15e5d5b45b
arch_scale_freq_invariant() is used by schedutil to determine whether the scheduler's load-tracking signals are frequency invariant. Its definition is overridable, though by default it is hardcoded to 'true' if arch_scale_freq_capacity() is defined ('false' otherwise). This behaviour is not overridden on arm, arm64 and other users of the generic arch topology driver, which is somewhat precarious: arch_scale_freq_capacity() will always be defined, yet not all cpufreq drivers are guaranteed to drive the frequency invariance scale factor setting. In other words, the load-tracking signals may very well *not* be frequency invariant. Now that cpufreq can be queried on whether the current driver is driving the Frequency Invariance (FI) scale setting, the current situation can be improved. This combines the query of whether cpufreq supports the setting of the frequency scale factor, with whether all online CPUs are counter-based FI enabled. While cpufreq FI enablement applies at system level, for all CPUs, counter-based FI support could also be used for only a subset of CPUs to set the invariance scale factor. Therefore, if cpufreq-based FI support is present, we consider the system to be invariant. If missing, we require all online CPUs to be counter-based FI enabled in order for the full system to be considered invariant. If the system ends up not being invariant, a new condition is needed in the counter initialization code that disables all scale factor setting based on counters. Precedence of counters over cpufreq use is not important here. The invariant status is only given to the system if all CPUs have at least one method of setting the frequency scale factor. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
311 lines
8.2 KiB
C
311 lines
8.2 KiB
C
/*
|
|
* arch/arm64/kernel/topology.c
|
|
*
|
|
* Copyright (C) 2011,2013,2014 Linaro Limited.
|
|
*
|
|
* Based on the arm32 version written by Vincent Guittot in turn based on
|
|
* arch/sh/kernel/topology.c
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/arch_topology.h>
|
|
#include <linux/cacheinfo.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/init.h>
|
|
#include <linux/percpu.h>
|
|
|
|
#include <asm/cpu.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/topology.h>
|
|
|
|
void store_cpu_topology(unsigned int cpuid)
|
|
{
|
|
struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
|
|
u64 mpidr;
|
|
|
|
if (cpuid_topo->package_id != -1)
|
|
goto topology_populated;
|
|
|
|
mpidr = read_cpuid_mpidr();
|
|
|
|
/* Uniprocessor systems can rely on default topology values */
|
|
if (mpidr & MPIDR_UP_BITMASK)
|
|
return;
|
|
|
|
/* Create cpu topology mapping based on MPIDR. */
|
|
if (mpidr & MPIDR_MT_BITMASK) {
|
|
/* Multiprocessor system : Multi-threads per core */
|
|
cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
|
|
MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
|
|
} else {
|
|
/* Multiprocessor system : Single-thread per core */
|
|
cpuid_topo->thread_id = -1;
|
|
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
|
|
MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
|
|
MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
|
|
}
|
|
|
|
pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
|
|
cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
|
|
cpuid_topo->thread_id, mpidr);
|
|
|
|
topology_populated:
|
|
update_siblings_masks(cpuid);
|
|
}
|
|
|
|
#ifdef CONFIG_ACPI
|
|
static bool __init acpi_cpu_is_threaded(int cpu)
|
|
{
|
|
int is_threaded = acpi_pptt_cpu_is_thread(cpu);
|
|
|
|
/*
|
|
* if the PPTT doesn't have thread information, assume a homogeneous
|
|
* machine and return the current CPU's thread state.
|
|
*/
|
|
if (is_threaded < 0)
|
|
is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
|
|
|
|
return !!is_threaded;
|
|
}
|
|
|
|
/*
|
|
* Propagate the topology information of the processor_topology_node tree to the
|
|
* cpu_topology array.
