We load the stage2 context of a guest for different operations, including running the guest and tlb maintenance on behalf of the guest. As of now only the vttbr is private to the guest, but this is about to change with IPA per VM. Add a helper to load the stage2 configuration for a VM, which could do the right thing with the future changes. Cc: Christoffer Dall <cdall@kernel.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
653 lines
17 KiB
C
653 lines
17 KiB
C
/*
|
|
* Copyright (C) 2015 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/arm-smccc.h>
|
|
#include <linux/types.h>
|
|
#include <linux/jump_label.h>
|
|
#include <uapi/linux/psci.h>
|
|
|
|
#include <kvm/arm_psci.h>
|
|
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_host.h>
|
|
#include <asm/kvm_hyp.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/thread_info.h>
|
|
|
|
/* Check whether the FP regs were dirtied while in the host-side run loop: */
|
|
static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
|
|
vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
|
|
KVM_ARM64_FP_HOST);
|
|
|
|
return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
|
|
}
|
|
|
|
/* Save the 32-bit only FPSIMD system register state */
|
|
static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu_el1_is_32bit(vcpu))
|
|
return;
|
|
|
|
vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
|
|
}
|
|
|
|
static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* We are about to set CPTR_EL2.TFP to trap all floating point
|
|
* register accesses to EL2, however, the ARM ARM clearly states that
|
|
* traps are only taken to EL2 if the operation would not otherwise
|
|
* trap to EL1. Therefore, always make sure that for 32-bit guests,
|
|
* we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
|
|
* If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
|
|
* it will cause an exception.
|
|
*/
|
|
if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
|
|
write_sysreg(1 << 30, fpexc32_el2);
|
|
isb();
|
|
}
|
|
}
|
|
|
|
static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
|
|
write_sysreg(1 << 15, hstr_el2);
|
|
|
|
/*
|
|
* Make sure we trap PMU access from EL0 to EL2. Also sanitize
|
|
* PMSELR_EL0 to make sure it never contains the cycle
|
|
* counter, which could make a PMXEVCNTR_EL0 access UNDEF at
|
|
* EL1 instead of being trapped to EL2.
|
|
*/
|
|
write_sysreg(0, pmselr_el0);
|
|
write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
|
|
write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
|
|
}
|
|
|
|
static void __hyp_text __deactivate_traps_common(void)
|
|
{
|
|
write_sysreg(0, hstr_el2);
|
|
write_sysreg(0, pmuserenr_el0);
|
|
}
|
|
|
|
static void activate_traps_vhe(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 val;
|
|
|
|
val = read_sysreg(cpacr_el1);
|
|
val |= CPACR_EL1_TTA;
|
|
val &= ~CPACR_EL1_ZEN;
|
|
if (!update_fp_enabled(vcpu)) {
|
|
val &= ~CPACR_EL1_FPEN;
|
|
__activate_traps_fpsimd32(vcpu);
|
|
}
|
|
|
|
write_sysreg(val, cpacr_el1);
|
|
|
|
write_sysreg(kvm_get_hyp_vector(), vbar_el1);
|
|
}
|
|
|
|
static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 val;
|
|
|
|
__activate_traps_common(vcpu);
|
|
|
|
val = CPTR_EL2_DEFAULT;
|
|
val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
|
|
if (!update_fp_enabled(vcpu)) {
|
|
val |= CPTR_EL2_TFP;
|
|
__activate_traps_fpsimd32(vcpu);
|
|
}
|
|
|
|
write_sysreg(val, cptr_el2);
|
|
}
|
|
|
|
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 hcr = vcpu->arch.hcr_el2;
|
|
|
|
write_sysreg(hcr, hcr_el2);
|
|
|
|
if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
|
|
write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
|
|
|
|
if (has_vhe())
|
|
activate_traps_vhe(vcpu);
|
|
else
|
|
__activate_traps_nvhe(vcpu);
|
|
}
|
|
|
|
static void deactivate_traps_vhe(void)
|
|
{
|
|
extern char vectors[]; /* kernel exception vectors */
|
|
write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
|
|
write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
|
|
write_sysreg(vectors, vbar_el1);
|
|
}
|
|
|
|
static void __hyp_text __deactivate_traps_nvhe(void)
|
|
{
|
|
u64 mdcr_el2 = read_sysreg(mdcr_el2);
|
|
|
|
__deactivate_traps_common();
|
|
|
|
mdcr_el2 &= MDCR_EL2_HPMN_MASK;
|
|
mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
|
|
|
|
write_sysreg(mdcr_el2, mdcr_el2);
|
|
write_sysreg(HCR_RW, hcr_el2);
|
|
write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
|
|
}
|
|
|
|
static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* If we pended a virtual abort, preserve it until it gets
|
|
* cleared. See D1.14.3 (Virtual Interrupts) for details, but
|
|
* the crucial bit is "On taking a vSError interrupt,
|
|
* HCR_EL2.VSE is cleared to 0."
