Sam Shih d9bf944bea clk: mediatek: add pcw_chg_bit control for PLLs of MT7988
Introduce pcw_chg_bit member to struct mtk_pll_data and use it instead
of the previously hardcoded PCW_CHG_MASK macro if set.
This will needed for clocks on the MT7988 SoC.

Signed-off-by: Sam Shih <sam.shih@mediatek.com>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Reviewed-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
Link: https://lore.kernel.org/r/3b9c65ddb08c8bedf790aacf29871af026b6f0b7.1702849494.git.daniel@makrotopia.org
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2024-01-03 15:55:19 -08:00

451 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014 MediaTek Inc.
* Author: James Liao <jamesjj.liao@mediatek.com>
*/
#include <linux/clk-provider.h>
#include <linux/container_of.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/slab.h>
#include "clk-pll.h"
#define MHZ (1000 * 1000)
#define REG_CON0 0
#define REG_CON1 4
#define CON0_BASE_EN BIT(0)
#define CON0_PWR_ON BIT(0)
#define CON0_ISO_EN BIT(1)
#define PCW_CHG_BIT 31
#define AUDPLL_TUNER_EN BIT(31)
/* default 7 bits integer, can be overridden with pcwibits. */
#define INTEGER_BITS 7
int mtk_pll_is_prepared(struct clk_hw *hw)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
return (readl(pll->en_addr) & BIT(pll->data->pll_en_bit)) != 0;
}
static unsigned long __mtk_pll_recalc_rate(struct mtk_clk_pll *pll, u32 fin,
u32 pcw, int postdiv)
{
int pcwbits = pll->data->pcwbits;
int pcwfbits = 0;
int ibits;
u64 vco;
u8 c = 0;
/* The fractional part of the PLL divider. */
ibits = pll->data->pcwibits ? pll->data->pcwibits : INTEGER_BITS;
if (pcwbits > ibits)
pcwfbits = pcwbits - ibits;
vco = (u64)fin * pcw;
if (pcwfbits && (vco & GENMASK(pcwfbits - 1, 0)))
c = 1;
vco >>= pcwfbits;
if (c)
vco++;
return ((unsigned long)vco + postdiv - 1) / postdiv;
}
static void __mtk_pll_tuner_enable(struct mtk_clk_pll *pll)
{
u32 r;
if (pll->tuner_en_addr) {
r = readl(pll->tuner_en_addr) | BIT(pll->data->tuner_en_bit);
writel(r, pll->tuner_en_addr);
} else if (pll->tuner_addr) {
r = readl(pll->tuner_addr) | AUDPLL_TUNER_EN;
writel(r, pll->tuner_addr);
}
}
static void __mtk_pll_tuner_disable(struct mtk_clk_pll *pll)
{
u32 r;
if (pll->tuner_en_addr) {
r = readl(pll->tuner_en_addr) & ~BIT(pll->data->tuner_en_bit);
writel(r, pll->tuner_en_addr);
} else if (pll->tuner_addr) {
r = readl(pll->tuner_addr) & ~AUDPLL_TUNER_EN;
writel(r, pll->tuner_addr);
}
}
static void mtk_pll_set_rate_regs(struct mtk_clk_pll *pll, u32 pcw,
int postdiv)
{
u32 chg, val;
/* disable tuner */
__mtk_pll_tuner_disable(pll);
/* set postdiv */
val = readl(pll->pd_addr);
val &= ~(POSTDIV_MASK << pll->data->pd_shift);
val |= (ffs(postdiv) - 1) << pll->data->pd_shift;
/* postdiv and pcw need to set at the same time if on same register */
if (pll->pd_addr != pll->pcw_addr) {
writel(val, pll->pd_addr);
val = readl(pll->pcw_addr);
}
/* set pcw */
val &= ~GENMASK(pll->data->pcw_shift + pll->data->pcwbits - 1,
pll->data->pcw_shift);
val |= pcw << pll->data->pcw_shift;
writel(val, pll->pcw_addr);
chg = readl(pll->pcw_chg_addr) |
BIT(pll->data->pcw_chg_bit ? : PCW_CHG_BIT);
writel(chg, pll->pcw_chg_addr);
if (pll->tuner_addr)
writel(val + 1, pll->tuner_addr);
/* restore tuner_en */
__mtk_pll_tuner_enable(pll);
udelay(20);
}
/*
* mtk_pll_calc_values - calculate good values for a given input frequency.
