linux/drivers/gpu/drm/amd/powerplay/renoir_ppt.c
Evan Quan ce0d0ec339 drm/amd/powerplay: unified VRAM address for driver table interaction with SMU V2
By this, we can avoid to pass in the VRAM address on every table
transferring. That puts extra unnecessary traffics on SMU on
some cases(e.g. polling the amdgpu_pm_info sysfs interface).

V2: document what the driver table is for and how it works

Signed-off-by: Evan Quan <evan.quan@amd.com>
Acked-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-01-07 12:01:32 -05:00

932 lines
28 KiB
C

/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "smu_internal.h"
#include "soc15_common.h"
#include "smu_v12_0_ppsmc.h"
#include "smu12_driver_if.h"
#include "smu_v12_0.h"
#include "renoir_ppt.h"
#define CLK_MAP(clk, index) \
[SMU_##clk] = {1, (index)}
#define MSG_MAP(msg, index) \
[SMU_MSG_##msg] = {1, (index)}
#define TAB_MAP_VALID(tab) \
[SMU_TABLE_##tab] = {1, TABLE_##tab}
#define TAB_MAP_INVALID(tab) \
[SMU_TABLE_##tab] = {0, TABLE_##tab}
static struct smu_12_0_cmn2aisc_mapping renoir_message_map[SMU_MSG_MAX_COUNT] = {
MSG_MAP(TestMessage, PPSMC_MSG_TestMessage),
MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion),
MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion),
MSG_MAP(PowerUpGfx, PPSMC_MSG_PowerUpGfx),
MSG_MAP(AllowGfxOff, PPSMC_MSG_EnableGfxOff),
MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisableGfxOff),
MSG_MAP(PowerDownIspByTile, PPSMC_MSG_PowerDownIspByTile),
MSG_MAP(PowerUpIspByTile, PPSMC_MSG_PowerUpIspByTile),
MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn),
MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn),
MSG_MAP(PowerDownSdma, PPSMC_MSG_PowerDownSdma),
MSG_MAP(PowerUpSdma, PPSMC_MSG_PowerUpSdma),
MSG_MAP(SetHardMinIspclkByFreq, PPSMC_MSG_SetHardMinIspclkByFreq),
MSG_MAP(SetHardMinVcn, PPSMC_MSG_SetHardMinVcn),
MSG_MAP(Spare1, PPSMC_MSG_spare1),
MSG_MAP(Spare2, PPSMC_MSG_spare2),
MSG_MAP(SetAllowFclkSwitch, PPSMC_MSG_SetAllowFclkSwitch),
MSG_MAP(SetMinVideoGfxclkFreq, PPSMC_MSG_SetMinVideoGfxclkFreq),
MSG_MAP(ActiveProcessNotify, PPSMC_MSG_ActiveProcessNotify),
MSG_MAP(SetCustomPolicy, PPSMC_MSG_SetCustomPolicy),
MSG_MAP(SetVideoFps, PPSMC_MSG_SetVideoFps),
MSG_MAP(NumOfDisplays, PPSMC_MSG_SetDisplayCount),
MSG_MAP(QueryPowerLimit, PPSMC_MSG_QueryPowerLimit),
MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh),
MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow),
MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram),
MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu),
MSG_MAP(GfxDeviceDriverReset, PPSMC_MSG_GfxDeviceDriverReset),
MSG_MAP(SetGfxclkOverdriveByFreqVid, PPSMC_MSG_SetGfxclkOverdriveByFreqVid),
MSG_MAP(SetHardMinDcfclkByFreq, PPSMC_MSG_SetHardMinDcfclkByFreq),
MSG_MAP(SetHardMinSocclkByFreq, PPSMC_MSG_SetHardMinSocclkByFreq),
MSG_MAP(ControlIgpuATS, PPSMC_MSG_ControlIgpuATS),
MSG_MAP(SetMinVideoFclkFreq, PPSMC_MSG_SetMinVideoFclkFreq),
MSG_MAP(SetMinDeepSleepDcfclk, PPSMC_MSG_SetMinDeepSleepDcfclk),
MSG_MAP(ForcePowerDownGfx, PPSMC_MSG_ForcePowerDownGfx),
MSG_MAP(SetPhyclkVoltageByFreq, PPSMC_MSG_SetPhyclkVoltageByFreq),
