1384c70442
No users outside of this file. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Harish Chegondi <harish.chegondi@intel.com> Cc: Jacob Pan <jacob.jun.pan@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20160222221011.285504825@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
1458 lines
33 KiB
C
1458 lines
33 KiB
C
#include "uncore.h"
|
|
|
|
static struct intel_uncore_type *empty_uncore[] = { NULL, };
|
|
struct intel_uncore_type **uncore_msr_uncores = empty_uncore;
|
|
struct intel_uncore_type **uncore_pci_uncores = empty_uncore;
|
|
|
|
static bool pcidrv_registered;
|
|
struct pci_driver *uncore_pci_driver;
|
|
/* pci bus to socket mapping */
|
|
DEFINE_RAW_SPINLOCK(pci2phy_map_lock);
|
|
struct list_head pci2phy_map_head = LIST_HEAD_INIT(pci2phy_map_head);
|
|
struct pci_dev *uncore_extra_pci_dev[UNCORE_SOCKET_MAX][UNCORE_EXTRA_PCI_DEV_MAX];
|
|
|
|
static DEFINE_RAW_SPINLOCK(uncore_box_lock);
|
|
/* mask of cpus that collect uncore events */
|
|
static cpumask_t uncore_cpu_mask;
|
|
|
|
/* constraint for the fixed counter */
|
|
static struct event_constraint uncore_constraint_fixed =
|
|
EVENT_CONSTRAINT(~0ULL, 1 << UNCORE_PMC_IDX_FIXED, ~0ULL);
|
|
struct event_constraint uncore_constraint_empty =
|
|
EVENT_CONSTRAINT(0, 0, 0);
|
|
|
|
static int uncore_pcibus_to_physid(struct pci_bus *bus)
|
|
{
|
|
struct pci2phy_map *map;
|
|
int phys_id = -1;
|
|
|
|
raw_spin_lock(&pci2phy_map_lock);
|
|
list_for_each_entry(map, &pci2phy_map_head, list) {
|
|
if (map->segment == pci_domain_nr(bus)) {
|
|
phys_id = map->pbus_to_physid[bus->number];
|
|
break;
|
|
}
|
|
}
|
|
raw_spin_unlock(&pci2phy_map_lock);
|
|
|
|
return phys_id;
|
|
}
|
|
|
|
static void uncore_free_pcibus_map(void)
|
|
{
|
|
struct pci2phy_map *map, *tmp;
|
|
|
|
list_for_each_entry_safe(map, tmp, &pci2phy_map_head, list) {
|
|
list_del(&map->list);
|
|
kfree(map);
|
|
}
|
|
}
|
|
|
|
struct pci2phy_map *__find_pci2phy_map(int segment)
|
|
{
|
|
struct pci2phy_map *map, *alloc = NULL;
|
|
int i;
|
|
|
|
lockdep_assert_held(&pci2phy_map_lock);
|
|
|
|
lookup:
|
|
list_for_each_entry(map, &pci2phy_map_head, list) {
|
|
if (map->segment == segment)
|
|
goto end;
|
|
}
|
|
|
|
if (!alloc) {
|
|
raw_spin_unlock(&pci2phy_map_lock);
|
|
alloc = kmalloc(sizeof(struct pci2phy_map), GFP_KERNEL);
|
|
raw_spin_lock(&pci2phy_map_lock);
|
|
|
|
if (!alloc)
|
|
return NULL;
|
|
|
|
goto lookup;
|
|
}
|
|
|
|
map = alloc;
|
|
alloc = NULL;
|
|
map->segment = segment;
|
|
for (i = 0; i < 256; i++)
|
|
map->pbus_to_physid[i] = -1;
|
|
list_add_tail(&map->list, &pci2phy_map_head);
|
|
|
|
end:
|
|
kfree(alloc);
|
|
return map;
|
|
}
|
|
|
|
ssize_t uncore_event_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
struct uncore_event_desc *event =
|
|
container_of(attr, struct uncore_event_desc, attr);
|
|
return sprintf(buf, "%s", event->config);
|
|
}
|
|
|
|
struct intel_uncore_pmu *uncore_event_to_pmu(struct perf_event *event)
|
|
{
|
|
return container_of(event->pmu, struct intel_uncore_pmu, pmu);
|
|
}
|
|
|
|
struct intel_uncore_box *uncore_pmu_to_box(struct intel_uncore_pmu *pmu, int cpu)
|
|
{
|
|
struct intel_uncore_box *box;
|
|
|
|
box = *per_cpu_ptr(pmu->box, cpu);
|
|
if (box)
|
|
return box;
|
|
|
|
raw_spin_lock(&uncore_box_lock);
|
|
/* Recheck in lock to handle races. */
|
|
if (*per_cpu_ptr(pmu->box, cpu))
|
|
goto out;
|
|
list_for_each_entry(box, &pmu->box_list, list) {
|
|
if (box->phys_id == topology_physical_package_id(cpu)) {
|
|
atomic_inc(&box->refcnt);
|
|
*per_cpu_ptr(pmu->box, cpu) = box;
|
|
break;
|
|
}
|
|
}
|
|
out:
|
|
raw_spin_unlock(&uncore_box_lock);
|
|
|
|
return *per_cpu_ptr(pmu->box, cpu);
|
|
}
|
|
|
|
struct intel_uncore_box *uncore_event_to_box(struct perf_event *event)
|
|
{
|
|
/*
|
|
* perf core schedules event on the basis of cpu, uncore events are
|
|
* collected by one of the cpus inside a physical package.
|
|
*/
|
|
return uncore_pmu_to_box(uncore_event_to_pmu(event), smp_processor_id());
|
|
}
|
|
|
|
u64 uncore_msr_read_counter(struct intel_uncore_box *box, struct perf_event *event)
|
|
{
|
|
u64 count;
|
|
|
|
rdmsrl(event->hw.event_base, count);
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* generic get constraint function for shared match/mask registers.
|
|
*/
|
|
struct event_constraint *
|
|
uncore_get_constraint(struct intel_uncore_box *box, struct perf_event *event)
|
|
{
|
|
struct intel_uncore_extra_reg *er;
|
|
struct hw_perf_event_extra *reg1 = &event->hw.extra_reg;
|
|
struct hw_perf_event_extra *reg2 = &event->hw.branch_reg;
|
|
unsigned long flags;
|
|
bool ok = false;
|
|
|
|
/*
|
|
* reg->alloc can be set due to existing state, so for fake box we
|
|
* need to ignore this, otherwise we might fail to allocate proper
|
|
* fake state for this extra reg constraint.
