Steve Wise de3d353072 RDMA/cxgb3: Streaming -> RDMA mode transition fixes
Due to a HW issue, our current scheme to transition the connection from
streaming to rdma mode is broken on the passive side.  The firmware
and driver now support a new transition scheme for the passive side:

 - driver posts rdma_init_wr (now including the initial receive seqno)
 - driver posts last streaming message via TX_DATA message (MPA start
   response)
 - uP atomically sends the last streaming message and transitions the
   tcb to rdma mode.
 - driver waits for wr_ack indicating the last streaming message was ACKed.

NOTE: This change also bumps the required firmware version to 4.3.

Signed-off-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-07-09 20:12:26 -07:00

687 lines
18 KiB
C

/*
* Copyright (c) 2006 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __CXIO_WR_H__
#define __CXIO_WR_H__
#include <asm/io.h>
#include <linux/pci.h>
#include <linux/timer.h>
#include "firmware_exports.h"
#define T3_MAX_SGE 4
#define T3_MAX_INLINE 64
#define Q_EMPTY(rptr,wptr) ((rptr)==(wptr))
#define Q_FULL(rptr,wptr,size_log2) ( (((wptr)-(rptr))>>(size_log2)) && \
((rptr)!=(wptr)) )
#define Q_GENBIT(ptr,size_log2) (!(((ptr)>>size_log2)&0x1))
#define Q_FREECNT(rptr,wptr,size_log2) ((1UL<<size_log2)-((wptr)-(rptr)))
#define Q_COUNT(rptr,wptr) ((wptr)-(rptr))
#define Q_PTR2IDX(ptr,size_log2) (ptr & ((1UL<<size_log2)-1))
static inline void ring_doorbell(void __iomem *doorbell, u32 qpid)
{
writel(((1<<31) | qpid), doorbell);
}
#define SEQ32_GE(x,y) (!( (((u32) (x)) - ((u32) (y))) & 0x80000000 ))
enum t3_wr_flags {
T3_COMPLETION_FLAG = 0x01,
T3_NOTIFY_FLAG = 0x02,
T3_SOLICITED_EVENT_FLAG = 0x04,
T3_READ_FENCE_FLAG = 0x08,
T3_LOCAL_FENCE_FLAG = 0x10
} __attribute__ ((packed));
enum t3_wr_opcode {
T3_WR_BP = FW_WROPCODE_RI_BYPASS,
T3_WR_SEND = FW_WROPCODE_RI_SEND,
T3_WR_WRITE = FW_WROPCODE_RI_RDMA_WRITE,
T3_WR_READ = FW_WROPCODE_RI_RDMA_READ,
T3_WR_INV_STAG = FW_WROPCODE_RI_LOCAL_INV,
T3_WR_BIND = FW_WROPCODE_RI_BIND_MW,
T3_WR_RCV = FW_WROPCODE_RI_RECEIVE,
T3_WR_INIT = FW_WROPCODE_RI_RDMA_INIT,
T3_WR_QP_MOD = FW_WROPCODE_RI_MODIFY_QP
} __attribute__ ((packed));
enum t3_rdma_opcode {
T3_RDMA_WRITE, /* IETF RDMAP v1.0 ... */
T3_READ_REQ,
T3_READ_RESP,
T3_SEND,
T3_SEND_WITH_INV,
T3_SEND_WITH_SE,
T3_SEND_WITH_SE_INV,
T3_TERMINATE,
T3_RDMA_INIT, /* CHELSIO RI specific ... */
T3_BIND_MW,
T3_FAST_REGISTER,
T3_LOCAL_INV,
T3_QP_MOD,
T3_BYPASS
} __attribute__ ((packed));