MSG_MAP(SetDppclkVoltageByFreq, PPSMC_MSG_SetDppclkVoltageByFreq),
MSG_MAP(SetSoftMinVcn, PPSMC_MSG_SetSoftMinVcn),
MSG_MAP(EnablePostCode, PPSMC_MSG_EnablePostCode),
MSG_MAP(GetGfxclkFrequency, PPSMC_MSG_GetGfxclkFrequency),
MSG_MAP(GetFclkFrequency, PPSMC_MSG_GetFclkFrequency),
MSG_MAP(GetMinGfxclkFrequency, PPSMC_MSG_GetMinGfxclkFrequency),
MSG_MAP(GetMaxGfxclkFrequency, PPSMC_MSG_GetMaxGfxclkFrequency),
MSG_MAP(SoftReset, PPSMC_MSG_SoftReset),
MSG_MAP(SetGfxCGPG, PPSMC_MSG_SetGfxCGPG),
MSG_MAP(SetSoftMaxGfxClk, PPSMC_MSG_SetSoftMaxGfxClk),
MSG_MAP(SetHardMinGfxClk, PPSMC_MSG_SetHardMinGfxClk),
MSG_MAP(SetSoftMaxSocclkByFreq, PPSMC_MSG_SetSoftMaxSocclkByFreq),
MSG_MAP(SetSoftMaxFclkByFreq, PPSMC_MSG_SetSoftMaxFclkByFreq),
MSG_MAP(SetSoftMaxVcn, PPSMC_MSG_SetSoftMaxVcn),
MSG_MAP(PowerGateMmHub, PPSMC_MSG_PowerGateMmHub),
MSG_MAP(UpdatePmeRestore, PPSMC_MSG_UpdatePmeRestore),
MSG_MAP(GpuChangeState, PPSMC_MSG_GpuChangeState),
MSG_MAP(SetPowerLimitPercentage, PPSMC_MSG_SetPowerLimitPercentage),
MSG_MAP(ForceGfxContentSave, PPSMC_MSG_ForceGfxContentSave),
MSG_MAP(EnableTmdp48MHzRefclkPwrDown, PPSMC_MSG_EnableTmdp48MHzRefclkPwrDown),
MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg),
MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg),
MSG_MAP(PowerGateAtHub, PPSMC_MSG_PowerGateAtHub),
MSG_MAP(SetSoftMinJpeg, PPSMC_MSG_SetSoftMinJpeg),
MSG_MAP(SetHardMinFclkByFreq, PPSMC_MSG_SetHardMinFclkByFreq),
};
static struct smu_12_0_cmn2aisc_mapping renoir_clk_map[SMU_CLK_COUNT] = {
CLK_MAP(GFXCLK, CLOCK_GFXCLK),
CLK_MAP(SCLK, CLOCK_GFXCLK),
CLK_MAP(SOCCLK, CLOCK_SOCCLK),
CLK_MAP(UCLK, CLOCK_UMCCLK),
CLK_MAP(MCLK, CLOCK_UMCCLK),
};
static struct smu_12_0_cmn2aisc_mapping renoir_table_map[SMU_TABLE_COUNT] = {
TAB_MAP_VALID(WATERMARKS),
TAB_MAP_INVALID(CUSTOM_DPM),
TAB_MAP_VALID(DPMCLOCKS),
TAB_MAP_VALID(SMU_METRICS),
};
static int renoir_get_smu_msg_index(struct smu_context *smc, uint32_t index)
{
struct smu_12_0_cmn2aisc_mapping mapping;
if (index >= SMU_MSG_MAX_COUNT)
return -EINVAL;
mapping = renoir_message_map[index];
if (!(mapping.valid_mapping))
return -EINVAL;
return mapping.map_to;
}
static int renoir_get_smu_clk_index(struct smu_context *smc, uint32_t index)
{
struct smu_12_0_cmn2aisc_mapping mapping;
if (index >= SMU_CLK_COUNT)
return -EINVAL;
mapping = renoir_clk_map[index];
if (!(mapping.valid_mapping)) {
return -EINVAL;
}
return mapping.map_to;
}
static int renoir_get_smu_table_index(struct smu_context *smc, uint32_t index)
{
struct smu_12_0_cmn2aisc_mapping mapping;
if (index >= SMU_TABLE_COUNT)
return -EINVAL;
mapping = renoir_table_map[index];
if (!(mapping.valid_mapping))
return -EINVAL;
return mapping.map_to;
}
static int renoir_get_metrics_table(struct smu_context *smu,
SmuMetrics_t *metrics_table)
{
struct smu_table_context *smu_table= &smu->smu_table;
int ret = 0;
mutex_lock(&smu->metrics_lock);
if (!smu_table->metrics_time || time_after(jiffies, smu_table->metrics_time + msecs_to_jiffies(100))) {
ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS, 0,
(void *)smu_table->metrics_table, false);
if (ret) {
