
|
kvm->arch.vmid = kvm_next_vmid;
|
|
kvm_next_vmid++;
|
|
|
|
/* update vttbr to be used with the new vmid */
|
|
pgd_phys = virt_to_phys(kvm->arch.pgd);
|
|
vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
|
|
kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
|
|
kvm->arch.vttbr |= vmid;
|
|
|
|
spin_unlock(&kvm_vmid_lock);
|
|
}
|
|
|
|
static int handle_svc_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
/* SVC called from Hyp mode should never get here */
|
|
kvm_debug("SVC called from Hyp mode shouldn't go here\n");
|
|
BUG();
|
|
return -EINVAL; /* Squash warning */
|
|
}
|
|
|
|
static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
trace_kvm_hvc(*vcpu_pc(vcpu), *vcpu_reg(vcpu, 0),
|
|
vcpu->arch.hsr & HSR_HVC_IMM_MASK);
|
|
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
/* We don't support SMC; don't do that. */
|
|
kvm_debug("smc: at %08x", *vcpu_pc(vcpu));
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_pabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
/* The hypervisor should never cause aborts */
|
|
kvm_err("Prefetch Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
|
|
vcpu->arch.hxfar, vcpu->arch.hsr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
static int handle_dabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
/* This is either an error in the ws. code or an external abort */
|
|
kvm_err("Data Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
|
|
vcpu->arch.hxfar, vcpu->arch.hsr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *);
|
|
static exit_handle_fn arm_exit_handlers[] = {
|
|
[HSR_EC_WFI] = kvm_handle_wfi,
|
|
[HSR_EC_CP15_32] = kvm_handle_cp15_32,
|
|
[HSR_EC_CP15_64] = kvm_handle_cp15_64,
|
|
[HSR_EC_CP14_MR] = kvm_handle_cp14_access,
|
|
[HSR_EC_CP14_LS] = kvm_handle_cp14_load_store,
|
|
[HSR_EC_CP14_64] = kvm_handle_cp14_access,
|
|
[HSR_EC_CP_0_13] = kvm_handle_cp_0_13_access,
|
|
[HSR_EC_CP10_ID] = kvm_handle_cp10_id,
|
|
[HSR_EC_SVC_HYP] = handle_svc_hyp,
|
|
[HSR_EC_HVC] = handle_hvc,
|
|
[HSR_EC_SMC] = handle_smc,
|
|
[HSR_EC_IABT] = kvm_handle_guest_abort,
|
|
[HSR_EC_IABT_HYP] = handle_pabt_hyp,
|
|
[HSR_EC_DABT] = kvm_handle_guest_abort,
|
|
[HSR_EC_DABT_HYP] = handle_dabt_hyp,
|
|
};
|
|
|
|
/*
|
|
* A conditional instruction is allowed to trap, even though it
|
|
* wouldn't be executed. So let's re-implement the hardware, in
|
|
* software!
|
|
*/
|
|
static bool kvm_condition_valid(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long cpsr, cond, insn;
|
|
|
|
/*
|
|
* Exception Code 0 can only happen if we set HCR.TGE to 1, to
|
|
* catch undefined instructions, and then we won't get past
|
|
* the arm_exit_handlers test anyway.
|
|
*/
|
|
BUG_ON(((vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT) == 0);
|
|
|
|
/* Top two bits non-zero? Unconditional. */
|
|
if (vcpu->arch.hsr >> 30)
|
|
return true;
|
|
|
|
cpsr = *vcpu_cpsr(vcpu);
|
|
|
|
/* Is condition field valid? */
|
|
if ((vcpu->arch.hsr & HSR_CV) >> HSR_CV_SHIFT)
|
|
cond = (vcpu->arch.hsr & HSR_COND) >> HSR_COND_SHIFT;
|
|
else {
|
|
/* This can happen in Thumb mode: examine IT state. */
|
|
unsigned long it;
|
|
|
|
it = ((cpsr >> 8) & 0xFC) | ((cpsr >> 25) & 0x3);
|
|
|
|
/* it == 0 => unconditional. */
|
|
if (it == 0)
|
|
return true;
|
|
|
|
/* The cond for this insn works out as the top 4 bits. */
|
|
cond = (it >> 4);
|
|
}
|
|
|
|
/* Shift makes it look like an ARM-mode instruction */
|
|
insn = cond << 28;
|
|
return arm_check_condition(insn, cpsr) != ARM_OPCODE_CONDTEST_FAIL;
|
|
}
|
|
|
|
/*
|
|
* Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
|
|
* proper exit to QEMU.