|
|
*/
|
|
int __init parse_acpi_topology(void)
|
|
{
|
|
int cpu, topology_id;
|
|
|
|
if (acpi_disabled)
|
|
return 0;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
int i, cache_id;
|
|
|
|
topology_id = find_acpi_cpu_topology(cpu, 0);
|
|
if (topology_id < 0)
|
|
return topology_id;
|
|
|
|
if (acpi_cpu_is_threaded(cpu)) {
|
|
cpu_topology[cpu].thread_id = topology_id;
|
|
topology_id = find_acpi_cpu_topology(cpu, 1);
|
|
cpu_topology[cpu].core_id = topology_id;
|
|
} else {
|
|
cpu_topology[cpu].thread_id = -1;
|
|
cpu_topology[cpu].core_id = topology_id;
|
|
}
|
|
topology_id = find_acpi_cpu_topology_package(cpu);
|
|
cpu_topology[cpu].package_id = topology_id;
|
|
|
|
i = acpi_find_last_cache_level(cpu);
|
|
|
|
if (i > 0) {
|
|
/*
|
|
* this is the only part of cpu_topology that has
|
|
* a direct relationship with the cache topology
|
|
*/
|
|
cache_id = find_acpi_cpu_cache_topology(cpu, i);
|
|
if (cache_id > 0)
|
|
cpu_topology[cpu].llc_id = cache_id;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARM64_AMU_EXTN
|
|
|
|
#undef pr_fmt
|
|
#define pr_fmt(fmt) "AMU: " fmt
|
|
|
|
static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale);
|
|
static DEFINE_PER_CPU(u64, arch_const_cycles_prev);
|
|
static DEFINE_PER_CPU(u64, arch_core_cycles_prev);
|
|
static cpumask_var_t amu_fie_cpus;
|
|
|
|
/* Initialize counter reference per-cpu variables for the current CPU */
|
|
void init_cpu_freq_invariance_counters(void)
|
|
{
|
|
this_cpu_write(arch_core_cycles_prev,
|
|
read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0));
|
|
this_cpu_write(arch_const_cycles_prev,
|
|
read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0));
|
|
}
|
|
|
|
static int validate_cpu_freq_invariance_counters(int cpu)
|
|
{
|
|
u64 max_freq_hz, ratio;
|
|
|
|
if (!cpu_has_amu_feat(cpu)) {
|
|
pr_debug("CPU%d: counters are not supported.\n", cpu);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) ||
|
|
!per_cpu(arch_core_cycles_prev, cpu))) {
|
|
pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Convert maximum frequency from KHz to Hz and validate */
|
|
max_freq_hz = cpufreq_get_hw_max_freq(cpu) * 1000;
|
|
if (unlikely(!max_freq_hz)) {
|
|
pr_debug("CPU%d: invalid maximum frequency.\n", cpu);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Pre-compute the fixed ratio between the frequency of the constant
|
|
* counter and the maximum frequency of the CPU.
|
|
*
|
|
* const_freq
|
|
* arch_max_freq_scale = ---------------- * SCHED_CAPACITY_SCALE²
|
|
* cpuinfo_max_freq
|
|
*
|
|
* We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALE²
|
|
* in order to ensure a good resolution for arch_max_freq_scale for
|
|
* very low arch timer frequencies (down to the KHz range which should
|
|
* be unlikely).
|
|
*/
|
|
ratio = (u64)arch_timer_get_rate() << (2 * SCHED_CAPACITY_SHIFT);
|
|
ratio = div64_u64(ratio, max_freq_hz);
|
|
if (!ratio) {
|
|
WARN_ONCE(1, "System timer frequency too low.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool
|
|
enable_policy_freq_counters(int cpu, cpumask_var_t valid_cpus)
|
|
{
|
|
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
|
|
|
|
if (!policy) {
|
|
pr_debug("CPU%d: No cpufreq policy found.\n", cpu);
|
|
return false;
|
|
}
|
|
|
|
if (cpumask_subset(policy->related_cpus, valid_cpus))
|
|
cpumask_or(amu_fie_cpus, policy->related_cpus,
|
|
amu_fie_cpus);
|
|
|
|
cpufreq_cpu_put(policy);
|
|
|
|
return true;
|
|
}
|
|
|
|
static DEFINE_STATIC_KEY_FALSE(amu_fie_key);
|
|
#define amu_freq_invariant() static_branch_unlikely(&amu_fie_key)
|
|
|
|
static int __init init_amu_fie(void)
|
|
{
|
|
cpumask_var_t valid_cpus;
|
|
bool have_policy = false;
|
|
int ret = 0;
|
|
int cpu;
|
|
|
|
if (!zalloc_cpumask_var(&valid_cpus, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) {
|
|
ret = -ENOMEM;
|
|
goto free_valid_mask;
|
|
}
|
|
|
|
for_each_present_cpu(cpu) {
|
|
if (validate_cpu_freq_invariance_counters(cpu))
|
|
continue;
|
|
cpumask_set_cpu(cpu, valid_cpus);
|
|
have_policy |= enable_policy_freq_counters(cpu, valid_cpus);
|
|
}
|
|
|
|
/*
|
|
* If we are not restricted by cpufreq policies, we only enable
|
|
* the use of the AMU feature for FIE if all CPUs support AMU.
