14329b825f
When building a list of filter events, it can sometimes be a challenge to fit all the events needed to adequately restrict the guest into the limited space available in the pmu event filter. This stems from the fact that the pmu event filter requires each event (i.e. event select + unit mask) be listed, when the intention might be to restrict the event select all together, regardless of it's unit mask. Instead of increasing the number of filter events in the pmu event filter, add a new encoding that is able to do a more generalized match on the unit mask. Introduce masked events as another encoding the pmu event filter understands. Masked events has the fields: mask, match, and exclude. When filtering based on these events, the mask is applied to the guest's unit mask to see if it matches the match value (i.e. umask & mask == match). The exclude bit can then be used to exclude events from that match. E.g. for a given event select, if it's easier to say which unit mask values shouldn't be filtered, a masked event can be set up to match all possible unit mask values, then another masked event can be set up to match the unit mask values that shouldn't be filtered. Userspace can query to see if this feature exists by looking for the capability, KVM_CAP_PMU_EVENT_MASKED_EVENTS. This feature is enabled by setting the flags field in the pmu event filter to KVM_PMU_EVENT_FLAG_MASKED_EVENTS. Events can be encoded by using KVM_PMU_ENCODE_MASKED_ENTRY(). It is an error to have a bit set outside the valid bits for a masked event, and calls to KVM_SET_PMU_EVENT_FILTER will return -EINVAL in such cases, including the high bits of the event select (35:32) if called on Intel. With these updates the filter matching code has been updated to match on a common event. Masked events were flexible enough to handle both event types, so they were used as the common event. This changes how guest events get filtered because regardless of the type of event used in the uAPI, they will be converted to masked events. Because of this there could be a slight performance hit because instead of matching the filter event with a lookup on event select + unit mask, it does a lookup on event select then walks the unit masks to find the match. This shouldn't be a big problem because I would expect the set of common event selects to be small, and if they aren't the set can likely be reduced by using masked events to generalize the unit mask. Using one type of event when filtering guest events allows for a common code path to be used. Signed-off-by: Aaron Lewis <aaronlewis@google.com> Link: https://lore.kernel.org/r/20221220161236.555143-5-aaronlewis@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
819 lines
23 KiB
C
819 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Kernel-based Virtual Machine -- Performance Monitoring Unit support
|
|
*
|
|
* Copyright 2015 Red Hat, Inc. and/or its affiliates.
|
|
*
|
|
* Authors:
|
|
* Avi Kivity <avi@redhat.com>
|
|
* Gleb Natapov <gleb@redhat.com>
|
|
* Wei Huang <wei@redhat.com>
|
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/bsearch.h>
|
|
#include <linux/sort.h>
|
|
#include <asm/perf_event.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include "x86.h"
|
|
#include "cpuid.h"
|
|
#include "lapic.h"
|
|
#include "pmu.h"
|
|
|
|
/* This is enough to filter the vast majority of currently defined events. */
|
|
#define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
|
|
|
|
struct x86_pmu_capability __read_mostly kvm_pmu_cap;
|
|
EXPORT_SYMBOL_GPL(kvm_pmu_cap);
|
|
|
|
static const struct x86_cpu_id vmx_icl_pebs_cpu[] = {
|
|
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
|
|
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
|
|
{}
|
|
};
|
|
|
|
/* NOTE:
|
|
* - Each perf counter is defined as "struct kvm_pmc";
|
|
* - There are two types of perf counters: general purpose (gp) and fixed.
|
|
* gp counters are stored in gp_counters[] and fixed counters are stored
|
|
* in fixed_counters[] respectively. Both of them are part of "struct
|
|
* kvm_pmu";
|
|
* - pmu.c understands the difference between gp counters and fixed counters.
|
|
* However AMD doesn't support fixed-counters;
|
|
* - There are three types of index to access perf counters (PMC):
|
|
* 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
|
|
* has MSR_K7_PERFCTRn and, for families 15H and later,
|
|
* MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
|
|
* aliased to MSR_K7_PERFCTRn.