* @pll: The pll
* @pcw: The pcw value (output)
* @postdiv: The post divider (output)
* @freq: The desired target frequency
* @fin: The input frequency
*
*/
void mtk_pll_calc_values(struct mtk_clk_pll *pll, u32 *pcw, u32 *postdiv,
u32 freq, u32 fin)
{
unsigned long fmin = pll->data->fmin ? pll->data->fmin : (1000 * MHZ);
const struct mtk_pll_div_table *div_table = pll->data->div_table;
u64 _pcw;
int ibits;
u32 val;
if (freq > pll->data->fmax)
freq = pll->data->fmax;
if (div_table) {
if (freq > div_table[0].freq)
freq = div_table[0].freq;
for (val = 0; div_table[val + 1].freq != 0; val++) {
if (freq > div_table[val + 1].freq)
break;
}
*postdiv = 1 << val;
} else {
for (val = 0; val < 5; val++) {
*postdiv = 1 << val;
if ((u64)freq * *postdiv >= fmin)
break;
}
}
/* _pcw = freq * postdiv / fin * 2^pcwfbits */
ibits = pll->data->pcwibits ? pll->data->pcwibits : INTEGER_BITS;
_pcw = ((u64)freq << val) << (pll->data->pcwbits - ibits);
do_div(_pcw, fin);
*pcw = (u32)_pcw;
}
int mtk_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
u32 pcw = 0;
u32 postdiv;
mtk_pll_calc_values(pll, &pcw, &postdiv, rate, parent_rate);
mtk_pll_set_rate_regs(pll, pcw, postdiv);
return 0;
}
unsigned long mtk_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
u32 postdiv;
u32 pcw;
postdiv = (readl(pll->pd_addr) >> pll->data->pd_shift) & POSTDIV_MASK;
postdiv = 1 << postdiv;
pcw = readl(pll->pcw_addr) >> pll->data->pcw_shift;
pcw &= GENMASK(pll->data->pcwbits - 1, 0);
return __mtk_pll_recalc_rate(pll, parent_rate, pcw, postdiv);
}
long mtk_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
u32 pcw = 0;
int postdiv;
mtk_pll_calc_values(pll, &pcw, &postdiv, rate, *prate);
return __mtk_pll_recalc_rate(pll, *prate, pcw, postdiv);
}
int mtk_pll_prepare(struct clk_hw *hw)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
u32 r;
r = readl(pll->pwr_addr) | CON0_PWR_ON;
writel(r, pll->pwr_addr);
udelay(1);
r = readl(pll->pwr_addr) & ~CON0_ISO_EN;
writel(r, pll->pwr_addr);
udelay(1);
r = readl(pll->en_addr) | BIT(pll->data->pll_en_bit);
writel(r, pll->en_addr);
if (pll->data->en_mask) {
r = readl(pll->base_addr + REG_CON0) | pll->data->en_mask;
writel(r, pll->base_addr + REG_CON0);
}
__mtk_pll_tuner_enable(pll);
udelay(20);
if (pll->data->flags & HAVE_RST_BAR) {
r = readl(pll->base_addr + REG_CON0);
r |= pll->data->rst_bar_mask;
writel(r, pll->base_addr + REG_CON0);
}
return 0;
}
void mtk_pll_unprepare(struct clk_hw *hw)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
u32 r;
if (pll->data->flags & HAVE_RST_BAR) {
r = readl(pll->base_addr + REG_CON0);
r &= ~pll->data->rst_bar_mask;
writel(r, pll->base_addr + REG_CON0);
}
__mtk_pll_tuner_disable(pll);
if (pll->data->en_mask) {
r = readl(pll->base_addr + REG_CON0) & ~pll->data->en_mask;
writel(r, pll->base_addr + REG_CON0);
}
r = readl(pll->en_addr) & ~BIT(pll->data->pll_en_bit);
writel(r, pll->en_addr);
r = readl(pll->pwr_addr) | CON0_ISO_EN;
writel(r, pll->pwr_addr);
r = readl(pll->pwr_addr) & ~CON0_PWR_ON;
writel(r, pll->pwr_addr);
}
const struct clk_ops mtk_pll_ops = {
.is_prepared = mtk_pll_is_prepared,
.prepare = mtk_pll_prepare,
.unprepare = mtk_pll_unprepare,
.recalc_rate = mtk_pll_recalc_rate,
.round_rate = mtk_pll_round_rate,
.set_rate = mtk_pll_set_rate,
};
struct clk_hw *mtk_clk_register_pll_ops(struct mtk_clk_pll *pll,
const struct mtk_pll_data *data,
