15385dfe7e
Pull x86/smap support from Ingo Molnar: "This adds support for the SMAP (Supervisor Mode Access Prevention) CPU feature on Intel CPUs: a hardware feature that prevents unintended user-space data access from kernel privileged code. It's turned on automatically when possible. This, in combination with SMEP, makes it even harder to exploit kernel bugs such as NULL pointer dereferences." Fix up trivial conflict in arch/x86/kernel/entry_64.S due to newly added includes right next to each other. * 'x86-smap-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86, smep, smap: Make the switching functions one-way x86, suspend: On wakeup always initialize cr4 and EFER x86-32: Start out eflags and cr4 clean x86, smap: Do not abuse the [f][x]rstor_checking() functions for user space x86-32, smap: Add STAC/CLAC instructions to 32-bit kernel entry x86, smap: Reduce the SMAP overhead for signal handling x86, smap: A page fault due to SMAP is an oops x86, smap: Turn on Supervisor Mode Access Prevention x86, smap: Add STAC and CLAC instructions to control user space access x86, uaccess: Merge prototypes for clear_user/__clear_user x86, smap: Add a header file with macros for STAC/CLAC x86, alternative: Add header guards to <asm/alternative-asm.h> x86, alternative: Use .pushsection/.popsection x86, smap: Add CR4 bit for SMAP x86-32, mm: The WP test should be done on a kernel page
1239 lines
29 KiB
C
1239 lines
29 KiB
C
/*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
|
|
* Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
|
|
*/
|
|
#include <linux/magic.h> /* STACK_END_MAGIC */
|
|
#include <linux/sched.h> /* test_thread_flag(), ... */
|
|
#include <linux/kdebug.h> /* oops_begin/end, ... */
|
|
#include <linux/module.h> /* search_exception_table */
|
|
#include <linux/bootmem.h> /* max_low_pfn */
|
|
#include <linux/kprobes.h> /* __kprobes, ... */
|
|
#include <linux/mmiotrace.h> /* kmmio_handler, ... */
|
|
#include <linux/perf_event.h> /* perf_sw_event */
|
|
#include <linux/hugetlb.h> /* hstate_index_to_shift */
|
|
#include <linux/prefetch.h> /* prefetchw */
|
|
|
|
#include <asm/traps.h> /* dotraplinkage, ... */
|
|
#include <asm/pgalloc.h> /* pgd_*(), ... */
|
|
#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
|
|
#include <asm/fixmap.h> /* VSYSCALL_START */
|
|
#include <asm/rcu.h> /* exception_enter(), ... */
|
|
|
|
/*
|
|
* Page fault error code bits:
|
|
*
|
|
* bit 0 == 0: no page found 1: protection fault
|
|
* bit 1 == 0: read access 1: write access
|
|
* bit 2 == 0: kernel-mode access 1: user-mode access
|
|
* bit 3 == 1: use of reserved bit detected
|
|
* bit 4 == 1: fault was an instruction fetch
|
|
*/
|
|
enum x86_pf_error_code {
|
|
|
|
PF_PROT = 1 << 0,
|
|
PF_WRITE = 1 << 1,
|
|
PF_USER = 1 << 2,
|
|
PF_RSVD = 1 << 3,
|
|
PF_INSTR = 1 << 4,
|
|
};
|
|
|
|
/*
|
|
* Returns 0 if mmiotrace is disabled, or if the fault is not
|
|
* handled by mmiotrace:
|
|
*/
|
|
static inline int __kprobes
|
|
kmmio_fault(struct pt_regs *regs, unsigned long addr)
|
|
{
|
|
if (unlikely(is_kmmio_active()))
|
|
if (kmmio_handler(regs, addr) == 1)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static inline int __kprobes notify_page_fault(struct pt_regs *regs)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* kprobe_running() needs smp_processor_id() */
|
|
if (kprobes_built_in() && !user_mode_vm(regs)) {
|
|
preempt_disable();
|
|
if (kprobe_running() && kprobe_fault_handler(regs, 14))
|
|
ret = 1;
|
|
preempt_enable();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Prefetch quirks:
|
|
*
|
|
* 32-bit mode:
|
|
*
|
|
* Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
|
|
* Check that here and ignore it.
|
|
*
|
|
* 64-bit mode:
|
|
*
|
|
* Sometimes the CPU reports invalid exceptions on prefetch.
|
|
* Check that here and ignore it.
|
|
*
|
|
* Opcode checker based on code by Richard Brunner.
|
|
*/
|
|
static inline int
|
|
check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
|
|
unsigned char opcode, int *prefetch)
|
|
{
|
|
unsigned char instr_hi = opcode & 0xf0;
|
|
unsigned char instr_lo = opcode & 0x0f;
|
|
|
|
switch (instr_hi) {
|
|
case 0x20:
|
|
case 0x30:
|
|
/*
|
|
* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
|
|
* In X86_64 long mode, the CPU will signal invalid
|
|
* opcode if some of these prefixes are present so
|
|
* X86_64 will never get here anyway
|
|
*/
|
|
return ((instr_lo & 7) == 0x6);
|
|
#ifdef CONFIG_X86_64
|
|
case 0x40:
|
|
/*
|
|
* In AMD64 long mode 0x40..0x4F are valid REX prefixes
|
|
* Need to figure out under what instruction mode the
|
|
* instruction was issued. Could check the LDT for lm,
|
|
* but for now it's good enough to assume that long
|
|
* mode only uses well known segments or kernel.