|
|
* 2. MSR Index (named idx): This normally is used by RDPMC instruction.
|
|
* For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
|
|
* C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
|
|
* that it also supports fixed counters. idx can be used to as index to
|
|
* gp and fixed counters.
|
|
* 3. Global PMC Index (named pmc): pmc is an index specific to PMU
|
|
* code. Each pmc, stored in kvm_pmc.idx field, is unique across
|
|
* all perf counters (both gp and fixed). The mapping relationship
|
|
* between pmc and perf counters is as the following:
|
|
* * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
|
|
* [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
|
|
* * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
|
|
* and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
|
|
*/
|
|
|
|
static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
|
|
|
|
#define KVM_X86_PMU_OP(func) \
|
|
DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \
|
|
*(((struct kvm_pmu_ops *)0)->func));
|
|
#define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
|
|
#include <asm/kvm-x86-pmu-ops.h>
|
|
|
|
void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
|
|
{
|
|
memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
|
|
|
|
#define __KVM_X86_PMU_OP(func) \
|
|
static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
|
|
#define KVM_X86_PMU_OP(func) \
|
|
WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
|
|
#define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
|
|
#include <asm/kvm-x86-pmu-ops.h>
|
|
#undef __KVM_X86_PMU_OP
|
|
}
|
|
|
|
static inline bool pmc_is_enabled(struct kvm_pmc *pmc)
|
|
{
|
|
return static_call(kvm_x86_pmu_pmc_is_enabled)(pmc);
|
|
}
|
|
|
|
static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
|
|
{
|
|
struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
|
|
struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
|
|
|
|
kvm_pmu_deliver_pmi(vcpu);
|
|
}
|
|
|
|
static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
|
|
{
|
|
struct kvm_pmu *pmu = pmc_to_pmu(pmc);
|
|
bool skip_pmi = false;
|
|
|
|
if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
|
|
if (!in_pmi) {
|
|
/*
|
|
* TODO: KVM is currently _choosing_ to not generate records
|
|
* for emulated instructions, avoiding BUFFER_OVF PMI when
|
|
* there are no records. Strictly speaking, it should be done
|
|
* as well in the right context to improve sampling accuracy.
|
|
*/
|
|
skip_pmi = true;
|
|
} else {
|
|
/* Indicate PEBS overflow PMI to guest. */
|
|
skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
|
|
(unsigned long *)&pmu->global_status);
|
|
}
|
|
} else {
|
|
__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
|
|
}
|
|
|
|
if (!pmc->intr || skip_pmi)
|
|
return;
|
|
|
|
/*
|
|
* Inject PMI. If vcpu was in a guest mode during NMI PMI
|
|
* can be ejected on a guest mode re-entry. Otherwise we can't
|
|
* be sure that vcpu wasn't executing hlt instruction at the
|
|
* time of vmexit and is not going to re-enter guest mode until
|
|
* woken up. So we should wake it, but this is impossible from
|
|
* NMI context. Do it from irq work instead.
|
|
*/
|
|
if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu))
|
|
irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
|
|
else
|
|
kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
|
|
}
|
|
|
|
static void kvm_perf_overflow(struct perf_event *perf_event,
|
|
struct perf_sample_data *data,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct kvm_pmc *pmc = perf_event->overflow_handler_context;
|
|
|
|
/*
|
|
* Ignore overflow events for counters that are scheduled to be
|
|
* reprogrammed, e.g. if a PMI for the previous event races with KVM's
|
|
* handling of a related guest WRMSR.