|
|
*/
|
|
if (vcpu->arch.hcr_el2 & HCR_VSE)
|
|
vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
|
|
|
|
if (has_vhe())
|
|
deactivate_traps_vhe();
|
|
else
|
|
__deactivate_traps_nvhe();
|
|
}
|
|
|
|
void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
|
|
{
|
|
__activate_traps_common(vcpu);
|
|
}
|
|
|
|
void deactivate_traps_vhe_put(void)
|
|
{
|
|
u64 mdcr_el2 = read_sysreg(mdcr_el2);
|
|
|
|
mdcr_el2 &= MDCR_EL2_HPMN_MASK |
|
|
MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
|
|
MDCR_EL2_TPMS;
|
|
|
|
write_sysreg(mdcr_el2, mdcr_el2);
|
|
|
|
__deactivate_traps_common();
|
|
}
|
|
|
|
static void __hyp_text __activate_vm(struct kvm *kvm)
|
|
{
|
|
__load_guest_stage2(kvm);
|
|
}
|
|
|
|
static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
|
|
{
|
|
write_sysreg(0, vttbr_el2);
|
|
}
|
|
|
|
/* Save VGICv3 state on non-VHE systems */
|
|
static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
|
|
__vgic_v3_save_state(vcpu);
|
|
__vgic_v3_deactivate_traps(vcpu);
|
|
}
|
|
}
|
|
|
|
/* Restore VGICv3 state on non_VEH systems */
|
|
static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
|
|
__vgic_v3_activate_traps(vcpu);
|
|
__vgic_v3_restore_state(vcpu);
|
|
}
|
|
}
|
|
|
|
static bool __hyp_text __true_value(void)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static bool __hyp_text __false_value(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static hyp_alternate_select(__check_arm_834220,
|
|
__false_value, __true_value,
|
|
ARM64_WORKAROUND_834220);
|
|
|
|
static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
|
|
{
|
|
u64 par, tmp;
|
|
|
|
/*
|
|
* Resolve the IPA the hard way using the guest VA.
|
|
*
|
|
* Stage-1 translation already validated the memory access
|
|
* rights. As such, we can use the EL1 translation regime, and
|
|
* don't have to distinguish between EL0 and EL1 access.
|
|
*
|
|
* We do need to save/restore PAR_EL1 though, as we haven't
|
|
* saved the guest context yet, and we may return early...
|
|
*/
|
|
par = read_sysreg(par_el1);
|
|
asm volatile("at s1e1r, %0" : : "r" (far));
|
|
isb();
|
|
|
|
tmp = read_sysreg(par_el1);
|
|
write_sysreg(par, par_el1);
|
|
|
|
if (unlikely(tmp & 1))
|
|
return false; /* Translation failed, back to guest */
|
|
|
|
/* Convert PAR to HPFAR format */
|
|
*hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
|
|
return true;
|
|
}
|
|
|
|
static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
|
|
{
|
|
u8 ec;
|
|
u64 esr;
|
|
u64 hpfar, far;
|
|
|
|
esr = vcpu->arch.fault.esr_el2;
|
|
ec = ESR_ELx_EC(esr);
|
|
|
|
if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
|
|
return true;
|
|
|
|
far = read_sysreg_el2(far);
|
|
|
|
/*
|
|
* The HPFAR can be invalid if the stage 2 fault did not
|
|
* happen during a stage 1 page table walk (the ESR_EL2.S1PTW
|
|
* bit is clear) and one of the two following cases are true:
|
|
* 1. The fault was due to a permission fault
|
|
* 2. The processor carries errata 834220
|
|
*
|
|
* Therefore, for all non S1PTW faults where we either have a
|
|
* permission fault or the errata workaround is enabled, we
|
|
* resolve the IPA using the AT instruction.