|
|
*/
|
|
if (reg1->idx == EXTRA_REG_NONE ||
|
|
(!uncore_box_is_fake(box) && reg1->alloc))
|
|
return NULL;
|
|
|
|
er = &box->shared_regs[reg1->idx];
|
|
raw_spin_lock_irqsave(&er->lock, flags);
|
|
if (!atomic_read(&er->ref) ||
|
|
(er->config1 == reg1->config && er->config2 == reg2->config)) {
|
|
atomic_inc(&er->ref);
|
|
er->config1 = reg1->config;
|
|
er->config2 = reg2->config;
|
|
ok = true;
|
|
}
|
|
raw_spin_unlock_irqrestore(&er->lock, flags);
|
|
|
|
if (ok) {
|
|
if (!uncore_box_is_fake(box))
|
|
reg1->alloc = 1;
|
|
return NULL;
|
|
}
|
|
|
|
return &uncore_constraint_empty;
|
|
}
|
|
|
|
void uncore_put_constraint(struct intel_uncore_box *box, struct perf_event *event)
|
|
{
|
|
struct intel_uncore_extra_reg *er;
|
|
struct hw_perf_event_extra *reg1 = &event->hw.extra_reg;
|
|
|
|
/*
|
|
* Only put constraint if extra reg was actually allocated. Also
|
|
* takes care of event which do not use an extra shared reg.
|
|
*
|
|
* Also, if this is a fake box we shouldn't touch any event state
|
|
* (reg->alloc) and we don't care about leaving inconsistent box
|
|
* state either since it will be thrown out.
|
|
*/
|
|
if (uncore_box_is_fake(box) || !reg1->alloc)
|
|
return;
|
|
|
|
er = &box->shared_regs[reg1->idx];
|
|
atomic_dec(&er->ref);
|
|
reg1->alloc = 0;
|
|
}
|
|
|
|
u64 uncore_shared_reg_config(struct intel_uncore_box *box, int idx)
|
|
{
|
|
struct intel_uncore_extra_reg *er;
|
|
unsigned long flags;
|
|
u64 config;
|
|
|
|
er = &box->shared_regs[idx];
|
|
|
|
raw_spin_lock_irqsave(&er->lock, flags);
|
|
config = er->config;
|
|
raw_spin_unlock_irqrestore(&er->lock, flags);
|
|
|
|
return config;
|
|
}
|
|
|
|
static void uncore_assign_hw_event(struct intel_uncore_box *box,
|
|
struct perf_event *event, int idx)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
hwc->idx = idx;
|
|
hwc->last_tag = ++box->tags[idx];
|
|
|
|
if (hwc->idx == UNCORE_PMC_IDX_FIXED) {
|
|
hwc->event_base = uncore_fixed_ctr(box);
|
|
hwc->config_base = uncore_fixed_ctl(box);
|
|
return;
|
|
}
|
|
|
|
hwc->config_base = uncore_event_ctl(box, hwc->idx);
|
|
hwc->event_base = uncore_perf_ctr(box, hwc->idx);
|
|
}
|
|
|
|
void uncore_perf_event_update(struct intel_uncore_box *box, struct perf_event *event)
|
|
{
|
|
u64 prev_count, new_count, delta;
|
|
int shift;
|
|
|
|
if (event->hw.idx >= UNCORE_PMC_IDX_FIXED)
|
|
shift = 64 - uncore_fixed_ctr_bits(box);
|
|
else
|
|
shift = 64 - uncore_perf_ctr_bits(box);
|
|
|
|
/* the hrtimer might modify the previous event value */
|
|
again:
|
|
prev_count = local64_read(&event->hw.prev_count);
|
|
new_count = uncore_read_counter(box, event);
|
|
if (local64_xchg(&event->hw.prev_count, new_count) != prev_count)
|
|
goto again;
|
|
|
|
delta = (new_count << shift) - (prev_count << shift);
|
|
delta >>= shift;
|
|
|
|
local64_add(delta, &event->count);
|
|
}
|
|
|
|
/*
|
|
* The overflow interrupt is unavailable for SandyBridge-EP, is broken
|
|
* for SandyBridge. So we use hrtimer to periodically poll the counter
|
|
* to avoid overflow.
|
|
*/
|
|
static enum hrtimer_restart uncore_pmu_hrtimer(struct hrtimer *hrtimer)
|
|
{
|
|
struct intel_uncore_box *box;
|
|
struct perf_event *event;
|
|
unsigned long flags;
|
|
int bit;
|
|
|
|
box = container_of(hrtimer, struct intel_uncore_box, hrtimer);
|
|
if (!box->n_active || box->cpu != smp_processor_id())
|
|
return HRTIMER_NORESTART;
|
|
/*
|
|
* disable local interrupt to prevent uncore_pmu_event_start/stop
|
|
* to interrupt the update process
|
|
*/
|
|
local_irq_save(flags);
|
|
|
|
/*
|
|
* handle boxes with an active event list as opposed to active
|
|
* counters
|
|
*/
|
|
list_for_each_entry(event, &box->active_list, active_entry) {
|
|
uncore_perf_event_update(box, event);
|
|
}
|
|
|
|
for_each_set_bit(bit, box->active_mask, UNCORE_PMC_IDX_MAX)
|
|
uncore_perf_event_update(box, box->events[bit]);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
hrtimer_forward_now(hrtimer, ns_to_ktime(box->hrtimer_duration));
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
void uncore_pmu_start_hrtimer(struct intel_uncore_box *box)
|
|
{
|
|
hrtimer_start(&box->hrtimer, ns_to_ktime(box->hrtimer_duration),
|
|
HRTIMER_MODE_REL_PINNED);
|
|
}
|
|
|
|
void uncore_pmu_cancel_hrtimer(struct intel_uncore_box *box)
|
|
{
|
|
hrtimer_cancel(&box->hrtimer);
|
|
}
|
|
|
|
static void uncore_pmu_init_hrtimer(struct intel_uncore_box *box)
|
|
{
|
|
hrtimer_init(&box->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
box->hrtimer.function = uncore_pmu_hrtimer;
|
|
}
|
|
|
|
static struct intel_uncore_box *uncore_alloc_box(struct intel_uncore_type *type,
|
|
int node)
|
|
{
|
|
int i, size, numshared = type->num_shared_regs ;
|
|
struct intel_uncore_box *box;
|
|
|
|
size = sizeof(*box) + numshared * sizeof(struct intel_uncore_extra_reg);
|
|
|
|
box = kzalloc_node(size, GFP_KERNEL, node);
|
|
if (!box)
|
|
return NULL;
|
|
|
|
for (i = 0; i < numshared; i++)
|
|
raw_spin_lock_init(&box->shared_regs[i].lock);
|
|
|
|
uncore_pmu_init_hrtimer(box);
|
|
atomic_set(&box->refcnt, 1);
|
|
box->cpu = -1;
|
|
box->phys_id = -1;
|
|
|
|
/* set default hrtimer timeout */
|
|
box->hrtimer_duration = UNCORE_PMU_HRTIMER_INTERVAL;
|
|
|
|
INIT_LIST_HEAD(&box->active_list);
|
|
|
|
return box;
|
|
}
|
|
|
|
/*
|
|
* Using uncore_pmu_event_init pmu event_init callback
|
|
* as a detection point for uncore events.