|
|
*/
|
|
static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
|
|
int exception_index)
|
|
{
|
|
unsigned long hsr_ec;
|
|
|
|
switch (exception_index) {
|
|
case ARM_EXCEPTION_IRQ:
|
|
return 1;
|
|
case ARM_EXCEPTION_UNDEFINED:
|
|
kvm_err("Undefined exception in Hyp mode at: %#08x\n",
|
|
vcpu->arch.hyp_pc);
|
|
BUG();
|
|
panic("KVM: Hypervisor undefined exception!\n");
|
|
case ARM_EXCEPTION_DATA_ABORT:
|
|
case ARM_EXCEPTION_PREF_ABORT:
|
|
case ARM_EXCEPTION_HVC:
|
|
hsr_ec = (vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT;
|
|
|
|
if (hsr_ec >= ARRAY_SIZE(arm_exit_handlers)
|
|
|| !arm_exit_handlers[hsr_ec]) {
|
|
kvm_err("Unkown exception class: %#08lx, "
|
|
"hsr: %#08x\n", hsr_ec,
|
|
(unsigned int)vcpu->arch.hsr);
|
|
BUG();
|
|
}
|
|
|
|
/*
|
|
* See ARM ARM B1.14.1: "Hyp traps on instructions
|
|
* that fail their condition code check"
|
|
*/
|
|
if (!kvm_condition_valid(vcpu)) {
|
|
bool is_wide = vcpu->arch.hsr & HSR_IL;
|
|
kvm_skip_instr(vcpu, is_wide);
|
|
return 1;
|
|
}
|
|
|
|
return arm_exit_handlers[hsr_ec](vcpu, run);
|
|
default:
|
|
kvm_pr_unimpl("Unsupported exception type: %d",
|
|
exception_index);
|
|
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (likely(vcpu->arch.has_run_once))
|
|
return 0;
|
|
|
|
vcpu->arch.has_run_once = true;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The kvm_run structure pointer used for userspace state exchange
|
|
*
|
|
* This function is called through the VCPU_RUN ioctl called from user space. It
|
|
* will execute VM code in a loop until the time slice for the process is used
|
|
* or some emulation is needed from user space in which case the function will
|
|
* return with return value 0 and with the kvm_run structure filled in with the
|
|
* required data for the requested emulation.
|
|
*/
|
|
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
int ret;
|
|
sigset_t sigsaved;
|
|
|
|
/* Make sure they initialize the vcpu with KVM_ARM_VCPU_INIT */
|
|
if (unlikely(vcpu->arch.target < 0))
|
|
return -ENOEXEC;
|
|
|
|
ret = kvm_vcpu_first_run_init(vcpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (vcpu->sigset_active)
|
|
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
|
|
|
|
ret = 1;
|
|
run->exit_reason = KVM_EXIT_UNKNOWN;
|
|
while (ret > 0) {
|
|
/*
|
|
* Check conditions before entering the guest
|
|
*/
|
|
cond_resched();
|
|
|
|
update_vttbr(vcpu->kvm);
|
|
|
|
local_irq_disable();
|
|
|
|
/*
|
|
* Re-check atomic conditions
|
|
*/
|
|
if (signal_pending(current)) {
|
|
ret = -EINTR;
|
|
run->exit_reason = KVM_EXIT_INTR;
|
|
}
|
|
|
|
if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
|
|
local_irq_enable();
|
|
continue;
|
|
}
|
|
|
|
/**************************************************************
|
|
* Enter the guest
|
|
*/
|
|
trace_kvm_entry(*vcpu_pc(vcpu));
|
|
kvm_guest_enter();
|
|
vcpu->mode = IN_GUEST_MODE;
|
|
|
|
ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
|
|
|
|
vcpu->mode = OUTSIDE_GUEST_MODE;
|
|
vcpu->arch.last_pcpu = smp_processor_id();
|
|
kvm_guest_exit();
|
|
trace_kvm_exit(*vcpu_pc(vcpu));
|
|
/*
|
|
* We may have taken a host interrupt in HYP mode (ie
|
|
* while executing the guest). This interrupt is still
|
|
* pending, as we haven't serviced it yet!
|
|
*
|
|
* We're now back in SVC mode, with interrupts
|
|
* disabled. Enabling the interrupts now will have
|
|
* the effect of taking the interrupt again, in SVC
|
|
* mode this time.