static inline enum t3_rdma_opcode wr2opcode(enum t3_wr_opcode wrop)
{
switch (wrop) {
case T3_WR_BP: return T3_BYPASS;
case T3_WR_SEND: return T3_SEND;
case T3_WR_WRITE: return T3_RDMA_WRITE;
case T3_WR_READ: return T3_READ_REQ;
case T3_WR_INV_STAG: return T3_LOCAL_INV;
case T3_WR_BIND: return T3_BIND_MW;
case T3_WR_INIT: return T3_RDMA_INIT;
case T3_WR_QP_MOD: return T3_QP_MOD;
default: break;
}
return -1;
}
/* Work request id */
union t3_wrid {
struct {
u32 hi;
u32 low;
} id0;
u64 id1;
};
#define WRID(wrid) (wrid.id1)
#define WRID_GEN(wrid) (wrid.id0.wr_gen)
#define WRID_IDX(wrid) (wrid.id0.wr_idx)
#define WRID_LO(wrid) (wrid.id0.wr_lo)
struct fw_riwrh {
__be32 op_seop_flags;
__be32 gen_tid_len;
};
#define S_FW_RIWR_OP 24
#define M_FW_RIWR_OP 0xff
#define V_FW_RIWR_OP(x) ((x) << S_FW_RIWR_OP)
#define G_FW_RIWR_OP(x) ((((x) >> S_FW_RIWR_OP)) & M_FW_RIWR_OP)
#define S_FW_RIWR_SOPEOP 22
#define M_FW_RIWR_SOPEOP 0x3
#define V_FW_RIWR_SOPEOP(x) ((x) << S_FW_RIWR_SOPEOP)
#define S_FW_RIWR_FLAGS 8
#define M_FW_RIWR_FLAGS 0x3fffff
#define V_FW_RIWR_FLAGS(x) ((x) << S_FW_RIWR_FLAGS)
#define G_FW_RIWR_FLAGS(x) ((((x) >> S_FW_RIWR_FLAGS)) & M_FW_RIWR_FLAGS)
#define S_FW_RIWR_TID 8
#define V_FW_RIWR_TID(x) ((x) << S_FW_RIWR_TID)
#define S_FW_RIWR_LEN 0
#define V_FW_RIWR_LEN(x) ((x) << S_FW_RIWR_LEN)
#define S_FW_RIWR_GEN 31
#define V_FW_RIWR_GEN(x) ((x) << S_FW_RIWR_GEN)
struct t3_sge {
__be32 stag;
__be32 len;
__be64 to;
};
/* If num_sgle is zero, flit 5+ contains immediate data.*/
struct t3_send_wr {
struct fw_riwrh wrh; /* 0 */
union t3_wrid wrid; /* 1 */
u8 rdmaop; /* 2 */
u8 reserved[3];
__be32 rem_stag;
__be32 plen; /* 3 */
__be32 num_sgle;
struct t3_sge sgl[T3_MAX_SGE]; /* 4+ */
};
struct t3_local_inv_wr {
struct fw_riwrh wrh; /* 0 */
union t3_wrid wrid; /* 1 */
__be32 stag; /* 2 */
__be32 reserved3;
};
struct t3_rdma_write_wr {
struct fw_riwrh wrh; /* 0 */
union t3_wrid wrid; /* 1 */
u8 rdmaop; /* 2 */
u8 reserved[3];
__be32 stag_sink;
__be64 to_sink; /* 3 */
__be32 plen; /* 4 */
__be32 num_sgle;
struct t3_sge sgl[T3_MAX_SGE]; /* 5+ */
};
struct t3_rdma_read_wr {
struct fw_riwrh wrh; /* 0 */
union t3_wrid wrid; /* 1 */
u8 rdmaop; /* 2 */
u8 reserved[3];
__be32 rem_stag;
__be64 rem_to; /* 3 */
__be32 local_stag; /* 4 */
__be32 local_len;
__be64 local_to; /* 5 */
};
enum t3_addr_type {
T3_VA_BASED_TO = 0x0,
T3_ZERO_BASED_TO = 0x1
} __attribute__ ((packed));
enum t3_mem_perms {
T3_MEM_ACCESS_LOCAL_READ = 0x1,
T3_MEM_ACCESS_LOCAL_WRITE = 0x2,
T3_MEM_ACCESS_REM_READ = 0x4,