|
|
*/
|
|
static int uncore_pmu_event_init(struct perf_event *event);
|
|
|
|
static bool is_uncore_event(struct perf_event *event)
|
|
{
|
|
return event->pmu->event_init == uncore_pmu_event_init;
|
|
}
|
|
|
|
static int
|
|
uncore_collect_events(struct intel_uncore_box *box, struct perf_event *leader,
|
|
bool dogrp)
|
|
{
|
|
struct perf_event *event;
|
|
int n, max_count;
|
|
|
|
max_count = box->pmu->type->num_counters;
|
|
if (box->pmu->type->fixed_ctl)
|
|
max_count++;
|
|
|
|
if (box->n_events >= max_count)
|
|
return -EINVAL;
|
|
|
|
n = box->n_events;
|
|
|
|
if (is_uncore_event(leader)) {
|
|
box->event_list[n] = leader;
|
|
n++;
|
|
}
|
|
|
|
if (!dogrp)
|
|
return n;
|
|
|
|
list_for_each_entry(event, &leader->sibling_list, group_entry) {
|
|
if (!is_uncore_event(event) ||
|
|
event->state <= PERF_EVENT_STATE_OFF)
|
|
continue;
|
|
|
|
if (n >= max_count)
|
|
return -EINVAL;
|
|
|
|
box->event_list[n] = event;
|
|
n++;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
uncore_get_event_constraint(struct intel_uncore_box *box, struct perf_event *event)
|
|
{
|
|
struct intel_uncore_type *type = box->pmu->type;
|
|
struct event_constraint *c;
|
|
|
|
if (type->ops->get_constraint) {
|
|
c = type->ops->get_constraint(box, event);
|
|
if (c)
|
|
return c;
|
|
}
|
|
|
|
if (event->attr.config == UNCORE_FIXED_EVENT)
|
|
return &uncore_constraint_fixed;
|
|
|
|
if (type->constraints) {
|
|
for_each_event_constraint(c, type->constraints) {
|
|
if ((event->hw.config & c->cmask) == c->code)
|
|
return c;
|
|
}
|
|
}
|
|
|
|
return &type->unconstrainted;
|
|
}
|
|
|
|
static void uncore_put_event_constraint(struct intel_uncore_box *box,
|
|
struct perf_event *event)
|
|
{
|
|
if (box->pmu->type->ops->put_constraint)
|
|
box->pmu->type->ops->put_constraint(box, event);
|
|
}
|
|
|
|
static int uncore_assign_events(struct intel_uncore_box *box, int assign[], int n)
|
|
{
|
|
unsigned long used_mask[BITS_TO_LONGS(UNCORE_PMC_IDX_MAX)];
|
|
struct event_constraint *c;
|
|
int i, wmin, wmax, ret = 0;
|
|
struct hw_perf_event *hwc;
|
|
|
|
bitmap_zero(used_mask, UNCORE_PMC_IDX_MAX);
|
|
|
|
for (i = 0, wmin = UNCORE_PMC_IDX_MAX, wmax = 0; i < n; i++) {
|
|
c = uncore_get_event_constraint(box, box->event_list[i]);
|
|
box->event_constraint[i] = c;
|
|
wmin = min(wmin, c->weight);
|
|
wmax = max(wmax, c->weight);
|
|
}
|
|
|
|
/* fastpath, try to reuse previous register */
|
|
for (i = 0; i < n; i++) {
|
|
hwc = &box->event_list[i]->hw;
|
|
c = box->event_constraint[i];
|
|
|
|
/* never assigned */
|
|
if (hwc->idx == -1)
|
|
break;
|
|
|
|
/* constraint still honored */
|
|
if (!test_bit(hwc->idx, c->idxmsk))
|
|
break;
|
|
|
|
/* not already used */
|
|
if (test_bit(hwc->idx, used_mask))
|
|
break;
|
|
|
|
__set_bit(hwc->idx, used_mask);
|
|
if (assign)
|
|
assign[i] = hwc->idx;
|
|
}
|
|
/* slow path */
|
|
if (i != n)
|
|
ret = perf_assign_events(box->event_constraint, n,
|
|
wmin, wmax, n, assign);
|
|
|
|
if (!assign || ret) {
|
|
for (i = 0; i < n; i++)
|
|
uncore_put_event_constraint(box, box->event_list[i]);
|
|
}
|
|
return ret ? -EINVAL : 0;
|
|
}
|
|
|
|
static void uncore_pmu_event_start(struct perf_event *event, int flags)
|
|
{
|
|
struct intel_uncore_box *box = uncore_event_to_box(event);
|
|
int idx = event->hw.idx;
|
|
|
|
if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
|
|
return;
|
|
|
|
if (WARN_ON_ONCE(idx == -1 || idx >= UNCORE_PMC_IDX_MAX))
|
|
return;
|
|
|
|
event->hw.state = 0;
|
|
box->events[idx] = event;
|
|
box->n_active++;
|
|
__set_bit(idx, box->active_mask);
|
|
|
|
local64_set(&event->hw.prev_count, uncore_read_counter(box, event));
|
|
uncore_enable_event(box, event);
|
|
|
|
if (box->n_active == 1) {
|
|
uncore_enable_box(box);
|
|
uncore_pmu_start_hrtimer(box);
|
|
}
|
|
}
|
|
|
|
static void uncore_pmu_event_stop(struct perf_event *event, int flags)
|
|
{
|
|
struct intel_uncore_box *box = uncore_event_to_box(event);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
if (__test_and_clear_bit(hwc->idx, box->active_mask)) {
|
|
uncore_disable_event(box, event);
|
|
box->n_active--;
|
|
box->events[hwc->idx] = NULL;
|
|
WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
|
|
hwc->state |= PERF_HES_STOPPED;
|
|
|
|
if (box->n_active == 0) {
|
|
uncore_disable_box(box);
|
|
uncore_pmu_cancel_hrtimer(box);
|
|
}
|
|
}
|
|
|
|
if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
|
|
/*
|
|
* Drain the remaining delta count out of a event
|
|
* that we are disabling:
|
|
*/
|
|
uncore_perf_event_update(box, event);
|
|
hwc->state |= PERF_HES_UPTODATE;
|
|
}
|
|
}
|
|
|
|
static int uncore_pmu_event_add(struct perf_event *event, int flags)
|
|
{
|
|
struct intel_uncore_box *box = uncore_event_to_box(event);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int assign[UNCORE_PMC_IDX_MAX];
|
|
int i, n, ret;
|
|
|
|
if (!box)
|
|
return -ENODEV;
|
|
|
|
ret = n = uncore_collect_events(box, event, false);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
|
|
if (!(flags & PERF_EF_START))
|
|
hwc->state |= PERF_HES_ARCH;
|
|
|
|
ret = uncore_assign_events(box, assign, n);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* save events moving to new counters */
|
|
for (i = 0; i < box->n_events; i++) {
|
|
event = box->event_list[i];
|
|
hwc = &event->hw;
|
|
|
|
if (hwc->idx == assign[i] &&
|
|
hwc->last_tag == box->tags[assign[i]])
|
|
continue;
|
|
/*
|
|
* Ensure we don't accidentally enable a stopped
|
|
* counter simply because we rescheduled.