|
|
*/
|
|
if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
|
|
return;
|
|
|
|
__kvm_perf_overflow(pmc, true);
|
|
|
|
kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
|
|
}
|
|
|
|
static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
|
|
bool exclude_user, bool exclude_kernel,
|
|
bool intr)
|
|
{
|
|
struct kvm_pmu *pmu = pmc_to_pmu(pmc);
|
|
struct perf_event *event;
|
|
struct perf_event_attr attr = {
|
|
.type = type,
|
|
.size = sizeof(attr),
|
|
.pinned = true,
|
|
.exclude_idle = true,
|
|
.exclude_host = 1,
|
|
.exclude_user = exclude_user,
|
|
.exclude_kernel = exclude_kernel,
|
|
.config = config,
|
|
};
|
|
bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
|
|
|
|
attr.sample_period = get_sample_period(pmc, pmc->counter);
|
|
|
|
if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
|
|
guest_cpuid_is_intel(pmc->vcpu)) {
|
|
/*
|
|
* HSW_IN_TX_CHECKPOINTED is not supported with nonzero
|
|
* period. Just clear the sample period so at least
|
|
* allocating the counter doesn't fail.
|
|
*/
|
|
attr.sample_period = 0;
|
|
}
|
|
if (pebs) {
|
|
/*
|
|
* The non-zero precision level of guest event makes the ordinary
|
|
* guest event becomes a guest PEBS event and triggers the host
|
|
* PEBS PMI handler to determine whether the PEBS overflow PMI
|
|
* comes from the host counters or the guest.
|
|
*
|
|
* For most PEBS hardware events, the difference in the software
|
|
* precision levels of guest and host PEBS events will not affect
|
|
* the accuracy of the PEBS profiling result, because the "event IP"
|
|
* in the PEBS record is calibrated on the guest side.
|
|
*
|
|
* On Icelake everything is fine. Other hardware (GLC+, TNT+) that
|
|
* could possibly care here is unsupported and needs changes.
|
|
*/
|
|
attr.precise_ip = 1;
|
|
if (x86_match_cpu(vmx_icl_pebs_cpu) && pmc->idx == 32)
|
|
attr.precise_ip = 3;
|
|
}
|
|
|
|
event = perf_event_create_kernel_counter(&attr, -1, current,
|
|
kvm_perf_overflow, pmc);
|
|
if (IS_ERR(event)) {
|
|
pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
|
|
PTR_ERR(event), pmc->idx);
|
|
return PTR_ERR(event);
|
|
}
|
|
|
|
pmc->perf_event = event;
|
|
pmc_to_pmu(pmc)->event_count++;
|
|
pmc->is_paused = false;
|
|
pmc->intr = intr || pebs;
|
|
return 0;
|
|
}
|
|
|
|
static void pmc_pause_counter(struct kvm_pmc *pmc)
|
|
{
|
|
u64 counter = pmc->counter;
|
|
|
|
if (!pmc->perf_event || pmc->is_paused)
|
|
return;
|
|
|
|
/* update counter, reset event value to avoid redundant accumulation */
|
|
counter += perf_event_pause(pmc->perf_event, true);
|
|
pmc->counter = counter & pmc_bitmask(pmc);
|
|
pmc->is_paused = true;
|
|
}
|
|
|
|
static bool pmc_resume_counter(struct kvm_pmc *pmc)
|
|
{
|
|
if (!pmc->perf_event)
|
|
return false;
|
|
|
|
/* recalibrate sample period and check if it's accepted by perf core */
|
|
if (is_sampling_event(pmc->perf_event) &&
|
|
perf_event_period(pmc->perf_event,
|
|
get_sample_period(pmc, pmc->counter)))
|
|
return false;
|
|
|
|
if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
|
|
(!!pmc->perf_event->attr.precise_ip))
|
|
return false;
|
|
|
|
/* reuse perf_event to serve as pmc_reprogram_counter() does*/
|
|
perf_event_enable(pmc->perf_event);
|
|
pmc->is_paused = false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int filter_cmp(const void *pa, const void *pb, u64 mask)
|
|
{
|
|
u64 a = *(u64 *)pa & mask;
|
|
u64 b = *(u64 *)pb & mask;
|
|
|
|
return (a > b) - (a < b);
|
|
}
|
|
|
|
|
|
static int filter_sort_cmp(const void *pa, const void *pb)
|
|
{
|
|
return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
|
|
KVM_PMU_MASKED_ENTRY_EXCLUDE));
|
|
}
|
|
|
|
/*
|
|
* For the event filter, searching is done on the 'includes' list and
|
|
* 'excludes' list separately rather than on the 'events' list (which
|
|
* has both). As a result the exclude bit can be ignored.