|
|
*/
|
|
if (!(esr & ESR_ELx_S1PTW) &&
|
|
(__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
|
|
if (!__translate_far_to_hpfar(far, &hpfar))
|
|
return false;
|
|
} else {
|
|
hpfar = read_sysreg(hpfar_el2);
|
|
}
|
|
|
|
vcpu->arch.fault.far_el2 = far;
|
|
vcpu->arch.fault.hpfar_el2 = hpfar;
|
|
return true;
|
|
}
|
|
|
|
/* Skip an instruction which has been emulated. Returns true if
|
|
* execution can continue or false if we need to exit hyp mode because
|
|
* single-step was in effect.
|
|
*/
|
|
static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
|
|
{
|
|
*vcpu_pc(vcpu) = read_sysreg_el2(elr);
|
|
|
|
if (vcpu_mode_is_32bit(vcpu)) {
|
|
vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
|
|
kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
|
|
write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
|
|
} else {
|
|
*vcpu_pc(vcpu) += 4;
|
|
}
|
|
|
|
write_sysreg_el2(*vcpu_pc(vcpu), elr);
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
|
|
vcpu->arch.fault.esr_el2 =
|
|
(ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22;
|
|
return false;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;
|
|
|
|
if (has_vhe())
|
|
write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
|
|
cpacr_el1);
|
|
else
|
|
write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
|
|
cptr_el2);
|
|
|
|
isb();
|
|
|
|
if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
|
|
/*
|
|
* In the SVE case, VHE is assumed: it is enforced by
|
|
* Kconfig and kvm_arch_init().
|
|
*/
|
|
if (system_supports_sve() &&
|
|
(vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
|
|
struct thread_struct *thread = container_of(
|
|
host_fpsimd,
|
|
struct thread_struct, uw.fpsimd_state);
|
|
|
|
sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
|
|
} else {
|
|
__fpsimd_save_state(host_fpsimd);
|
|
}
|
|
|
|
vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
|
|
}
|
|
|
|
__fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
|
|
|
|
/* Skip restoring fpexc32 for AArch64 guests */
|
|
if (!(read_sysreg(hcr_el2) & HCR_RW))
|
|
write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
|
|
fpexc32_el2);
|
|
|
|
vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Return true when we were able to fixup the guest exit and should return to
|
|
* the guest, false when we should restore the host state and return to the
|
|
* main run loop.
|
|
*/
|
|
static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
|
|
vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
|
|
|
|
/*
|
|
* We're using the raw exception code in order to only process
|
|
* the trap if no SError is pending. We will come back to the
|
|
* same PC once the SError has been injected, and replay the
|
|
* trapping instruction.
|
|
*/
|
|
if (*exit_code != ARM_EXCEPTION_TRAP)
|
|
goto exit;
|
|
|
|
/*
|
|
* We trap the first access to the FP/SIMD to save the host context
|
|
* and restore the guest context lazily.
|
|
* If FP/SIMD is not implemented, handle the trap and inject an
|
|
* undefined instruction exception to the guest.