|
|
*/
|
|
if (hwc->state & PERF_HES_STOPPED)
|
|
hwc->state |= PERF_HES_ARCH;
|
|
|
|
uncore_pmu_event_stop(event, PERF_EF_UPDATE);
|
|
}
|
|
|
|
/* reprogram moved events into new counters */
|
|
for (i = 0; i < n; i++) {
|
|
event = box->event_list[i];
|
|
hwc = &event->hw;
|
|
|
|
if (hwc->idx != assign[i] ||
|
|
hwc->last_tag != box->tags[assign[i]])
|
|
uncore_assign_hw_event(box, event, assign[i]);
|
|
else if (i < box->n_events)
|
|
continue;
|
|
|
|
if (hwc->state & PERF_HES_ARCH)
|
|
continue;
|
|
|
|
uncore_pmu_event_start(event, 0);
|
|
}
|
|
box->n_events = n;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void uncore_pmu_event_del(struct perf_event *event, int flags)
|
|
{
|
|
struct intel_uncore_box *box = uncore_event_to_box(event);
|
|
int i;
|
|
|
|
uncore_pmu_event_stop(event, PERF_EF_UPDATE);
|
|
|
|
for (i = 0; i < box->n_events; i++) {
|
|
if (event == box->event_list[i]) {
|
|
uncore_put_event_constraint(box, event);
|
|
|
|
for (++i; i < box->n_events; i++)
|
|
box->event_list[i - 1] = box->event_list[i];
|
|
|
|
--box->n_events;
|
|
break;
|
|
}
|
|
}
|
|
|
|
event->hw.idx = -1;
|
|
event->hw.last_tag = ~0ULL;
|
|
}
|
|
|
|
void uncore_pmu_event_read(struct perf_event *event)
|
|
{
|
|
struct intel_uncore_box *box = uncore_event_to_box(event);
|
|
uncore_perf_event_update(box, event);
|
|
}
|
|
|
|
/*
|
|
* validation ensures the group can be loaded onto the
|
|
* PMU if it was the only group available.
|
|
*/
|
|
static int uncore_validate_group(struct intel_uncore_pmu *pmu,
|
|
struct perf_event *event)
|
|
{
|
|
struct perf_event *leader = event->group_leader;
|
|
struct intel_uncore_box *fake_box;
|
|
int ret = -EINVAL, n;
|
|
|
|
fake_box = uncore_alloc_box(pmu->type, NUMA_NO_NODE);
|
|
if (!fake_box)
|
|
return -ENOMEM;
|
|
|
|
fake_box->pmu = pmu;
|
|
/*
|
|
* the event is not yet connected with its
|
|
* siblings therefore we must first collect
|
|
* existing siblings, then add the new event
|
|
* before we can simulate the scheduling
|
|
*/
|
|
n = uncore_collect_events(fake_box, leader, true);
|
|
if (n < 0)
|
|
goto out;
|
|
|
|
fake_box->n_events = n;
|
|
n = uncore_collect_events(fake_box, event, false);
|
|
if (n < 0)
|
|
goto out;
|
|
|
|
fake_box->n_events = n;
|
|
|
|
ret = uncore_assign_events(fake_box, NULL, n);
|
|
out:
|
|
kfree(fake_box);
|
|
return ret;
|
|
}
|
|
|
|
static int uncore_pmu_event_init(struct perf_event *event)
|
|
{
|
|
struct intel_uncore_pmu *pmu;
|
|
struct intel_uncore_box *box;
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int ret;
|
|
|
|
if (event->attr.type != event->pmu->type)
|
|
return -ENOENT;
|
|
|
|
pmu = uncore_event_to_pmu(event);
|
|
/* no device found for this pmu */
|
|
if (pmu->func_id < 0)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* Uncore PMU does measure at all privilege level all the time.
|
|
* So it doesn't make sense to specify any exclude bits.