|
|
*/
|
|
static int filter_event_cmp(const void *pa, const void *pb)
|
|
{
|
|
return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
|
|
}
|
|
|
|
static int find_filter_index(u64 *events, u64 nevents, u64 key)
|
|
{
|
|
u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
|
|
filter_event_cmp);
|
|
|
|
if (!fe)
|
|
return -1;
|
|
|
|
return fe - events;
|
|
}
|
|
|
|
static bool is_filter_entry_match(u64 filter_event, u64 umask)
|
|
{
|
|
u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
|
|
u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
|
|
|
|
BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
|
|
(KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
|
|
ARCH_PERFMON_EVENTSEL_UMASK);
|
|
|
|
return (umask & mask) == match;
|
|
}
|
|
|
|
static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
|
|
{
|
|
u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
|
|
u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
|
|
int i, index;
|
|
|
|
index = find_filter_index(events, nevents, event_select);
|
|
if (index < 0)
|
|
return false;
|
|
|
|
/*
|
|
* Entries are sorted by the event select. Walk the list in both
|
|
* directions to process all entries with the targeted event select.
|
|
*/
|
|
for (i = index; i < nevents; i++) {
|
|
if (filter_event_cmp(&events[i], &event_select))
|
|
break;
|
|
|
|
if (is_filter_entry_match(events[i], umask))
|
|
return true;
|
|
}
|
|
|
|
for (i = index - 1; i >= 0; i--) {
|
|
if (filter_event_cmp(&events[i], &event_select))
|
|
break;
|
|
|
|
if (is_filter_entry_match(events[i], umask))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
|
|
u64 eventsel)
|
|
{
|
|
if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
|
|
!filter_contains_match(f->excludes, f->nr_excludes, eventsel))
|
|
return f->action == KVM_PMU_EVENT_ALLOW;
|
|
|
|
return f->action == KVM_PMU_EVENT_DENY;
|
|
}
|
|
|
|
static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
|
|
int idx)
|
|
{
|
|
int fixed_idx = idx - INTEL_PMC_IDX_FIXED;
|
|
|
|
if (filter->action == KVM_PMU_EVENT_DENY &&
|
|
test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
|
|
return false;
|
|
if (filter->action == KVM_PMU_EVENT_ALLOW &&
|
|
!test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool check_pmu_event_filter(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_x86_pmu_event_filter *filter;
|
|
struct kvm *kvm = pmc->vcpu->kvm;
|
|
|
|
if (!static_call(kvm_x86_pmu_hw_event_available)(pmc))
|
|
return false;
|
|
|
|
filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
|
|
if (!filter)
|
|
return true;
|
|
|
|
if (pmc_is_gp(pmc))
|
|
return is_gp_event_allowed(filter, pmc->eventsel);
|
|
|
|
return is_fixed_event_allowed(filter, pmc->idx);
|
|
}
|
|
|
|
static void reprogram_counter(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_pmu *pmu = pmc_to_pmu(pmc);
|
|
u64 eventsel = pmc->eventsel;
|
|
u64 new_config = eventsel;
|
|
u8 fixed_ctr_ctrl;
|
|
|
|
pmc_pause_counter(pmc);
|
|
|
|
if (!pmc_speculative_in_use(pmc) || !pmc_is_enabled(pmc))
|
|
goto reprogram_complete;
|
|
|
|
if (!check_pmu_event_filter(pmc))
|
|
goto reprogram_complete;
|
|
|
|
if (pmc->counter < pmc->prev_counter)
|
|
__kvm_perf_overflow(pmc, false);
|
|
|
|
if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
|
|
printk_once("kvm pmu: pin control bit is ignored\n");
|
|
|
|
if (pmc_is_fixed(pmc)) {
|
|
fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
|
|
pmc->idx - INTEL_PMC_IDX_FIXED);
|
|
if (fixed_ctr_ctrl & 0x1)
|
|
eventsel |= ARCH_PERFMON_EVENTSEL_OS;
|
|
if (fixed_ctr_ctrl & 0x2)
|
|
eventsel |= ARCH_PERFMON_EVENTSEL_USR;
|
|
if (fixed_ctr_ctrl & 0x8)
|
|
eventsel |= ARCH_PERFMON_EVENTSEL_INT;
|
|
new_config = (u64)fixed_ctr_ctrl;
|
|
}
|
|
|
|
if (pmc->current_config == new_config && pmc_resume_counter(pmc))
|
|
goto reprogram_complete;
|
|
|
|
pmc_release_perf_event(pmc);