pr_info("Failed to export SMU metrics table!\n");
mutex_unlock(&smu->metrics_lock);
return ret;
}
smu_table->metrics_time = jiffies;
}
memcpy(metrics_table, smu_table->metrics_table, sizeof(SmuMetrics_t));
mutex_unlock(&smu->metrics_lock);
return ret;
}
static int renoir_tables_init(struct smu_context *smu, struct smu_table *tables)
{
struct smu_table_context *smu_table = &smu->smu_table;
SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_DPMCLOCKS, sizeof(DpmClocks_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
smu_table->clocks_table = kzalloc(sizeof(DpmClocks_t), GFP_KERNEL);
if (!smu_table->clocks_table)
return -ENOMEM;
smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
if (!smu_table->metrics_table)
return -ENOMEM;
smu_table->metrics_time = 0;
smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL);
if (!smu_table->watermarks_table)
return -ENOMEM;
return 0;
}
/**
* This interface just for getting uclk ultimate freq and should't introduce
* other likewise function result in overmuch callback.
*/
static int renoir_get_dpm_clk_limited(struct smu_context *smu, enum smu_clk_type clk_type,
uint32_t dpm_level, uint32_t *freq)
{
DpmClocks_t *clk_table = smu->smu_table.clocks_table;
if (!clk_table || clk_type >= SMU_CLK_COUNT)
return -EINVAL;
GET_DPM_CUR_FREQ(clk_table, clk_type, dpm_level, *freq);
return 0;
}
static int renoir_print_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, char *buf)
{
int i, size = 0, ret = 0;
uint32_t cur_value = 0, value = 0, count = 0, min = 0, max = 0;
DpmClocks_t *clk_table = smu->smu_table.clocks_table;
SmuMetrics_t metrics;
if (!clk_table || clk_type >= SMU_CLK_COUNT)
return -EINVAL;
memset(&metrics, 0, sizeof(metrics));
ret = renoir_get_metrics_table(smu, &metrics);
if (ret)
return ret;
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
/* retirve table returned paramters unit is MHz */
cur_value = metrics.ClockFrequency[CLOCK_GFXCLK];
ret = smu_get_dpm_freq_range(smu, SMU_GFXCLK, &min, &max, false);
if (!ret) {
/* driver only know min/max gfx_clk, Add level 1 for all other gfx clks */
if (cur_value == max)
i = 2;
else if (cur_value == min)
i = 0;
else
i = 1;
size += sprintf(buf + size, "0: %uMhz %s\n", min,
i == 0 ? "*" : "");
size += sprintf(buf + size, "1: %uMhz %s\n",
i == 1 ? cur_value : RENOIR_UMD_PSTATE_GFXCLK,
i == 1 ? "*" : "");
size += sprintf(buf + size, "2: %uMhz %s\n", max,
i == 2 ? "*" : "");
}
return size;
case SMU_SOCCLK:
count = NUM_SOCCLK_DPM_LEVELS;
cur_value = metrics.ClockFrequency[CLOCK_SOCCLK];
break;
case SMU_MCLK:
count = NUM_MEMCLK_DPM_LEVELS;
cur_value = metrics.ClockFrequency[CLOCK_UMCCLK];
break;
case SMU_DCEFCLK:
count = NUM_DCFCLK_DPM_LEVELS;
cur_value = metrics.ClockFrequency[CLOCK_DCFCLK];
break;
case SMU_FCLK:
count = NUM_FCLK_DPM_LEVELS;
cur_value = metrics.ClockFrequency[CLOCK_FCLK];
break;
default:
return -EINVAL;
}
for (i = 0; i < count; i++) {
GET_DPM_CUR_FREQ(clk_table, clk_type, i, value);
size += sprintf(buf + size, "%d: %uMhz %s\n", i, value,
cur_value == value ? "*" : "");
}
return size;
}
static enum amd_pm_state_type renoir_get_current_power_state(struct smu_context *smu)