T3_MEM_ACCESS_REM_WRITE = 0x8
} __attribute__ ((packed));
struct t3_bind_mw_wr {
struct fw_riwrh wrh; /* 0 */
union t3_wrid wrid; /* 1 */
u16 reserved; /* 2 */
u8 type;
u8 perms;
__be32 mr_stag;
__be32 mw_stag; /* 3 */
__be32 mw_len;
__be64 mw_va; /* 4 */
__be32 mr_pbl_addr; /* 5 */
u8 reserved2[3];
u8 mr_pagesz;
};
struct t3_receive_wr {
struct fw_riwrh wrh; /* 0 */
union t3_wrid wrid; /* 1 */
u8 pagesz[T3_MAX_SGE];
__be32 num_sgle; /* 2 */
struct t3_sge sgl[T3_MAX_SGE]; /* 3+ */
__be32 pbl_addr[T3_MAX_SGE];
};
struct t3_bypass_wr {
struct fw_riwrh wrh;
union t3_wrid wrid; /* 1 */
};
struct t3_modify_qp_wr {
struct fw_riwrh wrh; /* 0 */
union t3_wrid wrid; /* 1 */
__be32 flags; /* 2 */
__be32 quiesce; /* 2 */
__be32 max_ird; /* 3 */
__be32 max_ord; /* 3 */
__be64 sge_cmd; /* 4 */
__be64 ctx1; /* 5 */
__be64 ctx0; /* 6 */
};
enum t3_modify_qp_flags {
MODQP_QUIESCE = 0x01,
MODQP_MAX_IRD = 0x02,
MODQP_MAX_ORD = 0x04,
MODQP_WRITE_EC = 0x08,
MODQP_READ_EC = 0x10,
};
enum t3_mpa_attrs {
uP_RI_MPA_RX_MARKER_ENABLE = 0x1,
uP_RI_MPA_TX_MARKER_ENABLE = 0x2,
uP_RI_MPA_CRC_ENABLE = 0x4,
uP_RI_MPA_IETF_ENABLE = 0x8
} __attribute__ ((packed));
enum t3_qp_caps {
uP_RI_QP_RDMA_READ_ENABLE = 0x01,
uP_RI_QP_RDMA_WRITE_ENABLE = 0x02,
uP_RI_QP_BIND_ENABLE = 0x04,
uP_RI_QP_FAST_REGISTER_ENABLE = 0x08,
uP_RI_QP_STAG0_ENABLE = 0x10
} __attribute__ ((packed));
struct t3_rdma_init_attr {
u32 tid;
u32 qpid;
u32 pdid;
u32 scqid;
u32 rcqid;
u32 rq_addr;
u32 rq_size;
enum t3_mpa_attrs mpaattrs;
enum t3_qp_caps qpcaps;
u16 tcp_emss;
u32 ord;
u32 ird;
u64 qp_dma_addr;
u32 qp_dma_size;
u32 flags;
u32 irs;
};
struct t3_rdma_init_wr {
struct fw_riwrh wrh; /* 0 */
union t3_wrid wrid; /* 1 */
__be32 qpid; /* 2 */
__be32 pdid;
__be32 scqid; /* 3 */
__be32 rcqid;
__be32 rq_addr; /* 4 */
__be32 rq_size;
u8 mpaattrs; /* 5 */
u8 qpcaps;
__be16 ulpdu_size;
__be32 flags; /* bits 31-1 - reservered */
/* bit 0 - set if RECV posted */
__be32 ord; /* 6 */
__be32 ird;
__be64 qp_dma_addr; /* 7 */
__be32 qp_dma_size; /* 8 */
u32 irs;
};
struct t3_genbit {
u64 flit[15];
__be64 genbit;
};
enum rdma_init_wr_flags {
RECVS_POSTED = 1,
};
union t3_wr {
struct t3_send_wr send;
struct t3_rdma_write_wr write;
struct t3_rdma_read_wr read;
struct t3_receive_wr recv;
struct t3_local_inv_wr local_inv;
struct t3_bind_mw_wr bind;
struct t3_bypass_wr bypass;
struct t3_rdma_init_wr init;
struct t3_modify_qp_wr qp_mod;
struct t3_genbit genbit;
u64 flit[16];
};
#define T3_SQ_CQE_FLIT 13
#define T3_SQ_COOKIE_FLIT 14
#define T3_RQ_COOKIE_FLIT 13