|
|
|
|
pmc->current_config = new_config;
|
|
|
|
/*
|
|
* If reprogramming fails, e.g. due to contention, leave the counter's
|
|
* regprogram bit set, i.e. opportunistically try again on the next PMU
|
|
* refresh. Don't make a new request as doing so can stall the guest
|
|
* if reprogramming repeatedly fails.
|
|
*/
|
|
if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
|
|
(eventsel & pmu->raw_event_mask),
|
|
!(eventsel & ARCH_PERFMON_EVENTSEL_USR),
|
|
!(eventsel & ARCH_PERFMON_EVENTSEL_OS),
|
|
eventsel & ARCH_PERFMON_EVENTSEL_INT))
|
|
return;
|
|
|
|
reprogram_complete:
|
|
clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
|
|
pmc->prev_counter = 0;
|
|
}
|
|
|
|
void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
int bit;
|
|
|
|
for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
|
|
struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
|
|
|
|
if (unlikely(!pmc)) {
|
|
clear_bit(bit, pmu->reprogram_pmi);
|
|
continue;
|
|
}
|
|
|
|
reprogram_counter(pmc);
|
|
}
|
|
|
|
/*
|
|
* Unused perf_events are only released if the corresponding MSRs
|
|
* weren't accessed during the last vCPU time slice. kvm_arch_sched_in
|
|
* triggers KVM_REQ_PMU if cleanup is needed.
|
|
*/
|
|
if (unlikely(pmu->need_cleanup))
|
|
kvm_pmu_cleanup(vcpu);
|
|
}
|
|
|
|
/* check if idx is a valid index to access PMU */
|
|
bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
|
|
{
|
|
return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
|
|
}
|
|
|
|
bool is_vmware_backdoor_pmc(u32 pmc_idx)
|
|
{
|
|
switch (pmc_idx) {
|
|
case VMWARE_BACKDOOR_PMC_HOST_TSC:
|
|
case VMWARE_BACKDOOR_PMC_REAL_TIME:
|
|
case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
|
|
{
|
|
u64 ctr_val;
|
|
|
|
switch (idx) {
|
|
case VMWARE_BACKDOOR_PMC_HOST_TSC:
|
|
ctr_val = rdtsc();
|
|
break;
|
|
case VMWARE_BACKDOOR_PMC_REAL_TIME:
|
|
ctr_val = ktime_get_boottime_ns();
|
|
break;
|
|
case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
|
|
ctr_val = ktime_get_boottime_ns() +
|
|
vcpu->kvm->arch.kvmclock_offset;
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
|
|
*data = ctr_val;
|
|
return 0;
|
|
}
|
|
|
|
int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
|
|
{
|
|
bool fast_mode = idx & (1u << 31);
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
struct kvm_pmc *pmc;
|
|
u64 mask = fast_mode ? ~0u : ~0ull;
|
|
|
|
if (!pmu->version)
|
|
return 1;
|
|
|
|
if (is_vmware_backdoor_pmc(idx))
|
|
return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
|
|
|
|
pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
|
|
if (!pmc)
|
|
return 1;
|
|
|
|
if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) &&
|
|
(static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
|
|
(kvm_read_cr0(vcpu) & X86_CR0_PE))
|
|
return 1;
|
|
|
|
*data = pmc_read_counter(pmc) & mask;
|
|
return 0;
|
|
}
|
|
|
|
void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (lapic_in_kernel(vcpu)) {
|
|
static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
|
|
kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
|
|
}
|
|
}
|
|
|
|
bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
|
|
{
|
|
return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
|
|
static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
|
|
}
|
|
|
|
static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
|
|
{
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
|
|
|
|
if (pmc)
|
|
__set_bit(pmc->idx, pmu->pmc_in_use);
|
|
}
|
|
|
|
int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
|
|
}
|
|
|
|
int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
|
|
return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
|
|
}
|
|
|
|
/* refresh PMU settings. This function generally is called when underlying
|
|
* settings are changed (such as changes of PMU CPUID by guest VMs), which
|
|
* should rarely happen.