|
|
*/
|
|
return (!user_mode(regs) || user_64bit_mode(regs));
|
|
#endif
|
|
case 0x60:
|
|
/* 0x64 thru 0x67 are valid prefixes in all modes. */
|
|
return (instr_lo & 0xC) == 0x4;
|
|
case 0xF0:
|
|
/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
|
|
return !instr_lo || (instr_lo>>1) == 1;
|
|
case 0x00:
|
|
/* Prefetch instruction is 0x0F0D or 0x0F18 */
|
|
if (probe_kernel_address(instr, opcode))
|
|
return 0;
|
|
|
|
*prefetch = (instr_lo == 0xF) &&
|
|
(opcode == 0x0D || opcode == 0x18);
|
|
return 0;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
|
|
{
|
|
unsigned char *max_instr;
|
|
unsigned char *instr;
|
|
int prefetch = 0;
|
|
|
|
/*
|
|
* If it was a exec (instruction fetch) fault on NX page, then
|
|
* do not ignore the fault:
|
|
*/
|
|
if (error_code & PF_INSTR)
|
|
return 0;
|
|
|
|
instr = (void *)convert_ip_to_linear(current, regs);
|
|
max_instr = instr + 15;
|
|
|
|
if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
|
|
return 0;
|
|
|
|
while (instr < max_instr) {
|
|
unsigned char opcode;
|
|
|
|
if (probe_kernel_address(instr, opcode))
|
|
break;
|
|
|
|
instr++;
|
|
|
|
if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
|
|
break;
|
|
}
|
|
return prefetch;
|
|
}
|
|
|
|
static void
|
|
force_sig_info_fault(int si_signo, int si_code, unsigned long address,
|
|
struct task_struct *tsk, int fault)
|
|
{
|
|
unsigned lsb = 0;
|
|
siginfo_t info;
|
|
|
|
info.si_signo = si_signo;
|
|
info.si_errno = 0;
|
|
info.si_code = si_code;
|
|
info.si_addr = (void __user *)address;
|
|
if (fault & VM_FAULT_HWPOISON_LARGE)
|
|
lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
|
|
if (fault & VM_FAULT_HWPOISON)
|
|
lsb = PAGE_SHIFT;
|
|
info.si_addr_lsb = lsb;
|
|
|
|
force_sig_info(si_signo, &info, tsk);
|
|
}
|
|
|
|
DEFINE_SPINLOCK(pgd_lock);
|
|
LIST_HEAD(pgd_list);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
|
|
{
|
|
unsigned index = pgd_index(address);
|
|
pgd_t *pgd_k;
|
|
pud_t *pud, *pud_k;
|
|
pmd_t *pmd, *pmd_k;
|
|
|
|
pgd += index;
|
|
pgd_k = init_mm.pgd + index;
|
|
|
|
if (!pgd_present(*pgd_k))
|
|
return NULL;
|
|
|
|
/*
|
|
* set_pgd(pgd, *pgd_k); here would be useless on PAE
|
|
* and redundant with the set_pmd() on non-PAE. As would
|
|
* set_pud.
|
|
*/
|
|
pud = pud_offset(pgd, address);
|
|
pud_k = pud_offset(pgd_k, address);
|
|
if (!pud_present(*pud_k))
|
|
return NULL;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
pmd_k = pmd_offset(pud_k, address);
|
|
if (!pmd_present(*pmd_k))
|
|
return NULL;
|
|
|
|
if (!pmd_present(*pmd))
|
|
set_pmd(pmd, *pmd_k);
|
|
else
|
|
BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
|
|
|
|
return pmd_k;
|
|
}
|
|
|
|
void vmalloc_sync_all(void)
|
|
{
|
|
unsigned long address;
|
|
|
|
if (SHARED_KERNEL_PMD)
|
|
return;
|
|
|
|
for (address = VMALLOC_START & PMD_MASK;
|
|
address >= TASK_SIZE && address < FIXADDR_TOP;
|
|
address += PMD_SIZE) {
|
|
struct page *page;
|
|
|
|
spin_lock(&pgd_lock);
|
|
list_for_each_entry(page, &pgd_list, lru) {
|
|
spinlock_t *pgt_lock;
|
|
pmd_t *ret;
|
|
|
|
/* the pgt_lock only for Xen */
|
|
pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
|
|
|
|
spin_lock(pgt_lock);
|
|
ret = vmalloc_sync_one(page_address(page), address);
|
|
spin_unlock(pgt_lock);
|
|
|
|
if (!ret)
|
|
break;
|
|
}
|
|
spin_unlock(&pgd_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 32-bit:
|
|
*
|
|
* Handle a fault on the vmalloc or module mapping area
|
|
*/
|
|
static noinline __kprobes int vmalloc_fault(unsigned long address)
|
|
{
|
|
unsigned long pgd_paddr;
|
|
pmd_t *pmd_k;
|
|
pte_t *pte_k;
|
|
|
|
/* Make sure we are in vmalloc area: */
|
|
if (!(address >= VMALLOC_START && address < VMALLOC_END))
|
|
return -1;
|
|
|
|
WARN_ON_ONCE(in_nmi());
|
|
|
|
/*
|
|
* Synchronize this task's top level page-table
|
|
* with the 'reference' page table.