|
|
*/
|
|
if (system_supports_fpsimd() &&
|
|
kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD)
|
|
return __hyp_switch_fpsimd(vcpu);
|
|
|
|
if (!__populate_fault_info(vcpu))
|
|
return true;
|
|
|
|
if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
|
|
bool valid;
|
|
|
|
valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
|
|
kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
|
|
kvm_vcpu_dabt_isvalid(vcpu) &&
|
|
!kvm_vcpu_dabt_isextabt(vcpu) &&
|
|
!kvm_vcpu_dabt_iss1tw(vcpu);
|
|
|
|
if (valid) {
|
|
int ret = __vgic_v2_perform_cpuif_access(vcpu);
|
|
|
|
if (ret == 1 && __skip_instr(vcpu))
|
|
return true;
|
|
|
|
if (ret == -1) {
|
|
/* Promote an illegal access to an
|
|
* SError. If we would be returning
|
|
* due to single-step clear the SS
|
|
* bit so handle_exit knows what to
|
|
* do after dealing with the error.
|
|
*/
|
|
if (!__skip_instr(vcpu))
|
|
*vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
|
|
*exit_code = ARM_EXCEPTION_EL1_SERROR;
|
|
}
|
|
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
|
|
(kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
|
|
kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
|
|
int ret = __vgic_v3_perform_cpuif_access(vcpu);
|
|
|
|
if (ret == 1 && __skip_instr(vcpu))
|
|
return true;
|
|
}
|
|
|
|
exit:
|
|
/* Return to the host kernel and handle the exit */
|
|
return false;
|
|
}
|
|
|
|
static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!cpus_have_const_cap(ARM64_SSBD))
|
|
return false;
|
|
|
|
return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
|
|
}
|
|
|
|
static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
#ifdef CONFIG_ARM64_SSBD
|
|
/*
|
|
* The host runs with the workaround always present. If the
|
|
* guest wants it disabled, so be it...
|
|
*/
|
|
if (__needs_ssbd_off(vcpu) &&
|
|
__hyp_this_cpu_read(arm64_ssbd_callback_required))
|
|
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
|
|
#endif
|
|
}
|
|
|
|
static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
#ifdef CONFIG_ARM64_SSBD
|
|
/*
|
|
* If the guest has disabled the workaround, bring it back on.
|
|
*/
|
|
if (__needs_ssbd_off(vcpu) &&
|
|
__hyp_this_cpu_read(arm64_ssbd_callback_required))
|
|
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
|
|
#endif
|
|
}
|
|
|
|
/* Switch to the guest for VHE systems running in EL2 */
|
|
int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpu_context *host_ctxt;
|
|
struct kvm_cpu_context *guest_ctxt;
|
|
u64 exit_code;
|
|
|
|
host_ctxt = vcpu->arch.host_cpu_context;
|
|
host_ctxt->__hyp_running_vcpu = vcpu;
|
|
guest_ctxt = &vcpu->arch.ctxt;
|
|
|
|
sysreg_save_host_state_vhe(host_ctxt);
|
|
|
|
__activate_traps(vcpu);
|
|
__activate_vm(vcpu->kvm);
|
|
|
|
sysreg_restore_guest_state_vhe(guest_ctxt);
|
|
__debug_switch_to_guest(vcpu);
|
|
|
|
__set_guest_arch_workaround_state(vcpu);
|
|
|
|
do {
|
|
/* Jump in the fire! */
|
|
exit_code = __guest_enter(vcpu, host_ctxt);
|
|
|
|
/* And we're baaack! */
|
|
} while (fixup_guest_exit(vcpu, &exit_code));
|
|
|
|
__set_host_arch_workaround_state(vcpu);
|
|
|
|
sysreg_save_guest_state_vhe(guest_ctxt);
|
|
|
|
__deactivate_traps(vcpu);
|
|
|
|
sysreg_restore_host_state_vhe(host_ctxt);
|
|
|
|
if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
|
|
__fpsimd_save_fpexc32(vcpu);
|
|
|
|