#define T3_RQ_CQE_FLIT 14
static inline enum t3_wr_opcode fw_riwrh_opcode(struct fw_riwrh *wqe)
{
return G_FW_RIWR_OP(be32_to_cpu(wqe->op_seop_flags));
}
static inline void build_fw_riwrh(struct fw_riwrh *wqe, enum t3_wr_opcode op,
enum t3_wr_flags flags, u8 genbit, u32 tid,
u8 len)
{
wqe->op_seop_flags = cpu_to_be32(V_FW_RIWR_OP(op) |
V_FW_RIWR_SOPEOP(M_FW_RIWR_SOPEOP) |
V_FW_RIWR_FLAGS(flags));
wmb();
wqe->gen_tid_len = cpu_to_be32(V_FW_RIWR_GEN(genbit) |
V_FW_RIWR_TID(tid) |
V_FW_RIWR_LEN(len));
/* 2nd gen bit... */
((union t3_wr *)wqe)->genbit.genbit = cpu_to_be64(genbit);
}
/*
* T3 ULP2_TX commands
*/
enum t3_utx_mem_op {
T3_UTX_MEM_READ = 2,
T3_UTX_MEM_WRITE = 3
};
/* T3 MC7 RDMA TPT entry format */
enum tpt_mem_type {
TPT_NON_SHARED_MR = 0x0,
TPT_SHARED_MR = 0x1,
TPT_MW = 0x2,
TPT_MW_RELAXED_PROTECTION = 0x3
};
enum tpt_addr_type {
TPT_ZBTO = 0,
TPT_VATO = 1
};
enum tpt_mem_perm {
TPT_LOCAL_READ = 0x8,
TPT_LOCAL_WRITE = 0x4,
TPT_REMOTE_READ = 0x2,
TPT_REMOTE_WRITE = 0x1
};
struct tpt_entry {
__be32 valid_stag_pdid;
__be32 flags_pagesize_qpid;
__be32 rsvd_pbl_addr;
__be32 len;
__be32 va_hi;
__be32 va_low_or_fbo;
__be32 rsvd_bind_cnt_or_pstag;
__be32 rsvd_pbl_size;
};
#define S_TPT_VALID 31
#define V_TPT_VALID(x) ((x) << S_TPT_VALID)
#define F_TPT_VALID V_TPT_VALID(1U)
#define S_TPT_STAG_KEY 23
#define M_TPT_STAG_KEY 0xFF
#define V_TPT_STAG_KEY(x) ((x) << S_TPT_STAG_KEY)
#define G_TPT_STAG_KEY(x) (((x) >> S_TPT_STAG_KEY) & M_TPT_STAG_KEY)
#define S_TPT_STAG_STATE 22
#define V_TPT_STAG_STATE(x) ((x) << S_TPT_STAG_STATE)
#define F_TPT_STAG_STATE V_TPT_STAG_STATE(1U)
#define S_TPT_STAG_TYPE 20
#define M_TPT_STAG_TYPE 0x3
#define V_TPT_STAG_TYPE(x) ((x) << S_TPT_STAG_TYPE)
#define G_TPT_STAG_TYPE(x) (((x) >> S_TPT_STAG_TYPE) & M_TPT_STAG_TYPE)
#define S_TPT_PDID 0
#define M_TPT_PDID 0xFFFFF
#define V_TPT_PDID(x) ((x) << S_TPT_PDID)
#define G_TPT_PDID(x) (((x) >> S_TPT_PDID) & M_TPT_PDID)
#define S_TPT_PERM 28
#define M_TPT_PERM 0xF
#define V_TPT_PERM(x) ((x) << S_TPT_PERM)
#define G_TPT_PERM(x) (((x) >> S_TPT_PERM) & M_TPT_PERM)
#define S_TPT_REM_INV_DIS 27
#define V_TPT_REM_INV_DIS(x) ((x) << S_TPT_REM_INV_DIS)
#define F_TPT_REM_INV_DIS V_TPT_REM_INV_DIS(1U)
#define S_TPT_ADDR_TYPE 26
#define V_TPT_ADDR_TYPE(x) ((x) << S_TPT_ADDR_TYPE)
#define F_TPT_ADDR_TYPE V_TPT_ADDR_TYPE(1U)
#define S_TPT_MW_BIND_ENABLE 25
#define V_TPT_MW_BIND_ENABLE(x) ((x) << S_TPT_MW_BIND_ENABLE)
#define F_TPT_MW_BIND_ENABLE V_TPT_MW_BIND_ENABLE(1U)
#define S_TPT_PAGE_SIZE 20