|
|
*/
|
|
if (event->attr.exclude_user || event->attr.exclude_kernel ||
|
|
event->attr.exclude_hv || event->attr.exclude_idle)
|
|
return -EINVAL;
|
|
|
|
/* Sampling not supported yet */
|
|
if (hwc->sample_period)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Place all uncore events for a particular physical package
|
|
* onto a single cpu
|
|
*/
|
|
if (event->cpu < 0)
|
|
return -EINVAL;
|
|
box = uncore_pmu_to_box(pmu, event->cpu);
|
|
if (!box || box->cpu < 0)
|
|
return -EINVAL;
|
|
event->cpu = box->cpu;
|
|
|
|
event->hw.idx = -1;
|
|
event->hw.last_tag = ~0ULL;
|
|
event->hw.extra_reg.idx = EXTRA_REG_NONE;
|
|
event->hw.branch_reg.idx = EXTRA_REG_NONE;
|
|
|
|
if (event->attr.config == UNCORE_FIXED_EVENT) {
|
|
/* no fixed counter */
|
|
if (!pmu->type->fixed_ctl)
|
|
return -EINVAL;
|
|
/*
|
|
* if there is only one fixed counter, only the first pmu
|
|
* can access the fixed counter
|
|
*/
|
|
if (pmu->type->single_fixed && pmu->pmu_idx > 0)
|
|
return -EINVAL;
|
|
|
|
/* fixed counters have event field hardcoded to zero */
|
|
hwc->config = 0ULL;
|
|
} else {
|
|
hwc->config = event->attr.config & pmu->type->event_mask;
|
|
if (pmu->type->ops->hw_config) {
|
|
ret = pmu->type->ops->hw_config(box, event);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (event->group_leader != event)
|
|
ret = uncore_validate_group(pmu, event);
|
|
else
|
|
ret = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t uncore_get_attr_cpumask(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
return cpumap_print_to_pagebuf(true, buf, &uncore_cpu_mask);
|
|
}
|
|
|
|
static DEVICE_ATTR(cpumask, S_IRUGO, uncore_get_attr_cpumask, NULL);
|
|
|
|
static struct attribute *uncore_pmu_attrs[] = {
|
|
&dev_attr_cpumask.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group uncore_pmu_attr_group = {
|
|
.attrs = uncore_pmu_attrs,
|
|
};
|
|
|
|
static int uncore_pmu_register(struct intel_uncore_pmu *pmu)
|
|
{
|
|
int ret;
|
|
|
|
if (!pmu->type->pmu) {
|
|
pmu->pmu = (struct pmu) {
|
|
.attr_groups = pmu->type->attr_groups,
|
|
.task_ctx_nr = perf_invalid_context,
|
|
.event_init = uncore_pmu_event_init,
|
|
.add = uncore_pmu_event_add,
|
|
.del = uncore_pmu_event_del,
|
|
.start = uncore_pmu_event_start,
|
|
.stop = uncore_pmu_event_stop,
|
|
.read = uncore_pmu_event_read,
|
|
};
|
|
} else {
|
|
pmu->pmu = *pmu->type->pmu;
|
|
pmu->pmu.attr_groups = pmu->type->attr_groups;
|
|
}
|
|
|
|
if (pmu->type->num_boxes == 1) {
|
|
if (strlen(pmu->type->name) > 0)
|
|
sprintf(pmu->name, "uncore_%s", pmu->type->name);
|
|
else
|
|
sprintf(pmu->name, "uncore");
|
|
} else {
|
|
sprintf(pmu->name, "uncore_%s_%d", pmu->type->name,
|
|
pmu->pmu_idx);
|
|
}
|
|
|
|
ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
|
|
if (!ret)
|
|
pmu->registered = true;
|
|
return ret;
|
|
}
|
|
|
|
static void uncore_pmu_unregister(struct intel_uncore_pmu *pmu)
|
|
{
|
|
if (!pmu->registered)
|
|
return;
|
|
perf_pmu_unregister(&pmu->pmu);
|
|
pmu->registered = false;
|
|
}
|
|
|
|
static void __init uncore_type_exit(struct intel_uncore_type *type)
|
|
{
|
|
int i;
|
|
|
|
if (type->pmus) {
|
|
for (i = 0; i < type->num_boxes; i++) {
|
|
uncore_pmu_unregister(&type->pmus[i]);
|
|
free_percpu(type->pmus[i].box);
|
|
}
|
|
kfree(type->pmus);
|
|
type->pmus = NULL;
|
|
}
|
|
kfree(type->events_group);
|
|
type->events_group = NULL;
|
|
}
|
|
|
|
static void __init uncore_types_exit(struct intel_uncore_type **types)
|
|
{
|
|
for (; *types; types++)
|
|
uncore_type_exit(*types);
|
|
}
|
|
|
|
static int __init uncore_type_init(struct intel_uncore_type *type)
|
|
{
|
|
struct intel_uncore_pmu *pmus;
|
|
struct attribute_group *attr_group;
|
|
struct attribute **attrs;
|
|
int i, j;
|
|
|
|
pmus = kzalloc(sizeof(*pmus) * type->num_boxes, GFP_KERNEL);
|
|
if (!pmus)
|
|
return -ENOMEM;
|
|
|
|
type->pmus = pmus;
|
|
|
|
type->unconstrainted = (struct event_constraint)
|
|
__EVENT_CONSTRAINT(0, (1ULL << type->num_counters) - 1,
|
|
0, type->num_counters, 0, 0);
|
|
|
|
for (i = 0; i < type->num_boxes; i++) {
|
|
pmus[i].func_id = -1;
|
|
pmus[i].pmu_idx = i;
|
|
pmus[i].type = type;
|
|
INIT_LIST_HEAD(&pmus[i].box_list);
|
|
pmus[i].box = alloc_percpu(struct intel_uncore_box *);
|
|
if (!pmus[i].box)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (type->event_descs) {
|
|
i = 0;
|
|
while (type->event_descs[i].attr.attr.name)
|
|
i++;
|
|
|
|
attr_group = kzalloc(sizeof(struct attribute *) * (i + 1) +
|
|
sizeof(*attr_group), GFP_KERNEL);
|
|
if (!attr_group)
|
|
return -ENOMEM;
|
|
|
|
attrs = (struct attribute **)(attr_group + 1);
|
|
attr_group->name = "events";
|
|
attr_group->attrs = attrs;
|
|
|
|
for (j = 0; j < i; j++)
|
|
attrs[j] = &type->event_descs[j].attr.attr;
|
|
|
|
type->events_group = attr_group;
|
|
}
|
|
|
|
type->pmu_group = &uncore_pmu_attr_group;
|
|
return 0;
|
|
}
|
|
|
|
static int __init uncore_types_init(struct intel_uncore_type **types)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; types[i]; i++) {
|
|
ret = uncore_type_init(types[i]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* add a pci uncore device
|
|
*/
|
|
static int uncore_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
|
|
{
|
|
struct intel_uncore_pmu *pmu;
|
|
struct intel_uncore_box *box;
|
|
struct intel_uncore_type *type;
|
|
bool first_box = false;
|
|
int phys_id, ret;
|
|
|
|
phys_id = uncore_pcibus_to_physid(pdev->bus);
|
|
if (phys_id < 0 || phys_id >= UNCORE_SOCKET_MAX)
|
|
return -ENODEV;
|
|
|
|
if (UNCORE_PCI_DEV_TYPE(id->driver_data) == UNCORE_EXTRA_PCI_DEV) {
|
|
int idx = UNCORE_PCI_DEV_IDX(id->driver_data);
|
|
uncore_extra_pci_dev[phys_id][idx] = pdev;
|
|
pci_set_drvdata(pdev, NULL);
|
|
return 0;
|
|
}
|
|
|
|
type = uncore_pci_uncores[UNCORE_PCI_DEV_TYPE(id->driver_data)];
|
|
box = uncore_alloc_box(type, NUMA_NO_NODE);
|
|
if (!box)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* for performance monitoring unit with multiple boxes,
|
|
* each box has a different function id.