void __iomem *base,
const struct clk_ops *pll_ops)
{
struct clk_init_data init = {};
int ret;
const char *parent_name = "clk26m";
pll->base_addr = base + data->reg;
pll->pwr_addr = base + data->pwr_reg;
pll->pd_addr = base + data->pd_reg;
pll->pcw_addr = base + data->pcw_reg;
if (data->pcw_chg_reg)
pll->pcw_chg_addr = base + data->pcw_chg_reg;
else
pll->pcw_chg_addr = pll->base_addr + REG_CON1;
if (data->tuner_reg)
pll->tuner_addr = base + data->tuner_reg;
if (data->tuner_en_reg || data->tuner_en_bit)
pll->tuner_en_addr = base + data->tuner_en_reg;
if (data->en_reg)
pll->en_addr = base + data->en_reg;
else
pll->en_addr = pll->base_addr + REG_CON0;
pll->hw.init = &init;
pll->data = data;
init.name = data->name;
init.flags = (data->flags & PLL_AO) ? CLK_IS_CRITICAL : 0;
init.ops = pll_ops;
if (data->parent_name)
init.parent_names = &data->parent_name;
else
init.parent_names = &parent_name;
init.num_parents = 1;
ret = clk_hw_register(NULL, &pll->hw);
if (ret)
return ERR_PTR(ret);
return &pll->hw;
}
struct clk_hw *mtk_clk_register_pll(const struct mtk_pll_data *data,
void __iomem *base)
{
struct mtk_clk_pll *pll;
struct clk_hw *hw;
pll = kzalloc(sizeof(*pll), GFP_KERNEL);
if (!pll)
return ERR_PTR(-ENOMEM);
hw = mtk_clk_register_pll_ops(pll, data, base, &mtk_pll_ops);
if (IS_ERR(hw))
kfree(pll);
return hw;
}
void mtk_clk_unregister_pll(struct clk_hw *hw)
{
struct mtk_clk_pll *pll;
if (!hw)
return;
pll = to_mtk_clk_pll(hw);
clk_hw_unregister(hw);
kfree(pll);
}
int mtk_clk_register_plls(struct device_node *node,
const struct mtk_pll_data *plls, int num_plls,
struct clk_hw_onecell_data *clk_data)
{
void __iomem *base;
int i;
struct clk_hw *hw;
base = of_iomap(node, 0);
if (!base) {
pr_err("%s(): ioremap failed\n", __func__);
return -EINVAL;
}
for (i = 0; i < num_plls; i++) {
const struct mtk_pll_data *pll = &plls[i];
if (!IS_ERR_OR_NULL(clk_data->hws[pll->id])) {
pr_warn("%pOF: Trying to register duplicate clock ID: %d\n",
node, pll->id);
continue;
}
hw = mtk_clk_register_pll(pll, base);
if (IS_ERR(hw)) {
pr_err("Failed to register clk %s: %pe\n", pll->name,
hw);
goto err;
}
clk_data->hws[pll->id] = hw;
}
return 0;
err:
while (--i >= 0) {
const struct mtk_pll_data *pll = &plls[i];
mtk_clk_unregister_pll(clk_data->hws[pll->id]);
clk_data->hws[pll->id] = ERR_PTR(-ENOENT);
}
iounmap(base);
return PTR_ERR(hw);
}
EXPORT_SYMBOL_GPL(mtk_clk_register_plls);
__iomem void *mtk_clk_pll_get_base(struct clk_hw *hw,
const struct mtk_pll_data *data)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
return pll->base_addr - data->reg;
}
void mtk_clk_unregister_plls(const struct mtk_pll_data *plls, int num_plls,
struct clk_hw_onecell_data *clk_data)
{
__iomem void *base = NULL;
int i;
if (!clk_data)
return;
for (i = num_plls; i > 0; i--) {
const struct mtk_pll_data *pll = &plls[i - 1];
if (IS_ERR_OR_NULL(clk_data->hws[pll->id]))
continue;
/*
* This is quite ugly but unfortunately the clks don't have
* any device tied to them, so there's no place to store the
* pointer to the I/O region base address. We have to fetch
* it from one of the registered clks.
*/
base = mtk_clk_pll_get_base(clk_data->hws[pll->id], pll);
mtk_clk_unregister_pll(clk_data->hws[pll->id]);
clk_data->hws[pll->id] = ERR_PTR(-ENOENT);
}
iounmap(base);
}
EXPORT_SYMBOL_GPL(mtk_clk_unregister_plls);
MODULE_LICENSE("GPL");