{
enum amd_pm_state_type pm_type;
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
if (!smu_dpm_ctx->dpm_context ||
!smu_dpm_ctx->dpm_current_power_state)
return -EINVAL;
switch (smu_dpm_ctx->dpm_current_power_state->classification.ui_label) {
case SMU_STATE_UI_LABEL_BATTERY:
pm_type = POWER_STATE_TYPE_BATTERY;
break;
case SMU_STATE_UI_LABEL_BALLANCED:
pm_type = POWER_STATE_TYPE_BALANCED;
break;
case SMU_STATE_UI_LABEL_PERFORMANCE:
pm_type = POWER_STATE_TYPE_PERFORMANCE;
break;
default:
if (smu_dpm_ctx->dpm_current_power_state->classification.flags & SMU_STATE_CLASSIFICATION_FLAG_BOOT)
pm_type = POWER_STATE_TYPE_INTERNAL_BOOT;
else
pm_type = POWER_STATE_TYPE_DEFAULT;
break;
}
return pm_type;
}
static int renoir_dpm_set_uvd_enable(struct smu_context *smu, bool enable)
{
struct smu_power_context *smu_power = &smu->smu_power;
struct smu_power_gate *power_gate = &smu_power->power_gate;
int ret = 0;
if (enable) {
/* vcn dpm on is a prerequisite for vcn power gate messages */
if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 0);
if (ret)
return ret;
}
power_gate->vcn_gated = false;
} else {
if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
ret = smu_send_smc_msg(smu, SMU_MSG_PowerDownVcn);
if (ret)
return ret;
}
power_gate->vcn_gated = true;
}
return ret;
}
static int renoir_dpm_set_jpeg_enable(struct smu_context *smu, bool enable)
{
struct smu_power_context *smu_power = &smu->smu_power;
struct smu_power_gate *power_gate = &smu_power->power_gate;
int ret = 0;
if (enable) {
if (smu_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerUpJpeg, 0);
if (ret)
return ret;
}
power_gate->jpeg_gated = false;
} else {
if (smu_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerDownJpeg, 0);
if (ret)
return ret;
}
power_gate->jpeg_gated = true;
}
return ret;
}
static int renoir_get_current_clk_freq_by_table(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *value)
{
int ret = 0, clk_id = 0;
SmuMetrics_t metrics;
ret = renoir_get_metrics_table(smu, &metrics);
if (ret)
return ret;
clk_id = smu_clk_get_index(smu, clk_type);
if (clk_id < 0)
return clk_id;
*value = metrics.ClockFrequency[clk_id];
return ret;
}
static int renoir_force_dpm_limit_value(struct smu_context *smu, bool highest)
{
int ret = 0, i = 0;
uint32_t min_freq, max_freq, force_freq;
enum smu_clk_type clk_type;
enum smu_clk_type clks[] = {
SMU_GFXCLK,
SMU_MCLK,
SMU_SOCCLK,
};
for (i = 0; i < ARRAY_SIZE(clks); i++) {
clk_type = clks[i];
ret = smu_get_dpm_freq_range(smu, clk_type, &min_freq, &max_freq, false);
if (ret)
return ret;
force_freq = highest ? max_freq : min_freq;
ret = smu_set_soft_freq_range(smu, clk_type, force_freq, force_freq);
if (ret)
return ret;
}
return ret;
}
static int renoir_unforce_dpm_levels(struct smu_context *smu) {
int ret = 0, i = 0;
uint32_t min_freq, max_freq;
enum smu_clk_type clk_type;
struct clk_feature_map {
enum smu_clk_type clk_type;
uint32_t feature;
} clk_feature_map[] = {
{SMU_GFXCLK, SMU_FEATURE_DPM_GFXCLK_BIT},
{SMU_MCLK, SMU_FEATURE_DPM_UCLK_BIT},
{SMU_SOCCLK, SMU_FEATURE_DPM_SOCCLK_BIT},
};