|
|
*/
|
|
pmu = &type->pmus[UNCORE_PCI_DEV_IDX(id->driver_data)];
|
|
/* Knights Landing uses a common PCI device ID for multiple instances of
|
|
* an uncore PMU device type. There is only one entry per device type in
|
|
* the knl_uncore_pci_ids table inspite of multiple devices present for
|
|
* some device types. Hence PCI device idx would be 0 for all devices.
|
|
* So increment pmu pointer to point to an unused array element.
|
|
*/
|
|
if (boot_cpu_data.x86_model == 87) {
|
|
while (pmu->func_id >= 0)
|
|
pmu++;
|
|
}
|
|
|
|
if (pmu->func_id < 0)
|
|
pmu->func_id = pdev->devfn;
|
|
else
|
|
WARN_ON_ONCE(pmu->func_id != pdev->devfn);
|
|
|
|
box->phys_id = phys_id;
|
|
box->pci_dev = pdev;
|
|
box->pmu = pmu;
|
|
uncore_box_init(box);
|
|
pci_set_drvdata(pdev, box);
|
|
|
|
raw_spin_lock(&uncore_box_lock);
|
|
if (list_empty(&pmu->box_list))
|
|
first_box = true;
|
|
list_add_tail(&box->list, &pmu->box_list);
|
|
raw_spin_unlock(&uncore_box_lock);
|
|
|
|
if (!first_box)
|
|
return 0;
|
|
|
|
ret = uncore_pmu_register(pmu);
|
|
if (ret) {
|
|
pci_set_drvdata(pdev, NULL);
|
|
raw_spin_lock(&uncore_box_lock);
|
|
list_del(&box->list);
|
|
raw_spin_unlock(&uncore_box_lock);
|
|
uncore_box_exit(box);
|
|
kfree(box);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void uncore_pci_remove(struct pci_dev *pdev)
|
|
{
|
|
struct intel_uncore_box *box = pci_get_drvdata(pdev);
|
|
struct intel_uncore_pmu *pmu;
|
|
int i, cpu, phys_id;
|
|
bool last_box = false;
|
|
|
|
phys_id = uncore_pcibus_to_physid(pdev->bus);
|
|
box = pci_get_drvdata(pdev);
|
|
if (!box) {
|
|
for (i = 0; i < UNCORE_EXTRA_PCI_DEV_MAX; i++) {
|
|
if (uncore_extra_pci_dev[phys_id][i] == pdev) {
|
|
uncore_extra_pci_dev[phys_id][i] = NULL;
|
|
break;
|
|
}
|
|
}
|
|
WARN_ON_ONCE(i >= UNCORE_EXTRA_PCI_DEV_MAX);
|
|
return;
|
|
}
|
|
|
|
pmu = box->pmu;
|
|
if (WARN_ON_ONCE(phys_id != box->phys_id))
|
|
return;
|
|
|
|
pci_set_drvdata(pdev, NULL);
|
|
|
|
raw_spin_lock(&uncore_box_lock);
|
|
list_del(&box->list);
|
|
if (list_empty(&pmu->box_list))
|
|
last_box = true;
|
|
raw_spin_unlock(&uncore_box_lock);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
if (*per_cpu_ptr(pmu->box, cpu) == box) {
|
|
*per_cpu_ptr(pmu->box, cpu) = NULL;
|
|
atomic_dec(&box->refcnt);
|
|
}
|
|
}
|
|
|
|
WARN_ON_ONCE(atomic_read(&box->refcnt) != 1);
|
|
uncore_box_exit(box);
|
|
kfree(box);
|
|
|
|
if (last_box)
|
|
uncore_pmu_unregister(pmu);
|
|
}
|
|
|
|
static int __init uncore_pci_init(void)
|
|
{
|
|
int ret;
|
|
|
|
switch (boot_cpu_data.x86_model) {
|
|
case 45: /* Sandy Bridge-EP */
|
|
ret = snbep_uncore_pci_init();
|
|
break;
|
|
case 62: /* Ivy Bridge-EP */
|
|
ret = ivbep_uncore_pci_init();
|
|
break;
|
|
case 63: /* Haswell-EP */
|
|
ret = hswep_uncore_pci_init();
|
|
break;
|
|
case 79: /* BDX-EP */
|
|
case 86: /* BDX-DE */
|
|
ret = bdx_uncore_pci_init();
|
|
break;
|
|
case 42: /* Sandy Bridge */
|
|
ret = snb_uncore_pci_init();
|
|
break;
|
|
case 58: /* Ivy Bridge */
|
|
ret = ivb_uncore_pci_init();
|
|
break;
|
|
case 60: /* Haswell */
|
|
case 69: /* Haswell Celeron */
|
|
ret = hsw_uncore_pci_init();
|
|
break;
|
|
case 61: /* Broadwell */
|
|
ret = bdw_uncore_pci_init();
|
|
break;
|
|
case 87: /* Knights Landing */
|
|
ret = knl_uncore_pci_init();
|
|
break;
|
|
case 94: /* SkyLake */
|
|
ret = skl_uncore_pci_init();
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = uncore_types_init(uncore_pci_uncores);
|
|
if (ret)
|
|
goto err;
|
|
|
|
uncore_pci_driver->probe = uncore_pci_probe;
|
|
uncore_pci_driver->remove = uncore_pci_remove;
|
|
|
|
ret = pci_register_driver(uncore_pci_driver);
|
|
if (ret)
|
|
goto err;
|
|
|
|
pcidrv_registered = true;
|
|
return 0;
|
|
|
|
err:
|
|
uncore_types_exit(uncore_pci_uncores);
|
|
uncore_pci_uncores = empty_uncore;
|
|
uncore_free_pcibus_map();
|
|
return ret;
|
|
}
|
|
|
|
static void __init uncore_pci_exit(void)
|
|
{
|
|
if (pcidrv_registered) {
|
|
pcidrv_registered = false;
|
|
pci_unregister_driver(uncore_pci_driver);
|
|
uncore_types_exit(uncore_pci_uncores);
|
|
uncore_free_pcibus_map();
|
|
}
|
|
}
|
|
|
|
/* CPU hot plug/unplug are serialized by cpu_add_remove_lock mutex */
|
|
static LIST_HEAD(boxes_to_free);
|
|
|
|
static void uncore_kfree_boxes(void)
|
|
{
|
|
struct intel_uncore_box *box;
|
|
|
|