|
|
*
|
|
* Do _not_ use "current" here. We might be inside
|
|
* an interrupt in the middle of a task switch..
|
|
*/
|
|
pgd_paddr = read_cr3();
|
|
pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
|
|
if (!pmd_k)
|
|
return -1;
|
|
|
|
pte_k = pte_offset_kernel(pmd_k, address);
|
|
if (!pte_present(*pte_k))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Did it hit the DOS screen memory VA from vm86 mode?
|
|
*/
|
|
static inline void
|
|
check_v8086_mode(struct pt_regs *regs, unsigned long address,
|
|
struct task_struct *tsk)
|
|
{
|
|
unsigned long bit;
|
|
|
|
if (!v8086_mode(regs))
|
|
return;
|
|
|
|
bit = (address - 0xA0000) >> PAGE_SHIFT;
|
|
if (bit < 32)
|
|
tsk->thread.screen_bitmap |= 1 << bit;
|
|
}
|
|
|
|
static bool low_pfn(unsigned long pfn)
|
|
{
|
|
return pfn < max_low_pfn;
|
|
}
|
|
|
|
static void dump_pagetable(unsigned long address)
|
|
{
|
|
pgd_t *base = __va(read_cr3());
|
|
pgd_t *pgd = &base[pgd_index(address)];
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
printk("*pdpt = %016Lx ", pgd_val(*pgd));
|
|
if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
|
|
goto out;
|
|
#endif
|
|
pmd = pmd_offset(pud_offset(pgd, address), address);
|
|
printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
|
|
|
|
/*
|
|
* We must not directly access the pte in the highpte
|
|
* case if the page table is located in highmem.
|
|
* And let's rather not kmap-atomic the pte, just in case
|
|
* it's allocated already:
|
|
*/
|
|
if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
|
|
goto out;
|
|
|
|
pte = pte_offset_kernel(pmd, address);
|
|
printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
|
|
out:
|
|
printk("\n");
|
|
}
|
|
|
|
#else /* CONFIG_X86_64: */
|
|
|
|
void vmalloc_sync_all(void)
|
|
{
|
|
sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
|
|
}
|
|
|
|
/*
|
|
* 64-bit:
|
|
*
|
|
* Handle a fault on the vmalloc area
|
|
*
|
|
* This assumes no large pages in there.
|
|
*/
|
|
static noinline __kprobes int vmalloc_fault(unsigned long address)
|
|
{
|
|
pgd_t *pgd, *pgd_ref;
|
|
pud_t *pud, *pud_ref;
|
|
pmd_t *pmd, *pmd_ref;
|
|
pte_t *pte, *pte_ref;
|
|
|
|
/* Make sure we are in vmalloc area: */
|
|
if (!(address >= VMALLOC_START && address < VMALLOC_END))
|
|
return -1;
|
|
|
|
WARN_ON_ONCE(in_nmi());
|
|
|
|
/*
|
|
* Copy kernel mappings over when needed. This can also
|
|
* happen within a race in page table update. In the later
|
|
* case just flush:
|
|
*/
|
|
pgd = pgd_offset(current->active_mm, address);
|
|
pgd_ref = pgd_offset_k(address);
|
|
if (pgd_none(*pgd_ref))
|
|
return -1;
|
|
|
|
if (pgd_none(*pgd))
|
|
set_pgd(pgd, *pgd_ref);
|
|
else
|
|
BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
|
|
|
|
/*
|
|
* Below here mismatches are bugs because these lower tables
|
|
* are shared:
|
|
*/
|
|
|
|
pud = pud_offset(pgd, address);
|
|
pud_ref = pud_offset(pgd_ref, address);
|
|
if (pud_none(*pud_ref))
|
|
return -1;
|
|
|
|
if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
|
|
BUG();
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
pmd_ref = pmd_offset(pud_ref, address);
|
|
if (pmd_none(*pmd_ref))
|
|
return -1;
|
|
|
|
if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
|
|
BUG();
|
|
|
|
pte_ref = pte_offset_kernel(pmd_ref, address);
|
|
if (!pte_present(*pte_ref))
|
|
return -1;