for (i = 0; i < ARRAY_SIZE(clk_feature_map); i++) {
if (!smu_feature_is_enabled(smu, clk_feature_map[i].feature))
continue;
clk_type = clk_feature_map[i].clk_type;
ret = smu_get_dpm_freq_range(smu, clk_type, &min_freq, &max_freq, false);
if (ret)
return ret;
ret = smu_set_soft_freq_range(smu, clk_type, min_freq, max_freq);
if (ret)
return ret;
}
return ret;
}
static int renoir_get_gpu_temperature(struct smu_context *smu, uint32_t *value)
{
int ret = 0;
SmuMetrics_t metrics;
if (!value)
return -EINVAL;
ret = renoir_get_metrics_table(smu, &metrics);
if (ret)
return ret;
*value = (metrics.GfxTemperature / 100) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
return 0;
}
static int renoir_get_current_activity_percent(struct smu_context *smu,
enum amd_pp_sensors sensor,
uint32_t *value)
{
int ret = 0;
SmuMetrics_t metrics;
if (!value)
return -EINVAL;
ret = renoir_get_metrics_table(smu, &metrics);
if (ret)
return ret;
switch (sensor) {
case AMDGPU_PP_SENSOR_GPU_LOAD:
*value = metrics.AverageGfxActivity / 100;
break;
default:
pr_err("Invalid sensor for retrieving clock activity\n");
return -EINVAL;
}
return 0;
}
static int renoir_get_workload_type(struct smu_context *smu, uint32_t profile)
{
uint32_t pplib_workload = 0;
switch (profile) {
case PP_SMC_POWER_PROFILE_FULLSCREEN3D:
pplib_workload = WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT;
break;
case PP_SMC_POWER_PROFILE_CUSTOM:
pplib_workload = WORKLOAD_PPLIB_COUNT;
break;
case PP_SMC_POWER_PROFILE_VIDEO:
pplib_workload = WORKLOAD_PPLIB_VIDEO_BIT;
break;
case PP_SMC_POWER_PROFILE_VR:
pplib_workload = WORKLOAD_PPLIB_VR_BIT;
break;
case PP_SMC_POWER_PROFILE_COMPUTE:
pplib_workload = WORKLOAD_PPLIB_COMPUTE_BIT;
break;
default:
return -EINVAL;
}
return pplib_workload;
}
static int renoir_get_profiling_clk_mask(struct smu_context *smu,
enum amd_dpm_forced_level level,
uint32_t *sclk_mask,
uint32_t *mclk_mask,
uint32_t *soc_mask)
{
if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
if (sclk_mask)
*sclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
if (mclk_mask)
*mclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
if(sclk_mask)
/* The sclk as gfxclk and has three level about max/min/current */
*sclk_mask = 3 - 1;
if(mclk_mask)
*mclk_mask = NUM_MEMCLK_DPM_LEVELS - 1;
if(soc_mask)
*soc_mask = NUM_SOCCLK_DPM_LEVELS - 1;
}
return 0;
}
/**
* This interface get dpm clock table for dc
*/
static int renoir_get_dpm_clock_table(struct smu_context *smu, struct dpm_clocks *clock_table)
{
DpmClocks_t *table = smu->smu_table.clocks_table;
int i;
if (!clock_table || !table)
return -EINVAL;
for (i = 0; i < NUM_DCFCLK_DPM_LEVELS; i++) {
clock_table->DcfClocks[i].Freq = table->DcfClocks[i].Freq;
clock_table->DcfClocks[i].Vol = table->DcfClocks[i].Vol;
}
for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++) {
clock_table->SocClocks[i].Freq = table->SocClocks[i].Freq;
clock_table->SocClocks[i].Vol = table->SocClocks[i].Vol;
}
for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) {
clock_table->FClocks[i].Freq = table->FClocks[i].Freq;
clock_table->FClocks[i].Vol = table->FClocks[i].Vol;
}