#define M_TPT_PAGE_SIZE 0x1F
#define V_TPT_PAGE_SIZE(x) ((x) << S_TPT_PAGE_SIZE)
#define G_TPT_PAGE_SIZE(x) (((x) >> S_TPT_PAGE_SIZE) & M_TPT_PAGE_SIZE)
#define S_TPT_PBL_ADDR 0
#define M_TPT_PBL_ADDR 0x1FFFFFFF
#define V_TPT_PBL_ADDR(x) ((x) << S_TPT_PBL_ADDR)
#define G_TPT_PBL_ADDR(x) (((x) >> S_TPT_PBL_ADDR) & M_TPT_PBL_ADDR)
#define S_TPT_QPID 0
#define M_TPT_QPID 0xFFFFF
#define V_TPT_QPID(x) ((x) << S_TPT_QPID)
#define G_TPT_QPID(x) (((x) >> S_TPT_QPID) & M_TPT_QPID)
#define S_TPT_PSTAG 0
#define M_TPT_PSTAG 0xFFFFFF
#define V_TPT_PSTAG(x) ((x) << S_TPT_PSTAG)
#define G_TPT_PSTAG(x) (((x) >> S_TPT_PSTAG) & M_TPT_PSTAG)
#define S_TPT_PBL_SIZE 0
#define M_TPT_PBL_SIZE 0xFFFFF
#define V_TPT_PBL_SIZE(x) ((x) << S_TPT_PBL_SIZE)
#define G_TPT_PBL_SIZE(x) (((x) >> S_TPT_PBL_SIZE) & M_TPT_PBL_SIZE)
/*
* CQE defs
*/
struct t3_cqe {
__be32 header;
__be32 len;
union {
struct {
__be32 stag;
__be32 msn;
} rcqe;
struct {
u32 wrid_hi;
u32 wrid_low;
} scqe;
} u;
};
#define S_CQE_OOO 31
#define M_CQE_OOO 0x1
#define G_CQE_OOO(x) ((((x) >> S_CQE_OOO)) & M_CQE_OOO)
#define V_CEQ_OOO(x) ((x)<<S_CQE_OOO)
#define S_CQE_QPID 12
#define M_CQE_QPID 0x7FFFF
#define G_CQE_QPID(x) ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
#define V_CQE_QPID(x) ((x)<<S_CQE_QPID)
#define S_CQE_SWCQE 11
#define M_CQE_SWCQE 0x1
#define G_CQE_SWCQE(x) ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
#define V_CQE_SWCQE(x) ((x)<<S_CQE_SWCQE)
#define S_CQE_GENBIT 10
#define M_CQE_GENBIT 0x1
#define G_CQE_GENBIT(x) (((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
#define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
#define S_CQE_STATUS 5
#define M_CQE_STATUS 0x1F
#define G_CQE_STATUS(x) ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
#define V_CQE_STATUS(x) ((x)<<S_CQE_STATUS)
#define S_CQE_TYPE 4
#define M_CQE_TYPE 0x1
#define G_CQE_TYPE(x) ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
#define V_CQE_TYPE(x) ((x)<<S_CQE_TYPE)
#define S_CQE_OPCODE 0
#define M_CQE_OPCODE 0xF
#define G_CQE_OPCODE(x) ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
#define V_CQE_OPCODE(x) ((x)<<S_CQE_OPCODE)
#define SW_CQE(x) (G_CQE_SWCQE(be32_to_cpu((x).header)))
#define CQE_OOO(x) (G_CQE_OOO(be32_to_cpu((x).header)))
#define CQE_QPID(x) (G_CQE_QPID(be32_to_cpu((x).header)))
#define CQE_GENBIT(x) (G_CQE_GENBIT(be32_to_cpu((x).header)))
#define CQE_TYPE(x) (G_CQE_TYPE(be32_to_cpu((x).header)))
#define SQ_TYPE(x) (CQE_TYPE((x)))
#define RQ_TYPE(x) (!CQE_TYPE((x)))