|
|
*/
|
|
void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
|
|
{
|
|
static_call(kvm_x86_pmu_refresh)(vcpu);
|
|
}
|
|
|
|
void kvm_pmu_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
|
|
irq_work_sync(&pmu->irq_work);
|
|
static_call(kvm_x86_pmu_reset)(vcpu);
|
|
}
|
|
|
|
void kvm_pmu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
|
|
memset(pmu, 0, sizeof(*pmu));
|
|
static_call(kvm_x86_pmu_init)(vcpu);
|
|
init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
|
|
pmu->event_count = 0;
|
|
pmu->need_cleanup = false;
|
|
kvm_pmu_refresh(vcpu);
|
|
}
|
|
|
|
/* Release perf_events for vPMCs that have been unused for a full time slice. */
|
|
void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
struct kvm_pmc *pmc = NULL;
|
|
DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
|
|
int i;
|
|
|
|
pmu->need_cleanup = false;
|
|
|
|
bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
|
|
pmu->pmc_in_use, X86_PMC_IDX_MAX);
|
|
|
|
for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
|
|
pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
|
|
|
|
if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
|
|
pmc_stop_counter(pmc);
|
|
}
|
|
|
|
static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
|
|
|
|
bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
|
|
}
|
|
|
|
void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_pmu_reset(vcpu);
|
|
}
|
|
|
|
static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
|
|
{
|
|
pmc->prev_counter = pmc->counter;
|
|
pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
|
|
kvm_pmu_request_counter_reprogam(pmc);
|
|
}
|
|
|
|
static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
|
|
unsigned int perf_hw_id)
|
|
{
|
|
return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
|
|
AMD64_RAW_EVENT_MASK_NB);
|
|
}
|
|
|
|
static inline bool cpl_is_matched(struct kvm_pmc *pmc)
|
|
{
|
|
bool select_os, select_user;
|
|
u64 config;
|
|
|
|
if (pmc_is_gp(pmc)) {
|
|
config = pmc->eventsel;
|
|
select_os = config & ARCH_PERFMON_EVENTSEL_OS;
|
|
select_user = config & ARCH_PERFMON_EVENTSEL_USR;
|
|
} else {
|
|
config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
|
|
pmc->idx - INTEL_PMC_IDX_FIXED);
|
|
select_os = config & 0x1;
|
|
select_user = config & 0x2;
|
|
}
|
|
|
|
return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
|
|
}
|
|
|
|
void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
|
|
{
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
struct kvm_pmc *pmc;
|
|
int i;
|
|
|
|
for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
|
|
pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
|
|
|
|
if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc))
|
|
continue;
|
|
|
|
/* Ignore checks for edge detect, pin control, invert and CMASK bits */
|
|
if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
|
|
kvm_pmu_incr_counter(pmc);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
|
|
|
|
static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
|
|
{
|
|
u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
|
|
KVM_PMU_MASKED_ENTRY_UMASK_MASK |
|
|
KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
|
|
KVM_PMU_MASKED_ENTRY_EXCLUDE;
|
|
int i;
|
|
|
|
for (i = 0; i < filter->nevents; i++) {
|
|
if (filter->events[i] & ~mask)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0, j = 0; i < filter->nevents; i++) {
|
|
/*
|
|
* Skip events that are impossible to match against a guest
|
|
* event. When filtering, only the event select + unit mask
|
|
* of the guest event is used. To maintain backwards
|
|
* compatibility, impossible filters can't be rejected :-(
|
|
*/
|
|
if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
|
|
ARCH_PERFMON_EVENTSEL_UMASK))
|
|
continue;
|
|
/*
|
|
* Convert userspace events to a common in-kernel event so
|
|
* only one code path is needed to support both events. For
|
|
* the in-kernel events use masked events because they are
|
|
* flexible enough to handle both cases. To convert to masked
|
|
* events all that's needed is to add an "all ones" umask_mask,
|
|
* (unmasked filter events don't support EXCLUDE).