for (i = 0; i< NUM_MEMCLK_DPM_LEVELS; i++) {
clock_table->MemClocks[i].Freq = table->MemClocks[i].Freq;
clock_table->MemClocks[i].Vol = table->MemClocks[i].Vol;
}
return 0;
}
static int renoir_force_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, uint32_t mask)
{
int ret = 0 ;
uint32_t soft_min_level = 0, soft_max_level = 0, min_freq = 0, max_freq = 0;
DpmClocks_t *clk_table = smu->smu_table.clocks_table;
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
if (soft_min_level > 2 || soft_max_level > 2) {
pr_info("Currently sclk only support 3 levels on APU\n");
return -EINVAL;
}
ret = smu_get_dpm_freq_range(smu, SMU_GFXCLK, &min_freq, &max_freq, false);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk,
soft_max_level == 0 ? min_freq :
soft_max_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : max_freq);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk,
soft_min_level == 2 ? max_freq :
soft_min_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : min_freq);
if (ret)
return ret;
break;
case SMU_SOCCLK:
GET_DPM_CUR_FREQ(clk_table, clk_type, soft_min_level, min_freq);
GET_DPM_CUR_FREQ(clk_table, clk_type, soft_max_level, max_freq);
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxSocclkByFreq, max_freq);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinSocclkByFreq, min_freq);
if (ret)
return ret;
break;
case SMU_MCLK:
case SMU_FCLK:
GET_DPM_CUR_FREQ(clk_table, clk_type, soft_min_level, min_freq);
GET_DPM_CUR_FREQ(clk_table, clk_type, soft_max_level, max_freq);
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxFclkByFreq, max_freq);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinFclkByFreq, min_freq);
if (ret)
return ret;
break;
default:
break;
}
return ret;
}
static int renoir_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size)
{
int workload_type, ret;
uint32_t profile_mode = input[size];
if (profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
pr_err("Invalid power profile mode %d\n", smu->power_profile_mode);
return -EINVAL;
}
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type = smu_workload_get_type(smu, smu->power_profile_mode);
if (workload_type < 0) {
pr_err("Unsupported power profile mode %d on RENOIR\n",smu->power_profile_mode);
return -EINVAL;
}
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask,
1 << workload_type);
if (ret) {
pr_err("Fail to set workload type %d\n", workload_type);
return ret;
}
smu->power_profile_mode = profile_mode;
return 0;
}
static int renoir_set_peak_clock_by_device(struct smu_context *smu)
{
int ret = 0;
uint32_t sclk_freq = 0, uclk_freq = 0;
ret = smu_get_dpm_freq_range(smu, SMU_SCLK, NULL, &sclk_freq, false);
if (ret)
return ret;
ret = smu_set_soft_freq_range(smu, SMU_SCLK, sclk_freq, sclk_freq);
if (ret)
return ret;
ret = smu_get_dpm_freq_range(smu, SMU_UCLK, NULL, &uclk_freq, false);
if (ret)
return ret;
ret = smu_set_soft_freq_range(smu, SMU_UCLK, uclk_freq, uclk_freq);
if (ret)
return ret;
return ret;
}
static int renoir_set_performance_level(struct smu_context *smu,
enum amd_dpm_forced_level level)
{
int ret = 0;
uint32_t sclk_mask, mclk_mask, soc_mask;