#define CQE_STATUS(x) (G_CQE_STATUS(be32_to_cpu((x).header)))
#define CQE_OPCODE(x) (G_CQE_OPCODE(be32_to_cpu((x).header)))
#define CQE_LEN(x) (be32_to_cpu((x).len))
/* used for RQ completion processing */
#define CQE_WRID_STAG(x) (be32_to_cpu((x).u.rcqe.stag))
#define CQE_WRID_MSN(x) (be32_to_cpu((x).u.rcqe.msn))
/* used for SQ completion processing */
#define CQE_WRID_SQ_WPTR(x) ((x).u.scqe.wrid_hi)
#define CQE_WRID_WPTR(x) ((x).u.scqe.wrid_low)
/* generic accessor macros */
#define CQE_WRID_HI(x) ((x).u.scqe.wrid_hi)
#define CQE_WRID_LOW(x) ((x).u.scqe.wrid_low)
#define TPT_ERR_SUCCESS 0x0
#define TPT_ERR_STAG 0x1 /* STAG invalid: either the */
/* STAG is offlimt, being 0, */
/* or STAG_key mismatch */
#define TPT_ERR_PDID 0x2 /* PDID mismatch */
#define TPT_ERR_QPID 0x3 /* QPID mismatch */
#define TPT_ERR_ACCESS 0x4 /* Invalid access right */
#define TPT_ERR_WRAP 0x5 /* Wrap error */
#define TPT_ERR_BOUND 0x6 /* base and bounds voilation */
#define TPT_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */
/* shared memory region */
#define TPT_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */
/* shared memory region */
#define TPT_ERR_ECC 0x9 /* ECC error detected */
#define TPT_ERR_ECC_PSTAG 0xA /* ECC error detected when */
/* reading PSTAG for a MW */
/* Invalidate */
#define TPT_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */
/* software error */
#define TPT_ERR_SWFLUSH 0xC /* SW FLUSHED */
#define TPT_ERR_CRC 0x10 /* CRC error */
#define TPT_ERR_MARKER 0x11 /* Marker error */
#define TPT_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */
#define TPT_ERR_OUT_OF_RQE 0x13 /* out of RQE */
#define TPT_ERR_DDP_VERSION 0x14 /* wrong DDP version */
#define TPT_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */
#define TPT_ERR_OPCODE 0x16 /* invalid rdma opcode */
#define TPT_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */
#define TPT_ERR_MSN 0x18 /* MSN error */
#define TPT_ERR_TBIT 0x19 /* tag bit not set correctly */
#define TPT_ERR_MO 0x1A /* MO not 0 for TERMINATE */
/* or READ_REQ */
#define TPT_ERR_MSN_GAP 0x1B
#define TPT_ERR_MSN_RANGE 0x1C
#define TPT_ERR_IRD_OVERFLOW 0x1D
#define TPT_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */
/* software error */
#define TPT_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */
/* mismatch) */
struct t3_swsq {
__u64 wr_id;
struct t3_cqe cqe;
__u32 sq_wptr;
__be32 read_len;
int opcode;
int complete;
int signaled;
};
/*
* A T3 WQ implements both the SQ and RQ.