while (!list_empty(&boxes_to_free)) {
|
|
box = list_entry(boxes_to_free.next,
|
|
struct intel_uncore_box, list);
|
|
list_del(&box->list);
|
|
kfree(box);
|
|
}
|
|
}
|
|
|
|
static void uncore_cpu_dying(int cpu)
|
|
{
|
|
struct intel_uncore_type *type;
|
|
struct intel_uncore_pmu *pmu;
|
|
struct intel_uncore_box *box;
|
|
int i, j;
|
|
|
|
for (i = 0; uncore_msr_uncores[i]; i++) {
|
|
type = uncore_msr_uncores[i];
|
|
for (j = 0; j < type->num_boxes; j++) {
|
|
pmu = &type->pmus[j];
|
|
box = *per_cpu_ptr(pmu->box, cpu);
|
|
*per_cpu_ptr(pmu->box, cpu) = NULL;
|
|
if (box && atomic_dec_and_test(&box->refcnt)) {
|
|
list_add(&box->list, &boxes_to_free);
|
|
uncore_box_exit(box);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int uncore_cpu_starting(int cpu)
|
|
{
|
|
struct intel_uncore_type *type;
|
|
struct intel_uncore_pmu *pmu;
|
|
struct intel_uncore_box *box, *exist;
|
|
int i, j, k, phys_id;
|
|
|
|
phys_id = topology_physical_package_id(cpu);
|
|
|
|
for (i = 0; uncore_msr_uncores[i]; i++) {
|
|
type = uncore_msr_uncores[i];
|
|
for (j = 0; j < type->num_boxes; j++) {
|
|
pmu = &type->pmus[j];
|
|
box = *per_cpu_ptr(pmu->box, cpu);
|
|
/* called by uncore_cpu_init? */
|
|
if (box && box->phys_id >= 0) {
|
|
uncore_box_init(box);
|
|
continue;
|
|
}
|
|
|
|
for_each_online_cpu(k) {
|
|
exist = *per_cpu_ptr(pmu->box, k);
|
|
if (exist && exist->phys_id == phys_id) {
|
|
atomic_inc(&exist->refcnt);
|
|
*per_cpu_ptr(pmu->box, cpu) = exist;
|
|
if (box) {
|
|
list_add(&box->list,
|
|
&boxes_to_free);
|
|
box = NULL;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (box) {
|
|
box->phys_id = phys_id;
|
|
uncore_box_init(box);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int uncore_cpu_prepare(int cpu, int phys_id)
|
|
{
|
|
struct intel_uncore_type *type;
|
|
struct intel_uncore_pmu *pmu;
|
|
struct intel_uncore_box *box;
|
|
int i, j;
|
|
|
|
for (i = 0; uncore_msr_uncores[i]; i++) {
|
|
type = uncore_msr_uncores[i];
|
|
for (j = 0; j < type->num_boxes; j++) {
|
|
pmu = &type->pmus[j];
|
|
if (pmu->func_id < 0)
|
|
pmu->func_id = j;
|
|
|
|
box = uncore_alloc_box(type, cpu_to_node(cpu));
|
|
if (!box)
|
|
return -ENOMEM;
|
|
|
|
box->pmu = pmu;
|
|
box->phys_id = phys_id;
|
|
*per_cpu_ptr(pmu->box, cpu) = box;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void uncore_change_type_ctx(struct intel_uncore_type *type, int old_cpu,
|
|
int new_cpu)
|
|
{
|
|
struct intel_uncore_pmu *pmu = type->pmus;
|
|
struct intel_uncore_box *box;
|
|
int i;
|
|
|
|
for (i = 0; i < type->num_boxes; i++, pmu++) {
|
|
if (old_cpu < 0)
|
|
box = uncore_pmu_to_box(pmu, new_cpu);
|
|
else
|
|
box = uncore_pmu_to_box(pmu, old_cpu);
|
|
if (!box)
|
|
continue;
|
|
|
|
if (old_cpu < 0) {
|
|
WARN_ON_ONCE(box->cpu != -1);
|
|
box->cpu = new_cpu;
|
|
continue;
|
|
}
|
|
|
|
WARN_ON_ONCE(box->cpu != old_cpu);
|
|
box->cpu = -1;
|
|
if (new_cpu < 0)
|
|
continue;
|
|
|
|
uncore_pmu_cancel_hrtimer(box);
|
|
perf_pmu_migrate_context(&pmu->pmu, old_cpu, new_cpu);
|
|
box->cpu = new_cpu;
|
|
}
|
|
}
|
|
|
|
static void uncore_change_context(struct intel_uncore_type **uncores,
|
|
int old_cpu, int new_cpu)
|
|
{
|
|
for (; *uncores; uncores++)
|
|
uncore_change_type_ctx(*uncores, old_cpu, new_cpu);
|
|
}
|
|
|
|
static void uncore_event_exit_cpu(int cpu)
|
|
{
|
|
int i, phys_id, target;
|
|
|
|
/* if exiting cpu is used for collecting uncore events */
|
|
if (!cpumask_test_and_clear_cpu(cpu, &uncore_cpu_mask))
|
|
return;
|
|
|
|
/* find a new cpu to collect uncore events */
|
|
phys_id = topology_physical_package_id(cpu);
|
|
target = -1;
|
|
for_each_online_cpu(i) {
|
|
if (i == cpu)
|
|
continue;
|
|
if (phys_id == topology_physical_package_id(i)) {
|
|
target = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* migrate uncore events to the new cpu */
|
|
if (target >= 0)
|
|
cpumask_set_cpu(target, &uncore_cpu_mask);
|
|
|
|
uncore_change_context(uncore_msr_uncores, cpu, target);
|
|
uncore_change_context(uncore_pci_uncores, cpu, target);
|
|
}
|
|
|
|
static void uncore_event_init_cpu(int cpu)
|
|
{
|
|
int i, phys_id;
|
|
|
|
phys_id = topology_physical_package_id(cpu);
|
|
for_each_cpu(i, &uncore_cpu_mask) {
|
|
if (phys_id == topology_physical_package_id(i))
|
|
return;
|
|
}
|
|
|
|
cpumask_set_cpu(cpu, &uncore_cpu_mask);
|
|
|
|
