Fabrice Gasnier 11646e81d7 iio: adc: stm32-dfsdm: add support for buffer modes
DFSDM conversions can be launched continuously, or using various
triggers:
- by software
- hardware triggers (e.g. like in stm32-adc: TIM, LPTIM, EXTI)
- synchronously with DFSDM filter 0. e.g. for filters 1, 2

Launching conversions can be done using two methods:
a - injected:
    - scan mode can be used to convert several channels each time a
      trigger occurs.
    - When not is scan mode, channels are converted in sequence, one upon
      each trigger.
b - regular:
    - supports software triggers or synchronous with filter 0
    - single or continuous conversions

This patch finalizes DFSDM operating modes using IIO buffer modes:
- INDIO_BUFFER_SOFTWARE: regular continuous conversions (no trigger)
  but limited to 1 channel. Users must set sampling frequency in this case.
  For filters > 1, conversions can be started synchronously with filter 0.
- INDIO_BUFFER_TRIGGERED: triggered conversions uses injected mode for
  launching conversions. DFSDM can use hardware triggers (e.g. STM32 timer
  or lptimer), so add INDIO_HARDWARE_TRIGGERED to supported modes.
- INDIO_DIRECT_MODE: Only support DMA-based buffer modes. In case no DMA is
  available, only support single conversions.

From userland perspective, to summarize various use cases:
1 - single conversion on any filter:
$ cd iio:deviceX
$ cat in_voltageY_raw
This uses regular a conversion (not continuous)

2 - Using sampling frequency without trigger (single channel, buffer)
$ cd iio:deviceX
$ echo 100 > sampling_frequency
$ echo "" > trigger/current_trigger
$ echo 1 > scan_elements/in_voltageY_en
$ echo 1 > buffer/enable
This uses regular conversion in continuous mode (Frequency is achieved
by tuning filter parameters)

3 - sync mode with filter 0: other filters can be converted when using
"st,filter0-sync" dt property. The conversions will get started at the
same time as filter 0. So for any filters > 1:
$ cd iio:deviceX
$ echo 100 > sampling_frequency
$ echo "" > trigger/current_trigger
$ echo 1 > scan_elements/in_voltageY_en
$ echo 1 > buffer/enable
Then start filter 0 as in 2 above.

4 - Using a hardware trigger (with one channel):
- check trigger, configure it:
$ cat /sys/bus/iio/devices/trigger1/name
tim6_trgo
$ echo 100 > /sys/bus/iio/devices/trigger1/sampling_frequency
- go to any filter:
$ echo 1 > scan_elements/in_voltageY_en
$ echo tim6_trgo > trigger/current_trigger
$ echo 1 > buffer/enable
This uses injected conversion as it uses a hardware trigger (without scan)

5 - Using a hardware trigger (with 2+ channel):
Same as in 4/ above, but enable two or more channels in scan_elements.
This uses injected conversion as it uses a hardware trigger (with scan mode)

Signed-off-by: Fabrice Gasnier <fabrice.gasnier@st.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2019-04-04 20:20:39 +01:00
2019-03-07 18:32:03 -08:00
2019-03-29 14:43:07 -07:00
2019-03-29 14:53:33 -07:00
2019-03-28 19:07:30 +01:00
2019-03-06 14:18:59 -08:00
2019-03-10 17:48:21 -07:00
2019-03-31 14:39:29 -07:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
No description provided
Readme 5.7 GiB
Languages
C 97.6%
Assembly 1%
Shell 0.5%
Python 0.3%
Makefile 0.3%