*/
struct t3_wq {
union t3_wr *queue; /* DMA accessable memory */
dma_addr_t dma_addr; /* DMA address for HW */
DECLARE_PCI_UNMAP_ADDR(mapping) /* unmap kruft */
u32 error; /* 1 once we go to ERROR */
u32 qpid;
u32 wptr; /* idx to next available WR slot */
u32 size_log2; /* total wq size */
struct t3_swsq *sq; /* SW SQ */
struct t3_swsq *oldest_read; /* tracks oldest pending read */
u32 sq_wptr; /* sq_wptr - sq_rptr == count of */
u32 sq_rptr; /* pending wrs */
u32 sq_size_log2; /* sq size */
u64 *rq; /* SW RQ (holds consumer wr_ids */
u32 rq_wptr; /* rq_wptr - rq_rptr == count of */
u32 rq_rptr; /* pending wrs */
u64 *rq_oldest_wr; /* oldest wr on the SW RQ */
u32 rq_size_log2; /* rq size */
u32 rq_addr; /* rq adapter address */
void __iomem *doorbell; /* kernel db */
u64 udb; /* user db if any */
};
struct t3_cq {
u32 cqid;
u32 rptr;
u32 wptr;
u32 size_log2;
dma_addr_t dma_addr;
DECLARE_PCI_UNMAP_ADDR(mapping)
struct t3_cqe *queue;
struct t3_cqe *sw_queue;
u32 sw_rptr;
u32 sw_wptr;
};
#define CQ_VLD_ENTRY(ptr,size_log2,cqe) (Q_GENBIT(ptr,size_log2) == \
CQE_GENBIT(*cqe))
static inline void cxio_set_wq_in_error(struct t3_wq *wq)
{
wq->queue->flit[13] = 1;
}
static inline struct t3_cqe *cxio_next_hw_cqe(struct t3_cq *cq)
{
struct t3_cqe *cqe;
cqe = cq->queue + (Q_PTR2IDX(cq->rptr, cq->size_log2));
if (CQ_VLD_ENTRY(cq->rptr, cq->size_log2, cqe))
return cqe;
return NULL;
}
static inline struct t3_cqe *cxio_next_sw_cqe(struct t3_cq *cq)
{
struct t3_cqe *cqe;
if (!Q_EMPTY(cq->sw_rptr, cq->sw_wptr)) {
cqe = cq->sw_queue + (Q_PTR2IDX(cq->sw_rptr, cq->size_log2));
return cqe;
}
return NULL;
}
static inline struct t3_cqe *cxio_next_cqe(struct t3_cq *cq)
{
struct t3_cqe *cqe;
if (!Q_EMPTY(cq->sw_rptr, cq->sw_wptr)) {
cqe = cq->sw_queue + (Q_PTR2IDX(cq->sw_rptr, cq->size_log2));
return cqe;
}
cqe = cq->queue + (Q_PTR2IDX(cq->rptr, cq->size_log2));
if (CQ_VLD_ENTRY(cq->rptr, cq->size_log2, cqe))
return cqe;
return NULL;
}
#endif