uncore_change_context(uncore_msr_uncores, -1, cpu);
|
|
uncore_change_context(uncore_pci_uncores, -1, cpu);
|
|
}
|
|
|
|
static int uncore_cpu_notifier(struct notifier_block *self,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
unsigned int cpu = (long)hcpu;
|
|
|
|
/* allocate/free data structure for uncore box */
|
|
switch (action & ~CPU_TASKS_FROZEN) {
|
|
case CPU_UP_PREPARE:
|
|
return notifier_from_errno(uncore_cpu_prepare(cpu, -1));
|
|
case CPU_STARTING:
|
|
uncore_cpu_starting(cpu);
|
|
break;
|
|
case CPU_UP_CANCELED:
|
|
case CPU_DYING:
|
|
uncore_cpu_dying(cpu);
|
|
break;
|
|
case CPU_ONLINE:
|
|
case CPU_DEAD:
|
|
uncore_kfree_boxes();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* select the cpu that collects uncore events */
|
|
switch (action & ~CPU_TASKS_FROZEN) {
|
|
case CPU_DOWN_FAILED:
|
|
case CPU_STARTING:
|
|
uncore_event_init_cpu(cpu);
|
|
break;
|
|
case CPU_DOWN_PREPARE:
|
|
uncore_event_exit_cpu(cpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block uncore_cpu_nb = {
|
|
.notifier_call = uncore_cpu_notifier,
|
|
/*
|
|
* to migrate uncore events, our notifier should be executed
|
|
* before perf core's notifier.
|
|
*/
|
|
.priority = CPU_PRI_PERF + 1,
|
|
};
|
|
|
|
static int __init type_pmu_register(struct intel_uncore_type *type)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; i < type->num_boxes; i++) {
|
|
ret = uncore_pmu_register(&type->pmus[i]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __init uncore_msr_pmus_register(void)
|
|
{
|
|
struct intel_uncore_type **types = uncore_msr_uncores;
|
|
int ret;
|
|
|
|
for (; *types; types++) {
|
|
ret = type_pmu_register(*types);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __init uncore_cpu_init(void)
|
|
{
|
|
int ret;
|
|
|
|
switch (boot_cpu_data.x86_model) {
|
|
case 26: /* Nehalem */
|
|
case 30:
|
|
case 37: /* Westmere */
|
|
case 44:
|
|
nhm_uncore_cpu_init();
|
|
break;
|
|
case 42: /* Sandy Bridge */
|
|
case 58: /* Ivy Bridge */
|
|
case 60: /* Haswell */
|
|
case 69: /* Haswell */
|
|
case 70: /* Haswell */
|
|
case 61: /* Broadwell */
|
|
case 71: /* Broadwell */
|
|
snb_uncore_cpu_init();
|
|
break;
|
|
case 45: /* Sandy Bridge-EP */
|
|
snbep_uncore_cpu_init();
|
|
break;
|
|
case 46: /* Nehalem-EX */
|
|
case 47: /* Westmere-EX aka. Xeon E7 */
|
|
nhmex_uncore_cpu_init();
|
|
break;
|
|
case 62: /* Ivy Bridge-EP */
|
|
ivbep_uncore_cpu_init();
|
|
break;
|
|
case 63: /* Haswell-EP */
|
|
hswep_uncore_cpu_init();
|
|
break;
|
|
case 79: /* BDX-EP */
|
|
case 86: /* BDX-DE */
|
|
bdx_uncore_cpu_init();
|
|
break;
|
|
case 87: /* Knights Landing */
|
|
knl_uncore_cpu_init();
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
ret = uncore_types_init(uncore_msr_uncores);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = uncore_msr_pmus_register();
|
|
if (ret)
|
|
goto err;
|
|
return 0;
|
|
err:
|
|
uncore_types_exit(uncore_msr_uncores);
|
|
uncore_msr_uncores = empty_uncore;
|
|
return ret;
|
|
}
|
|
|
|
static void __init uncore_cpu_setup(void *dummy)
|
|
{
|
|
uncore_cpu_starting(smp_processor_id());
|
|
}
|
|
|
|
static int __init uncore_cpumask_init(void)
|
|
{
|
|
int cpu, ret = 0;
|
|
|
|
cpu_notifier_register_begin();
|
|
|
|
for_each_online_cpu(cpu) {
|
|
int i, phys_id = topology_physical_package_id(cpu);
|
|
|
|
for_each_cpu(i, &uncore_cpu_mask) {
|
|
if (phys_id == topology_physical_package_id(i)) {
|
|
phys_id = -1;
|
|
break;
|
|
}
|
|
}
|
|
if (phys_id < 0)
|
|
continue;
|
|
|
|
ret = uncore_cpu_prepare(cpu, phys_id);
|
|
if (ret)
|
|
goto out;
|
|
uncore_event_init_cpu(cpu);
|
|
}
|
|
on_each_cpu(uncore_cpu_setup, NULL, 1);
|
|
|
|
__register_cpu_notifier(&uncore_cpu_nb);
|
|
|
|
out:
|
|
cpu_notifier_register_done();
|
|
return ret;
|
|
}
|
|
|
|
static int __init intel_uncore_init(void)
|
|
{
|
|
int ret;
|
|
|
|
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
|
|
return -ENODEV;
|
|
|
|
if (cpu_has_hypervisor)
|
|
return -ENODEV;
|
|
|
|
ret = uncore_pci_init();
|
|
if (ret)
|
|
return ret;
|
|
ret = uncore_cpu_init();
|
|
if (ret)
|
|
goto errpci;
|
|
ret = uncore_cpumask_init();
|
|
if (ret)
|
|
goto errcpu;
|
|
|
|
return 0;
|
|
|
|
errcpu:
|
|
uncore_types_exit(uncore_msr_uncores);
|
|
errpci:
|
|
uncore_pci_exit();
|
|
return ret;
|
|
}
|
|
device_initcall(intel_uncore_init);
|