|
|
|
|
pte = pte_offset_kernel(pmd, address);
|
|
|
|
/*
|
|
* Don't use pte_page here, because the mappings can point
|
|
* outside mem_map, and the NUMA hash lookup cannot handle
|
|
* that:
|
|
*/
|
|
if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
|
|
BUG();
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_SUP_AMD
|
|
static const char errata93_warning[] =
|
|
KERN_ERR
|
|
"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
|
|
"******* Working around it, but it may cause SEGVs or burn power.\n"
|
|
"******* Please consider a BIOS update.\n"
|
|
"******* Disabling USB legacy in the BIOS may also help.\n";
|
|
#endif
|
|
|
|
/*
|
|
* No vm86 mode in 64-bit mode:
|
|
*/
|
|
static inline void
|
|
check_v8086_mode(struct pt_regs *regs, unsigned long address,
|
|
struct task_struct *tsk)
|
|
{
|
|
}
|
|
|
|
static int bad_address(void *p)
|
|
{
|
|
unsigned long dummy;
|
|
|
|
return probe_kernel_address((unsigned long *)p, dummy);
|
|
}
|
|
|
|
static void dump_pagetable(unsigned long address)
|
|
{
|
|
pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
|
|
pgd_t *pgd = base + pgd_index(address);
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
if (bad_address(pgd))
|
|
goto bad;
|
|
|
|
printk("PGD %lx ", pgd_val(*pgd));
|
|
|
|
if (!pgd_present(*pgd))
|
|
goto out;
|
|
|
|
pud = pud_offset(pgd, address);
|
|
if (bad_address(pud))
|
|
goto bad;
|
|
|
|
printk("PUD %lx ", pud_val(*pud));
|
|
if (!pud_present(*pud) || pud_large(*pud))
|
|
goto out;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
if (bad_address(pmd))
|
|
goto bad;
|
|
|
|
printk("PMD %lx ", pmd_val(*pmd));
|
|
if (!pmd_present(*pmd) || pmd_large(*pmd))
|
|
goto out;
|
|
|
|
pte = pte_offset_kernel(pmd, address);
|
|
if (bad_address(pte))
|
|
goto bad;
|
|
|
|
printk("PTE %lx", pte_val(*pte));
|
|
out:
|
|
printk("\n");
|
|
return;
|
|
bad:
|
|
printk("BAD\n");
|
|
}
|
|
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
/*
|
|
* Workaround for K8 erratum #93 & buggy BIOS.
|
|
*
|
|
* BIOS SMM functions are required to use a specific workaround
|
|
* to avoid corruption of the 64bit RIP register on C stepping K8.
|
|
*
|
|
* A lot of BIOS that didn't get tested properly miss this.
|
|
*
|
|
* The OS sees this as a page fault with the upper 32bits of RIP cleared.
|
|
* Try to work around it here.
|
|
*
|
|
* Note we only handle faults in kernel here.
|
|
* Does nothing on 32-bit.
|
|
*/
|
|
static int is_errata93(struct pt_regs *regs, unsigned long address)
|
|
{
|
|
#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
|
|
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
|
|
|| boot_cpu_data.x86 != 0xf)
|
|
return 0;
|
|
|
|
if (address != regs->ip)
|
|
return 0;
|
|
|
|
if ((address >> 32) != 0)
|
|
return 0;
|
|
|
|
address |= 0xffffffffUL << 32;
|
|
if ((address >= (u64)_stext && address <= (u64)_etext) ||
|
|
(address >= MODULES_VADDR && address <= MODULES_END)) {
|
|
printk_once(errata93_warning);
|
|
regs->ip = address;
|
|
return 1;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Work around K8 erratum #100 K8 in compat mode occasionally jumps
|
|
* to illegal addresses >4GB.
|
|
*
|
|
* We catch this in the page fault handler because these addresses
|
|
* are not reachable. Just detect this case and return. Any code
|
|
* segment in LDT is compatibility mode.