|
|
*/
|
|
local_irq_enable();
|
|
|
|
/*
|
|
* Back from guest
|
|
*************************************************************/
|
|
|
|
ret = handle_exit(vcpu, run, ret);
|
|
}
|
|
|
|
if (vcpu->sigset_active)
|
|
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
|
|
return ret;
|
|
}
|
|
|
|
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
|
|
{
|
|
int bit_index;
|
|
bool set;
|
|
unsigned long *ptr;
|
|
|
|
if (number == KVM_ARM_IRQ_CPU_IRQ)
|
|
bit_index = __ffs(HCR_VI);
|
|
else /* KVM_ARM_IRQ_CPU_FIQ */
|
|
bit_index = __ffs(HCR_VF);
|
|
|
|
ptr = (unsigned long *)&vcpu->arch.irq_lines;
|
|
if (level)
|
|
set = test_and_set_bit(bit_index, ptr);
|
|
else
|
|
set = test_and_clear_bit(bit_index, ptr);
|
|
|
|
/*
|
|
* If we didn't change anything, no need to wake up or kick other CPUs
|
|
*/
|
|
if (set == level)
|
|
return 0;
|
|
|
|
/*
|
|
* The vcpu irq_lines field was updated, wake up sleeping VCPUs and
|
|
* trigger a world-switch round on the running physical CPU to set the
|
|
* virtual IRQ/FIQ fields in the HCR appropriately.
|
|
*/
|
|
kvm_vcpu_kick(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level)
|
|
{
|
|
u32 irq = irq_level->irq;
|
|
unsigned int irq_type, vcpu_idx, irq_num;
|
|
int nrcpus = atomic_read(&kvm->online_vcpus);
|
|
struct kvm_vcpu *vcpu = NULL;
|
|
bool level = irq_level->level;
|
|
|
|
irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
|
|
vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
|
|
irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
|
|
|
|
trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
|
|
|
|
if (irq_type != KVM_ARM_IRQ_TYPE_CPU)
|
|
return -EINVAL;
|
|
|
|
if (vcpu_idx >= nrcpus)
|
|
return -EINVAL;
|
|
|
|
vcpu = kvm_get_vcpu(kvm, vcpu_idx);
|
|
if (!vcpu)
|
|
return -EINVAL;
|
|
|
|
if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
|
|
return -EINVAL;
|
|
|
|
return vcpu_interrupt_line(vcpu, irq_num, level);
|
|
}
|
|
|
|
long kvm_arch_vcpu_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
|
|
switch (ioctl) {
|
|
case KVM_ARM_VCPU_INIT: {
|
|
struct kvm_vcpu_init init;
|
|
|
|
if (copy_from_user(&init, argp, sizeof(init)))
|
|
return -EFAULT;
|
|
|
|
return kvm_vcpu_set_target(vcpu, &init);
|
|
|
|
}
|
|
case KVM_SET_ONE_REG:
|
|
case KVM_GET_ONE_REG: {
|
|
struct kvm_one_reg reg;
|
|
if (copy_from_user(®, argp, sizeof(reg)))
|
|
return -EFAULT;
|
|
if (ioctl == KVM_SET_ONE_REG)
|
|
return kvm_arm_set_reg(vcpu, ®);
|
|
else
|
|
return kvm_arm_get_reg(vcpu, ®);
|
|
}
|
|
case KVM_GET_REG_LIST: {
|
|
struct kvm_reg_list __user *user_list = argp;
|
|
struct kvm_reg_list reg_list;
|
|
unsigned n;
|
|
|
|
if (copy_from_user(®_list, user_list, sizeof(reg_list)))
|
|
return -EFAULT;
|
|
n = reg_list.n;
|
|
reg_list.n = kvm_arm_num_regs(vcpu);
|
|
if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
|
|
return -EFAULT;
|
|
if (n < reg_list.n)
|
|
return -E2BIG;
|
|
return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
|
|
}
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
long kvm_arch_vm_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void cpu_init_hyp_mode(void *vector)
|
|
{
|
|
unsigned long long pgd_ptr;
|
|
unsigned long pgd_low, pgd_high;
|
|
unsigned long hyp_stack_ptr;
|
|
unsigned long stack_page;
|
|
unsigned long vector_ptr;
|
|
|
|
/* Switch from the HYP stub to our own HYP init vector */
|
|
__hyp_set_vectors((unsigned long)vector);
|
|
|
|
pgd_ptr = (unsigned long long)kvm_mmu_get_httbr();
|
|
pgd_low = (pgd_ptr & ((1ULL << 32) - 1));
|
|
pgd_high = (pgd_ptr >> 32ULL);
|
|
stack_page = __get_cpu_var(kvm_arm_hyp_stack_page);
|
|
hyp_stack_ptr = stack_page + PAGE_SIZE;
|
|
vector_ptr = (unsigned long)__kvm_hyp_vector;
|
|
|
|
/*
|
|
* Call initialization code, and switch to the full blown
|
|
* HYP code. The init code doesn't need to preserve these registers as
|
|
* r1-r3 and r12 are already callee save according to the AAPCS.