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
ret = smu_force_dpm_limit_value(smu, true);
break;
case AMD_DPM_FORCED_LEVEL_LOW:
ret = smu_force_dpm_limit_value(smu, false);
break;
case AMD_DPM_FORCED_LEVEL_AUTO:
case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
ret = smu_unforce_dpm_levels(smu);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
ret = smu_get_profiling_clk_mask(smu, level,
&sclk_mask,
&mclk_mask,
&soc_mask);
if (ret)
return ret;
smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
ret = renoir_set_peak_clock_by_device(smu);
break;
case AMD_DPM_FORCED_LEVEL_MANUAL:
case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
default:
break;
}
return ret;
}
/* save watermark settings into pplib smu structure,
* also pass data to smu controller
*/
static int renoir_set_watermarks_table(
struct smu_context *smu,
void *watermarks,
struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges)
{
int i;
int ret = 0;
Watermarks_t *table = watermarks;
if (!table || !clock_ranges)
return -EINVAL;
if (clock_ranges->num_wm_dmif_sets > 4 ||
clock_ranges->num_wm_mcif_sets > 4)
return -EINVAL;
/* save into smu->smu_table.tables[SMU_TABLE_WATERMARKS]->cpu_addr*/
for (i = 0; i < clock_ranges->num_wm_dmif_sets; i++) {
table->WatermarkRow[WM_DCFCLK][i].MinClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz));
table->WatermarkRow[WM_DCFCLK][i].MaxClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz));
table->WatermarkRow[WM_DCFCLK][i].MinMclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz));
table->WatermarkRow[WM_DCFCLK][i].MaxMclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz));
table->WatermarkRow[WM_DCFCLK][i].WmSetting = (uint8_t)
clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id;
}
for (i = 0; i < clock_ranges->num_wm_mcif_sets; i++) {
table->WatermarkRow[WM_SOCCLK][i].MinClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz));
table->WatermarkRow[WM_SOCCLK][i].MaxClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz));
table->WatermarkRow[WM_SOCCLK][i].MinMclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz));
table->WatermarkRow[WM_SOCCLK][i].MaxMclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz));
table->WatermarkRow[WM_SOCCLK][i].WmSetting = (uint8_t)
clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id;
}
/* pass data to smu controller */
if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
!(smu->watermarks_bitmap & WATERMARKS_LOADED)) {
ret = smu_write_watermarks_table(smu);
if (ret) {
pr_err("Failed to update WMTABLE!");
return ret;
}
smu->watermarks_bitmap |= WATERMARKS_LOADED;
}
return 0;
}
static int renoir_get_power_profile_mode(struct smu_context *smu,
char *buf)
{
static const char *profile_name[] = {
"BOOTUP_DEFAULT",
"3D_FULL_SCREEN",
"POWER_SAVING",
"VIDEO",
"VR",
"COMPUTE",
"CUSTOM"};
uint32_t i, size = 0;
int16_t workload_type = 0;
if (!smu->pm_enabled || !buf)
return -EINVAL;
for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
/*
* Conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT
* Not all profile modes are supported on arcturus.