|
|
*/
|
|
static int is_errata100(struct pt_regs *regs, unsigned long address)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
|
|
return 1;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
|
|
{
|
|
#ifdef CONFIG_X86_F00F_BUG
|
|
unsigned long nr;
|
|
|
|
/*
|
|
* Pentium F0 0F C7 C8 bug workaround:
|
|
*/
|
|
if (boot_cpu_data.f00f_bug) {
|
|
nr = (address - idt_descr.address) >> 3;
|
|
|
|
if (nr == 6) {
|
|
do_invalid_op(regs, 0);
|
|
return 1;
|
|
}
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static const char nx_warning[] = KERN_CRIT
|
|
"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
|
|
|
|
static void
|
|
show_fault_oops(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address)
|
|
{
|
|
if (!oops_may_print())
|
|
return;
|
|
|
|
if (error_code & PF_INSTR) {
|
|
unsigned int level;
|
|
|
|
pte_t *pte = lookup_address(address, &level);
|
|
|
|
if (pte && pte_present(*pte) && !pte_exec(*pte))
|
|
printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
|
|
}
|
|
|
|
printk(KERN_ALERT "BUG: unable to handle kernel ");
|
|
if (address < PAGE_SIZE)
|
|
printk(KERN_CONT "NULL pointer dereference");
|
|
else
|
|
printk(KERN_CONT "paging request");
|
|
|
|
printk(KERN_CONT " at %p\n", (void *) address);
|
|
printk(KERN_ALERT "IP:");
|
|
printk_address(regs->ip, 1);
|
|
|
|
dump_pagetable(address);
|
|
}
|
|
|
|
static noinline void
|
|
pgtable_bad(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address)
|
|
{
|
|
struct task_struct *tsk;
|
|
unsigned long flags;
|
|
int sig;
|
|
|
|
flags = oops_begin();
|
|
tsk = current;
|
|
sig = SIGKILL;
|
|
|
|
printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
|
|
tsk->comm, address);
|
|
dump_pagetable(address);
|
|
|
|
tsk->thread.cr2 = address;
|
|
tsk->thread.trap_nr = X86_TRAP_PF;
|
|
tsk->thread.error_code = error_code;
|
|
|
|
if (__die("Bad pagetable", regs, error_code))
|
|
sig = 0;
|
|
|
|
oops_end(flags, regs, sig);
|
|
}
|
|
|
|
static noinline void
|
|
no_context(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address, int signal, int si_code)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
unsigned long *stackend;
|
|
unsigned long flags;
|
|
int sig;
|
|
|
|
/* Are we prepared to handle this kernel fault? */
|
|
if (fixup_exception(regs)) {
|
|
if (current_thread_info()->sig_on_uaccess_error && signal) {
|
|
tsk->thread.trap_nr = X86_TRAP_PF;
|
|
tsk->thread.error_code = error_code | PF_USER;
|
|
tsk->thread.cr2 = address;
|
|
|
|
/* XXX: hwpoison faults will set the wrong code. */
|
|
force_sig_info_fault(signal, si_code, address, tsk, 0);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* 32-bit:
|
|
*
|
|
* Valid to do another page fault here, because if this fault
|
|
* had been triggered by is_prefetch fixup_exception would have
|
|
* handled it.
|
|
*
|
|
* 64-bit:
|
|
*
|
|
* Hall of shame of CPU/BIOS bugs.
|
|
*/
|
|
if (is_prefetch(regs, error_code, address))
|
|
return;
|
|
|
|
if (is_errata93(regs, address))
|
|
return;
|
|
|
|
/*
|
|
* Oops. The kernel tried to access some bad page. We'll have to
|
|
* terminate things with extreme prejudice:
|
|
*/
|
|
flags = oops_begin();
|
|
|
|
show_fault_oops(regs, error_code, address);
|
|
|
|
stackend = end_of_stack(tsk);
|
|
if (tsk != &init_task && *stackend != STACK_END_MAGIC)
|
|
printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
|
|
|
|
tsk->thread.cr2 = address;
|
|
tsk->thread.trap_nr = X86_TRAP_PF;
|
|
tsk->thread.error_code = error_code;
|
|
|
|
sig = SIGKILL;
|
|
if (__die("Oops", regs, error_code))
|
|
sig = 0;
|
|
|
|
/* Executive summary in case the body of the oops scrolled away */
|
|
printk(KERN_DEFAULT "CR2: %016lx\n", address);
|
|
|
|
oops_end(flags, regs, sig);
|
|
}
|
|
|
|
/*
|
|
* Print out info about fatal segfaults, if the show_unhandled_signals
|
|
* sysctl is set:
|
|
*/
|
|
static inline void
|
|
show_signal_msg(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address, struct task_struct *tsk)
|
|
{
|
|
if (!unhandled_signal(tsk, SIGSEGV))
|
|
return;
|
|
|
|
if (!printk_ratelimit())
|
|
return;
|
|
|
|
printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
|
|
task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
|
|
tsk->comm, task_pid_nr(tsk), address,
|
|
(void *)regs->ip, (void *)regs->sp, error_code);
|
|
|
|
print_vma_addr(KERN_CONT " in ", regs->ip);
|
|
|
|
printk(KERN_CONT "\n");
|
|
}
|
|
|
|
static void
|
|
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address, int si_code)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
|
|
/* User mode accesses just cause a SIGSEGV */
|
|
if (error_code & PF_USER) {
|
|
/*
|
|
* It's possible to have interrupts off here:
|
|
*/
|
|
local_irq_enable();
|
|
|
|
/*
|
|
* Valid to do another page fault here because this one came
|
|
* from user space:
|
|
*/
|
|
if (is_prefetch(regs, error_code, address))
|
|
return;
|
|
|
|
if (is_errata100(regs, address))
|
|
return;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Instruction fetch faults in the vsyscall page might need
|
|
* emulation.