|
|
* Otherwise, enable_policy_freq_counters has already enabled
|
|
* policy cpus.
|
|
*/
|
|
if (!have_policy && cpumask_equal(valid_cpus, cpu_present_mask))
|
|
cpumask_or(amu_fie_cpus, amu_fie_cpus, valid_cpus);
|
|
|
|
if (!cpumask_empty(amu_fie_cpus)) {
|
|
pr_info("CPUs[%*pbl]: counters will be used for FIE.",
|
|
cpumask_pr_args(amu_fie_cpus));
|
|
static_branch_enable(&amu_fie_key);
|
|
}
|
|
|
|
/*
|
|
* If the system is not fully invariant after AMU init, disable
|
|
* partial use of counters for frequency invariance.
|
|
*/
|
|
if (!topology_scale_freq_invariant())
|
|
static_branch_disable(&amu_fie_key);
|
|
|
|
free_valid_mask:
|
|
free_cpumask_var(valid_cpus);
|
|
|
|
return ret;
|
|
}
|
|
late_initcall_sync(init_amu_fie);
|
|
|
|
bool arch_freq_counters_available(const struct cpumask *cpus)
|
|
{
|
|
return amu_freq_invariant() &&
|
|
cpumask_subset(cpus, amu_fie_cpus);
|
|
}
|
|
|
|
void topology_scale_freq_tick(void)
|
|
{
|
|
u64 prev_core_cnt, prev_const_cnt;
|
|
u64 core_cnt, const_cnt, scale;
|
|
int cpu = smp_processor_id();
|
|
|
|
if (!amu_freq_invariant())
|
|
return;
|
|
|
|
if (!cpumask_test_cpu(cpu, amu_fie_cpus))
|
|
return;
|
|
|
|
const_cnt = read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0);
|
|
core_cnt = read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0);
|
|
prev_const_cnt = this_cpu_read(arch_const_cycles_prev);
|
|
prev_core_cnt = this_cpu_read(arch_core_cycles_prev);
|
|
|
|
if (unlikely(core_cnt <= prev_core_cnt ||
|
|
const_cnt <= prev_const_cnt))
|
|
goto store_and_exit;
|
|
|
|
/*
|
|
* /\core arch_max_freq_scale
|
|
* scale = ------- * --------------------
|
|
* /\const SCHED_CAPACITY_SCALE
|
|
*
|
|
* See validate_cpu_freq_invariance_counters() for details on
|
|
* arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
|
|
*/
|
|
scale = core_cnt - prev_core_cnt;
|
|
scale *= this_cpu_read(arch_max_freq_scale);
|
|
scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
|
|
const_cnt - prev_const_cnt);
|
|
|
|
scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
|
|
this_cpu_write(freq_scale, (unsigned long)scale);
|
|
|
|
store_and_exit:
|
|
this_cpu_write(arch_core_cycles_prev, core_cnt);
|
|
this_cpu_write(arch_const_cycles_prev, const_cnt);
|
|
}
|
|
#endif /* CONFIG_ARM64_AMU_EXTN */
|