fdea03e12a
Similarly to kmsan_vmap_pages_range_noflush(), kmsan_ioremap_page_range()
must also properly handle allocation/mapping failures. In the case of
such, it must clean up the already created metadata mappings and return an
error code, so that the error can be propagated to ioremap_page_range().
Without doing so, KMSAN may silently fail to bring the metadata for the
page range into a consistent state, which will result in user-visible
crashes when trying to access them.
Link: https://lkml.kernel.org/r/20230413131223.4135168-2-glider@google.com
Fixes: b073d7f8ae
("mm: kmsan: maintain KMSAN metadata for page operations")
Signed-off-by: Alexander Potapenko <glider@google.com>
Reported-by: Dipanjan Das <mail.dipanjan.das@gmail.com>
Link: https://lore.kernel.org/linux-mm/CANX2M5ZRrRA64k0hOif02TjmY9kbbO2aCBPyq79es34RXZ=cAw@mail.gmail.com/
Reviewed-by: Marco Elver <elver@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
425 lines
12 KiB
C
425 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* KMSAN hooks for kernel subsystems.
|
|
*
|
|
* These functions handle creation of KMSAN metadata for memory allocations.
|
|
*
|
|
* Copyright (C) 2018-2022 Google LLC
|
|
* Author: Alexander Potapenko <glider@google.com>
|
|
*
|
|
*/
|
|
|
|
#include <linux/cacheflush.h>
|
|
#include <linux/dma-direction.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kmsan.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/usb.h>
|
|
|
|
#include "../internal.h"
|
|
#include "../slab.h"
|
|
#include "kmsan.h"
|
|
|
|
/*
|
|
* Instrumented functions shouldn't be called under
|
|
* kmsan_enter_runtime()/kmsan_leave_runtime(), because this will lead to
|
|
* skipping effects of functions like memset() inside instrumented code.
|
|
*/
|
|
|
|
void kmsan_task_create(struct task_struct *task)
|
|
{
|
|
kmsan_enter_runtime();
|
|
kmsan_internal_task_create(task);
|
|
kmsan_leave_runtime();
|
|
}
|
|
|
|
void kmsan_task_exit(struct task_struct *task)
|
|
{
|
|
struct kmsan_ctx *ctx = &task->kmsan_ctx;
|
|
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
|
|
ctx->allow_reporting = false;
|
|
}
|
|
|
|
void kmsan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags)
|
|
{
|
|
if (unlikely(object == NULL))
|
|
return;
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
/*
|
|
* There's a ctor or this is an RCU cache - do nothing. The memory
|
|
* status hasn't changed since last use.
|
|
*/
|
|
if (s->ctor || (s->flags & SLAB_TYPESAFE_BY_RCU))
|
|
return;
|
|
|
|
kmsan_enter_runtime();
|
|
if (flags & __GFP_ZERO)
|
|
kmsan_internal_unpoison_memory(object, s->object_size,
|
|
KMSAN_POISON_CHECK);
|
|
else
|
|
kmsan_internal_poison_memory(object, s->object_size, flags,
|
|
KMSAN_POISON_CHECK);
|
|
kmsan_leave_runtime();
|
|
}
|
|
|
|
void kmsan_slab_free(struct kmem_cache *s, void *object)
|
|
{
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
|
|
/* RCU slabs could be legally used after free within the RCU period */
|
|
if (unlikely(s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)))
|
|
return;
|
|
/*
|
|
* If there's a constructor, freed memory must remain in the same state
|
|
* until the next allocation. We cannot save its state to detect
|
|
* use-after-free bugs, instead we just keep it unpoisoned.