|
|
*/
|
|
if (unlikely((error_code & PF_INSTR) &&
|
|
((address & ~0xfff) == VSYSCALL_START))) {
|
|
if (emulate_vsyscall(regs, address))
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (unlikely(show_unhandled_signals))
|
|
show_signal_msg(regs, error_code, address, tsk);
|
|
|
|
/* Kernel addresses are always protection faults: */
|
|
tsk->thread.cr2 = address;
|
|
tsk->thread.error_code = error_code | (address >= TASK_SIZE);
|
|
tsk->thread.trap_nr = X86_TRAP_PF;
|
|
|
|
force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
|
|
|
|
return;
|
|
}
|
|
|
|
if (is_f00f_bug(regs, address))
|
|
return;
|
|
|
|
no_context(regs, error_code, address, SIGSEGV, si_code);
|
|
}
|
|
|
|
static noinline void
|
|
bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address)
|
|
{
|
|
__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
|
|
}
|
|
|
|
static void
|
|
__bad_area(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address, int si_code)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
/*
|
|
* Something tried to access memory that isn't in our memory map..
|
|
* Fix it, but check if it's kernel or user first..
|
|
*/
|
|
up_read(&mm->mmap_sem);
|
|
|
|
__bad_area_nosemaphore(regs, error_code, address, si_code);
|
|
}
|
|
|
|
static noinline void
|
|
bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
|
|
{
|
|
__bad_area(regs, error_code, address, SEGV_MAPERR);
|
|
}
|
|
|
|
static noinline void
|
|
bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address)
|
|
{
|
|
__bad_area(regs, error_code, address, SEGV_ACCERR);
|
|
}
|
|
|
|
/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
|
|
static void
|
|
out_of_memory(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address)
|
|
{
|
|
/*
|
|
* We ran out of memory, call the OOM killer, and return the userspace
|
|
* (which will retry the fault, or kill us if we got oom-killed):
|
|
*/
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
pagefault_out_of_memory();
|
|
}
|
|
|
|
static void
|
|
do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
|
|
unsigned int fault)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
struct mm_struct *mm = tsk->mm;
|
|
int code = BUS_ADRERR;
|
|
|
|
up_read(&mm->mmap_sem);
|
|
|
|
/* Kernel mode? Handle exceptions or die: */
|
|
if (!(error_code & PF_USER)) {
|
|
no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
|
|
return;
|
|
}
|
|
|
|
/* User-space => ok to do another page fault: */
|
|
if (is_prefetch(regs, error_code, address))
|
|
return;
|
|
|
|
tsk->thread.cr2 = address;
|
|
tsk->thread.error_code = error_code;
|
|
tsk->thread.trap_nr = X86_TRAP_PF;
|
|
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
|
|
printk(KERN_ERR
|
|
"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
|
|
tsk->comm, tsk->pid, address);
|
|
code = BUS_MCEERR_AR;
|
|
}
|
|
#endif
|
|
force_sig_info_fault(SIGBUS, code, address, tsk, fault);
|
|
}
|
|
|
|
static noinline int
|
|
mm_fault_error(struct pt_regs *regs, unsigned long error_code,
|
|
unsigned long address, unsigned int fault)
|
|
{
|
|
/*
|
|
* Pagefault was interrupted by SIGKILL. We have no reason to
|
|
* continue pagefault.
|
|
*/
|
|
if (fatal_signal_pending(current)) {
|
|
if (!(fault & VM_FAULT_RETRY))
|
|
up_read(¤t->mm->mmap_sem);
|
|
if (!(error_code & PF_USER))
|
|
no_context(regs, error_code, address, 0, 0);
|
|
return 1;
|
|
}
|
|
if (!(fault & VM_FAULT_ERROR))
|
|
return 0;
|
|
|
|
if (fault & VM_FAULT_OOM) {
|
|
/* Kernel mode? Handle exceptions or die: */
|
|
if (!(error_code & PF_USER)) {
|
|
up_read(¤t->mm->mmap_sem);
|
|
no_context(regs, error_code, address,
|
|
SIGSEGV, SEGV_MAPERR);
|
|
return 1;
|
|
}
|
|
|
|
out_of_memory(regs, error_code, address);
|
|
} else {
|
|
if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
|
|
VM_FAULT_HWPOISON_LARGE))
|
|
do_sigbus(regs, error_code, address, fault);
|
|
else
|
|
BUG();
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int spurious_fault_check(unsigned long error_code, pte_t *pte)
|
|
{
|
|
if ((error_code & PF_WRITE) && !pte_write(*pte))
|
|
return 0;
|
|
|
|
if ((error_code & PF_INSTR) && !pte_exec(*pte))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Handle a spurious fault caused by a stale TLB entry.
|
|
*
|
|
* This allows us to lazily refresh the TLB when increasing the
|
|
* permissions of a kernel page (RO -> RW or NX -> X). Doing it
|
|
* eagerly is very expensive since that implies doing a full
|
|
* cross-processor TLB flush, even if no stale TLB entries exist
|
|
* on other processors.
|
|
*
|
|
* There are no security implications to leaving a stale TLB when
|
|
* increasing the permissions on a page.