*/
workload_type = smu_workload_get_type(smu, i);
if (workload_type < 0)
continue;
size += sprintf(buf + size, "%2d %14s%s\n",
i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");
}
return size;
}
static int renoir_read_sensor(struct smu_context *smu,
enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
int ret = 0;
if (!data || !size)
return -EINVAL;
mutex_lock(&smu->sensor_lock);
switch (sensor) {
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = renoir_get_current_activity_percent(smu, sensor, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_TEMP:
ret = renoir_get_gpu_temperature(smu, (uint32_t *)data);
*size = 4;
break;
default:
ret = smu_v12_0_read_sensor(smu, sensor, data, size);
}
mutex_unlock(&smu->sensor_lock);
return ret;
}
static const struct pptable_funcs renoir_ppt_funcs = {
.get_smu_msg_index = renoir_get_smu_msg_index,
.get_smu_clk_index = renoir_get_smu_clk_index,
.get_smu_table_index = renoir_get_smu_table_index,
.tables_init = renoir_tables_init,
.set_power_state = NULL,
.get_dpm_clk_limited = renoir_get_dpm_clk_limited,
.print_clk_levels = renoir_print_clk_levels,
.get_current_power_state = renoir_get_current_power_state,
.dpm_set_uvd_enable = renoir_dpm_set_uvd_enable,
.dpm_set_jpeg_enable = renoir_dpm_set_jpeg_enable,
.get_current_clk_freq_by_table = renoir_get_current_clk_freq_by_table,
.force_dpm_limit_value = renoir_force_dpm_limit_value,
.unforce_dpm_levels = renoir_unforce_dpm_levels,
.get_workload_type = renoir_get_workload_type,
.get_profiling_clk_mask = renoir_get_profiling_clk_mask,
.force_clk_levels = renoir_force_clk_levels,
.set_power_profile_mode = renoir_set_power_profile_mode,
.set_performance_level = renoir_set_performance_level,
.get_dpm_clock_table = renoir_get_dpm_clock_table,
.set_watermarks_table = renoir_set_watermarks_table,
.get_power_profile_mode = renoir_get_power_profile_mode,
.read_sensor = renoir_read_sensor,
.check_fw_status = smu_v12_0_check_fw_status,
.check_fw_version = smu_v12_0_check_fw_version,
.powergate_sdma = smu_v12_0_powergate_sdma,
.powergate_vcn = smu_v12_0_powergate_vcn,
.powergate_jpeg = smu_v12_0_powergate_jpeg,
.send_smc_msg_with_param = smu_v12_0_send_msg_with_param,
.read_smc_arg = smu_v12_0_read_arg,
.set_gfx_cgpg = smu_v12_0_set_gfx_cgpg,
.gfx_off_control = smu_v12_0_gfx_off_control,
.init_smc_tables = smu_v12_0_init_smc_tables,
.fini_smc_tables = smu_v12_0_fini_smc_tables,
.populate_smc_tables = smu_v12_0_populate_smc_tables,
.get_enabled_mask = smu_v12_0_get_enabled_mask,
.get_current_clk_freq = smu_v12_0_get_current_clk_freq,
.get_dpm_ultimate_freq = smu_v12_0_get_dpm_ultimate_freq,
.mode2_reset = smu_v12_0_mode2_reset,
.set_soft_freq_limited_range = smu_v12_0_set_soft_freq_limited_range,
.set_driver_table_location = smu_v12_0_set_driver_table_location,
};
void renoir_set_ppt_funcs(struct smu_context *smu)
{
smu->ppt_funcs = &renoir_ppt_funcs;
smu->smc_if_version = SMU12_DRIVER_IF_VERSION;
smu->is_apu = true;
}