|
|
*/
|
|
filter->events[j++] = filter->events[i] |
|
|
(0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
|
|
}
|
|
|
|
filter->nevents = j;
|
|
}
|
|
|
|
static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
|
|
{
|
|
int i;
|
|
|
|
if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
|
|
convert_to_masked_filter(filter);
|
|
else if (!is_masked_filter_valid(filter))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Sort entries by event select and includes vs. excludes so that all
|
|
* entries for a given event select can be processed efficiently during
|
|
* filtering. The EXCLUDE flag uses a more significant bit than the
|
|
* event select, and so the sorted list is also effectively split into
|
|
* includes and excludes sub-lists.
|
|
*/
|
|
sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
|
|
filter_sort_cmp, NULL);
|
|
|
|
i = filter->nevents;
|
|
/* Find the first EXCLUDE event (only supported for masked events). */
|
|
if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
|
|
for (i = 0; i < filter->nevents; i++) {
|
|
if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
|
|
break;
|
|
}
|
|
}
|
|
|
|
filter->nr_includes = i;
|
|
filter->nr_excludes = filter->nevents - filter->nr_includes;
|
|
filter->includes = filter->events;
|
|
filter->excludes = filter->events + filter->nr_includes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
|
|
{
|
|
struct kvm_pmu_event_filter __user *user_filter = argp;
|
|
struct kvm_x86_pmu_event_filter *filter;
|
|
struct kvm_pmu_event_filter tmp;
|
|
struct kvm_vcpu *vcpu;
|
|
unsigned long i;
|
|
size_t size;
|
|
int r;
|
|
|
|
if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
|
|
return -EFAULT;
|
|
|
|
if (tmp.action != KVM_PMU_EVENT_ALLOW &&
|
|
tmp.action != KVM_PMU_EVENT_DENY)
|
|
return -EINVAL;
|
|
|
|
if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
|
|
return -EINVAL;
|
|
|
|
if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
|
|
return -E2BIG;
|
|
|
|
size = struct_size(filter, events, tmp.nevents);
|
|
filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
|
|
if (!filter)
|
|
return -ENOMEM;
|
|
|
|
filter->action = tmp.action;
|
|
filter->nevents = tmp.nevents;
|
|
filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
|
|
filter->flags = tmp.flags;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(filter->events, user_filter->events,
|
|
sizeof(filter->events[0]) * filter->nevents))
|
|
goto cleanup;
|
|
|
|
r = prepare_filter_lists(filter);
|
|
if (r)
|
|
goto cleanup;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
|
|
mutex_is_locked(&kvm->lock));
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
|
|
BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
|
|
sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
|
|
|
|
kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
r = 0;
|
|
cleanup:
|
|
kfree(filter);
|
|
return r;
|
|
}
|