|
|
*/
|
|
static noinline __kprobes int
|
|
spurious_fault(unsigned long error_code, unsigned long address)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
int ret;
|
|
|
|
/* Reserved-bit violation or user access to kernel space? */
|
|
if (error_code & (PF_USER | PF_RSVD))
|
|
return 0;
|
|
|
|
pgd = init_mm.pgd + pgd_index(address);
|
|
if (!pgd_present(*pgd))
|
|
return 0;
|
|
|
|
pud = pud_offset(pgd, address);
|
|
if (!pud_present(*pud))
|
|
return 0;
|
|
|
|
if (pud_large(*pud))
|
|
return spurious_fault_check(error_code, (pte_t *) pud);
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
if (!pmd_present(*pmd))
|
|
return 0;
|
|
|
|
if (pmd_large(*pmd))
|
|
return spurious_fault_check(error_code, (pte_t *) pmd);
|
|
|
|
/*
|
|
* Note: don't use pte_present() here, since it returns true
|
|
* if the _PAGE_PROTNONE bit is set. However, this aliases the
|
|
* _PAGE_GLOBAL bit, which for kernel pages give false positives
|
|
* when CONFIG_DEBUG_PAGEALLOC is used.
|
|
*/
|
|
pte = pte_offset_kernel(pmd, address);
|
|
if (!(pte_flags(*pte) & _PAGE_PRESENT))
|
|
return 0;
|
|
|
|
ret = spurious_fault_check(error_code, pte);
|
|
if (!ret)
|
|
return 0;
|
|
|
|
/*
|
|
* Make sure we have permissions in PMD.
|
|
* If not, then there's a bug in the page tables:
|
|
*/
|
|
ret = spurious_fault_check(error_code, (pte_t *) pmd);
|
|
WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
int show_unhandled_signals = 1;
|
|
|
|
static inline int
|
|
access_error(unsigned long error_code, struct vm_area_struct *vma)
|
|
{
|
|
if (error_code & PF_WRITE) {
|
|
/* write, present and write, not present: */
|
|
if (unlikely(!(vma->vm_flags & VM_WRITE)))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* read, present: */
|
|
if (unlikely(error_code & PF_PROT))
|
|
return 1;
|
|
|
|
/* read, not present: */
|
|
if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fault_in_kernel_space(unsigned long address)
|
|
{
|
|
return address >= TASK_SIZE_MAX;
|
|
}
|
|
|
|
static inline bool smap_violation(int error_code, struct pt_regs *regs)
|
|
{
|
|
if (error_code & PF_USER)
|
|
return false;
|
|
|
|
if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* This routine handles page faults. It determines the address,
|
|
* and the problem, and then passes it off to one of the appropriate
|
|
* routines.
|
|
*/
|
|
static void __kprobes
|
|
__do_page_fault(struct pt_regs *regs, unsigned long error_code)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
struct task_struct *tsk;
|
|
unsigned long address;
|
|
struct mm_struct *mm;
|
|
int fault;
|
|
int write = error_code & PF_WRITE;
|
|
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
|
|
(write ? FAULT_FLAG_WRITE : 0);
|
|
|
|
tsk = current;
|
|
mm = tsk->mm;
|
|
|
|
/* Get the faulting address: */
|
|
address = read_cr2();
|
|
|
|
/*
|
|
* Detect and handle instructions that would cause a page fault for
|
|
* both a tracked kernel page and a userspace page.
|
|
*/
|
|
if (kmemcheck_active(regs))
|
|
kmemcheck_hide(regs);
|
|
prefetchw(&mm->mmap_sem);
|
|
|
|
if (unlikely(kmmio_fault(regs, address)))
|
|
return;
|
|
|
|
/*
|
|
* We fault-in kernel-space virtual memory on-demand. The
|
|
* 'reference' page table is init_mm.pgd.
|
|
*
|
|
* NOTE! We MUST NOT take any locks for this case. We may
|
|
* be in an interrupt or a critical region, and should
|
|
* only copy the information from the master page table,
|
|
* nothing more.
|
|
*
|
|
* This verifies that the fault happens in kernel space
|
|
* (error_code & 4) == 0, and that the fault was not a
|
|
* protection error (error_code & 9) == 0.
|
|
*/
|
|
if (unlikely(fault_in_kernel_space(address))) {
|
|
if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
|
|
if (vmalloc_fault(address) >= 0)
|
|
return;
|
|
|
|
if (kmemcheck_fault(regs, address, error_code))
|
|
return;
|
|
}
|
|
|
|
/* Can handle a stale RO->RW TLB: */
|
|
if (spurious_fault(error_code, address))
|
|
return;
|
|
|
|
/* kprobes don't want to hook the spurious faults: */
|
|
if (notify_page_fault(regs))
|
|
return;
|
|
/*
|
|
* Don't take the mm semaphore here. If we fixup a prefetch
|
|
* fault we could otherwise deadlock:
|
|
*/
|
|
bad_area_nosemaphore(regs, error_code, address);
|
|
|
|
return;
|
|
}
|
|
|
|
/* kprobes don't want to hook the spurious faults: */
|
|
if (unlikely(notify_page_fault(regs)))
|
|
return;
|
|
/*
|
|
* It's safe to allow irq's after cr2 has been saved and the
|
|
* vmalloc fault has been handled.