__debug_switch_to_host(vcpu);
|
|
|
|
return exit_code;
|
|
}
|
|
|
|
/* Switch to the guest for legacy non-VHE systems */
|
|
int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpu_context *host_ctxt;
|
|
struct kvm_cpu_context *guest_ctxt;
|
|
u64 exit_code;
|
|
|
|
vcpu = kern_hyp_va(vcpu);
|
|
|
|
host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
|
|
host_ctxt->__hyp_running_vcpu = vcpu;
|
|
guest_ctxt = &vcpu->arch.ctxt;
|
|
|
|
__sysreg_save_state_nvhe(host_ctxt);
|
|
|
|
__activate_traps(vcpu);
|
|
__activate_vm(kern_hyp_va(vcpu->kvm));
|
|
|
|
__hyp_vgic_restore_state(vcpu);
|
|
__timer_enable_traps(vcpu);
|
|
|
|
/*
|
|
* We must restore the 32-bit state before the sysregs, thanks
|
|
* to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
|
|
*/
|
|
__sysreg32_restore_state(vcpu);
|
|
__sysreg_restore_state_nvhe(guest_ctxt);
|
|
__debug_switch_to_guest(vcpu);
|
|
|
|
__set_guest_arch_workaround_state(vcpu);
|
|
|
|
do {
|
|
/* Jump in the fire! */
|
|
exit_code = __guest_enter(vcpu, host_ctxt);
|
|
|
|
/* And we're baaack! */
|
|
} while (fixup_guest_exit(vcpu, &exit_code));
|
|
|
|
__set_host_arch_workaround_state(vcpu);
|
|
|
|
__sysreg_save_state_nvhe(guest_ctxt);
|
|
__sysreg32_save_state(vcpu);
|
|
__timer_disable_traps(vcpu);
|
|
__hyp_vgic_save_state(vcpu);
|
|
|
|
__deactivate_traps(vcpu);
|
|
__deactivate_vm(vcpu);
|
|
|
|
__sysreg_restore_state_nvhe(host_ctxt);
|
|
|
|
if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
|
|
__fpsimd_save_fpexc32(vcpu);
|
|
|
|
/*
|
|
* This must come after restoring the host sysregs, since a non-VHE
|
|
* system may enable SPE here and make use of the TTBRs.
|
|
*/
|
|
__debug_switch_to_host(vcpu);
|
|
|
|
return exit_code;
|
|
}
|
|
|
|
static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
|
|
|
|
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
|
|
struct kvm_cpu_context *__host_ctxt)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
unsigned long str_va;
|
|
|
|
vcpu = __host_ctxt->__hyp_running_vcpu;
|
|
|
|
if (read_sysreg(vttbr_el2)) {
|
|
__timer_disable_traps(vcpu);
|
|
__deactivate_traps(vcpu);
|
|
__deactivate_vm(vcpu);
|
|
__sysreg_restore_state_nvhe(__host_ctxt);
|
|
}
|
|
|
|
/*
|
|
* Force the panic string to be loaded from the literal pool,
|
|
* making sure it is a kernel address and not a PC-relative
|
|
* reference.
|
|
*/
|
|
asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
|
|
|
|
__hyp_do_panic(str_va,
|
|
spsr, elr,
|
|
read_sysreg(esr_el2), read_sysreg_el2(far),
|
|
read_sysreg(hpfar_el2), par, vcpu);
|
|
}
|
|
|
|
static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
|
|
struct kvm_cpu_context *host_ctxt)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
vcpu = host_ctxt->__hyp_running_vcpu;
|
|
|
|
__deactivate_traps(vcpu);
|
|
sysreg_restore_host_state_vhe(host_ctxt);
|
|
|
|
panic(__hyp_panic_string,
|
|
spsr, elr,
|
|
read_sysreg_el2(esr), read_sysreg_el2(far),
|
|
read_sysreg(hpfar_el2), par, vcpu);
|
|
}
|
|
|
|
void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
|
|
{
|
|
u64 spsr = read_sysreg_el2(spsr);
|
|
u64 elr = read_sysreg_el2(elr);
|
|
u64 par = read_sysreg(par_el1);
|
|
|
|
if (!has_vhe())
|
|
__hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
|
|
else
|
|
__hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
|
|
|
|
unreachable();
|
|
}
|