|
|
* Note that we slightly misuse the prototype by casing the pgd_low to
|
|
* a void *.
|
|
*/
|
|
kvm_call_hyp((void *)pgd_low, pgd_high, hyp_stack_ptr, vector_ptr);
|
|
}
|
|
|
|
/**
|
|
* Inits Hyp-mode on all online CPUs
|
|
*/
|
|
static int init_hyp_mode(void)
|
|
{
|
|
phys_addr_t init_phys_addr;
|
|
int cpu;
|
|
int err = 0;
|
|
|
|
/*
|
|
* Allocate Hyp PGD and setup Hyp identity mapping
|
|
*/
|
|
err = kvm_mmu_init();
|
|
if (err)
|
|
goto out_err;
|
|
|
|
/*
|
|
* It is probably enough to obtain the default on one
|
|
* CPU. It's unlikely to be different on the others.
|
|
*/
|
|
hyp_default_vectors = __hyp_get_vectors();
|
|
|
|
/*
|
|
* Allocate stack pages for Hypervisor-mode
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
unsigned long stack_page;
|
|
|
|
stack_page = __get_free_page(GFP_KERNEL);
|
|
if (!stack_page) {
|
|
err = -ENOMEM;
|
|
goto out_free_stack_pages;
|
|
}
|
|
|
|
per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
|
|
}
|
|
|
|
/*
|
|
* Execute the init code on each CPU.
|
|
*
|
|
* Note: The stack is not mapped yet, so don't do anything else than
|
|
* initializing the hypervisor mode on each CPU using a local stack
|
|
* space for temporary storage.
|
|
*/
|
|
init_phys_addr = virt_to_phys(__kvm_hyp_init);
|
|
for_each_online_cpu(cpu) {
|
|
smp_call_function_single(cpu, cpu_init_hyp_mode,
|
|
(void *)(long)init_phys_addr, 1);
|
|
}
|
|
|
|
/*
|
|
* Unmap the identity mapping
|
|
*/
|
|
kvm_clear_hyp_idmap();
|
|
|
|
/*
|
|
* Map the Hyp-code called directly from the host
|
|
*/
|
|
err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
|
|
if (err) {
|
|
kvm_err("Cannot map world-switch code\n");
|
|
goto out_free_mappings;
|
|
}
|
|
|
|
/*
|
|
* Map the Hyp stack pages
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
|
|
err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
|
|
|
|
if (err) {
|
|
kvm_err("Cannot map hyp stack\n");
|
|
goto out_free_mappings;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map the host VFP structures
|
|
*/
|
|
kvm_host_vfp_state = alloc_percpu(struct vfp_hard_struct);
|
|
if (!kvm_host_vfp_state) {
|
|
err = -ENOMEM;
|
|
kvm_err("Cannot allocate host VFP state\n");
|
|
goto out_free_mappings;
|
|
}
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct vfp_hard_struct *vfp;
|
|
|
|
vfp = per_cpu_ptr(kvm_host_vfp_state, cpu);
|
|
err = create_hyp_mappings(vfp, vfp + 1);
|
|
|
|
if (err) {
|
|
kvm_err("Cannot map host VFP state: %d\n", err);
|
|
goto out_free_vfp;
|
|
}
|
|
}
|
|
|
|
kvm_info("Hyp mode initialized successfully\n");
|
|
return 0;
|
|
out_free_vfp:
|
|
free_percpu(kvm_host_vfp_state);
|
|
out_free_mappings:
|
|
free_hyp_pmds();
|
|
out_free_stack_pages:
|
|
for_each_possible_cpu(cpu)
|
|
free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
|
|
out_err:
|
|
kvm_err("error initializing Hyp mode: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* Initialize Hyp-mode and memory mappings on all CPUs.
|
|
*/
|
|
int kvm_arch_init(void *opaque)
|
|
{
|
|
int err;
|
|
|
|
if (!is_hyp_mode_available()) {
|
|
kvm_err("HYP mode not available\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (kvm_target_cpu() < 0) {
|
|
kvm_err("Target CPU not supported!\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
err = init_hyp_mode();
|
|
if (err)
|
|
goto out_err;
|
|
|
|
kvm_coproc_table_init();
|
|
return 0;
|
|
out_err:
|
|
return err;
|
|
}
|
|
|
|
/* NOP: Compiling as a module not supported */
|
|
void kvm_arch_exit(void)
|
|
{
|
|
}
|
|
|
|
static int arm_init(void)
|
|
{
|
|
int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
|
|
return rc;
|
|
}
|
|
|
|
module_init(arm_init);
|