|
|
*
|
|
* User-mode registers count as a user access even for any
|
|
* potential system fault or CPU buglet:
|
|
*/
|
|
if (user_mode_vm(regs)) {
|
|
local_irq_enable();
|
|
error_code |= PF_USER;
|
|
} else {
|
|
if (regs->flags & X86_EFLAGS_IF)
|
|
local_irq_enable();
|
|
}
|
|
|
|
if (unlikely(error_code & PF_RSVD))
|
|
pgtable_bad(regs, error_code, address);
|
|
|
|
if (static_cpu_has(X86_FEATURE_SMAP)) {
|
|
if (unlikely(smap_violation(error_code, regs))) {
|
|
bad_area_nosemaphore(regs, error_code, address);
|
|
return;
|
|
}
|
|
}
|
|
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
|
|
|
|
/*
|
|
* If we're in an interrupt, have no user context or are running
|
|
* in an atomic region then we must not take the fault:
|
|
*/
|
|
if (unlikely(in_atomic() || !mm)) {
|
|
bad_area_nosemaphore(regs, error_code, address);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* When running in the kernel we expect faults to occur only to
|
|
* addresses in user space. All other faults represent errors in
|
|
* the kernel and should generate an OOPS. Unfortunately, in the
|
|
* case of an erroneous fault occurring in a code path which already
|
|
* holds mmap_sem we will deadlock attempting to validate the fault
|
|
* against the address space. Luckily the kernel only validly
|
|
* references user space from well defined areas of code, which are
|
|
* listed in the exceptions table.
|
|
*
|
|
* As the vast majority of faults will be valid we will only perform
|
|
* the source reference check when there is a possibility of a
|
|
* deadlock. Attempt to lock the address space, if we cannot we then
|
|
* validate the source. If this is invalid we can skip the address
|
|
* space check, thus avoiding the deadlock:
|
|
*/
|
|
if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
|
|
if ((error_code & PF_USER) == 0 &&
|
|
!search_exception_tables(regs->ip)) {
|
|
bad_area_nosemaphore(regs, error_code, address);
|
|
return;
|
|
}
|
|
retry:
|
|
down_read(&mm->mmap_sem);
|
|
} else {
|
|
/*
|
|
* The above down_read_trylock() might have succeeded in
|
|
* which case we'll have missed the might_sleep() from
|
|
* down_read():
|
|
*/
|
|
might_sleep();
|
|
}
|
|
|
|
vma = find_vma(mm, address);
|
|
if (unlikely(!vma)) {
|
|
bad_area(regs, error_code, address);
|
|
return;
|
|
}
|
|
if (likely(vma->vm_start <= address))
|
|
goto good_area;
|
|
if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
|
|
bad_area(regs, error_code, address);
|
|
return;
|
|
}
|
|
if (error_code & PF_USER) {
|
|
/*
|
|
* Accessing the stack below %sp is always a bug.
|
|
* The large cushion allows instructions like enter
|
|
* and pusha to work. ("enter $65535, $31" pushes
|
|
* 32 pointers and then decrements %sp by 65535.)
|
|
*/
|
|
if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
|
|
bad_area(regs, error_code, address);
|
|
return;
|
|
}
|
|
}
|
|
if (unlikely(expand_stack(vma, address))) {
|
|
bad_area(regs, error_code, address);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Ok, we have a good vm_area for this memory access, so
|
|
* we can handle it..
|
|
*/
|
|
good_area:
|
|
if (unlikely(access_error(error_code, vma))) {
|
|
bad_area_access_error(regs, error_code, address);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If for any reason at all we couldn't handle the fault,
|
|
* make sure we exit gracefully rather than endlessly redo
|
|
* the fault:
|
|
*/
|
|
fault = handle_mm_fault(mm, vma, address, flags);
|
|
|
|
if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
|
|
if (mm_fault_error(regs, error_code, address, fault))
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Major/minor page fault accounting is only done on the
|
|
* initial attempt. If we go through a retry, it is extremely
|
|
* likely that the page will be found in page cache at that point.
|
|
*/
|
|
if (flags & FAULT_FLAG_ALLOW_RETRY) {
|
|
if (fault & VM_FAULT_MAJOR) {
|
|
tsk->maj_flt++;
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
|
|
regs, address);
|
|
} else {
|
|
tsk->min_flt++;
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
|
|
regs, address);
|
|
}
|
|
if (fault & VM_FAULT_RETRY) {
|
|
/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
|
|
* of starvation. */
|
|
flags &= ~FAULT_FLAG_ALLOW_RETRY;
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
check_v8086_mode(regs, address, tsk);
|
|
|
|
up_read(&mm->mmap_sem);
|
|
}
|
|
|
|
dotraplinkage void __kprobes
|
|
do_page_fault(struct pt_regs *regs, unsigned long error_code)
|
|
{
|
|
exception_enter(regs);
|
|
__do_page_fault(regs, error_code);
|
|
exception_exit(regs);
|
|
}
|