|
|
*/
|
|
if (s->ctor)
|
|
return;
|
|
kmsan_enter_runtime();
|
|
kmsan_internal_poison_memory(object, s->object_size, GFP_KERNEL,
|
|
KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
|
|
kmsan_leave_runtime();
|
|
}
|
|
|
|
void kmsan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
|
|
{
|
|
if (unlikely(ptr == NULL))
|
|
return;
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
kmsan_enter_runtime();
|
|
if (flags & __GFP_ZERO)
|
|
kmsan_internal_unpoison_memory((void *)ptr, size,
|
|
/*checked*/ true);
|
|
else
|
|
kmsan_internal_poison_memory((void *)ptr, size, flags,
|
|
KMSAN_POISON_CHECK);
|
|
kmsan_leave_runtime();
|
|
}
|
|
|
|
void kmsan_kfree_large(const void *ptr)
|
|
{
|
|
struct page *page;
|
|
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
kmsan_enter_runtime();
|
|
page = virt_to_head_page((void *)ptr);
|
|
KMSAN_WARN_ON(ptr != page_address(page));
|
|
kmsan_internal_poison_memory((void *)ptr,
|
|
PAGE_SIZE << compound_order(page),
|
|
GFP_KERNEL,
|
|
KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
|
|
kmsan_leave_runtime();
|
|
}
|
|
|
|
static unsigned long vmalloc_shadow(unsigned long addr)
|
|
{
|
|
return (unsigned long)kmsan_get_metadata((void *)addr,
|
|
KMSAN_META_SHADOW);
|
|
}
|
|
|
|
static unsigned long vmalloc_origin(unsigned long addr)
|
|
{
|
|
return (unsigned long)kmsan_get_metadata((void *)addr,
|
|
KMSAN_META_ORIGIN);
|
|
}
|
|
|
|
void kmsan_vunmap_range_noflush(unsigned long start, unsigned long end)
|
|
{
|
|
__vunmap_range_noflush(vmalloc_shadow(start), vmalloc_shadow(end));
|
|
__vunmap_range_noflush(vmalloc_origin(start), vmalloc_origin(end));
|
|
flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
|
|
flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
|
|
}
|
|
|
|
/*
|
|
* This function creates new shadow/origin pages for the physical pages mapped
|
|
* into the virtual memory. If those physical pages already had shadow/origin,
|
|
* those are ignored.
|
|
*/
|
|
int kmsan_ioremap_page_range(unsigned long start, unsigned long end,
|
|
phys_addr_t phys_addr, pgprot_t prot,
|
|
unsigned int page_shift)
|
|
{
|
|
gfp_t gfp_mask = GFP_KERNEL | __GFP_ZERO;
|
|
struct page *shadow, *origin;
|
|
unsigned long off = 0;
|
|
int nr, err = 0, clean = 0, mapped;
|
|
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return 0;
|
|
|
|
nr = (end - start) / PAGE_SIZE;
|
|
kmsan_enter_runtime();
|
|
for (int i = 0; i < nr; i++, off += PAGE_SIZE, clean = i) {
|
|
shadow = alloc_pages(gfp_mask, 1);
|
|
origin = alloc_pages(gfp_mask, 1);
|
|
if (!shadow || !origin) {
|
|
err = -ENOMEM;
|
|
goto ret;
|
|
}
|
|
mapped = __vmap_pages_range_noflush(
|
|
vmalloc_shadow(start + off),
|
|
vmalloc_shadow(start + off + PAGE_SIZE), prot, &shadow,
|
|
PAGE_SHIFT);
|
|
if (mapped) {
|
|
err = mapped;
|
|
goto ret;
|
|
}
|
|
shadow = NULL;
|
|
mapped = __vmap_pages_range_noflush(
|
|
vmalloc_origin(start + off),
|
|
vmalloc_origin(start + off + PAGE_SIZE), prot, &origin,
|
|
PAGE_SHIFT);
|
|
if (mapped) {
|
|
__vunmap_range_noflush(
|
|
vmalloc_shadow(start + off),
|
|
vmalloc_shadow(start + off + PAGE_SIZE));
|
|
err = mapped;
|
|
goto ret;
|
|
}
|
|
origin = NULL;
|
|
}
|
|
/* Page mapping loop finished normally, nothing to clean up. */
|
|
clean = 0;
|
|
|
|
ret:
|
|
if (clean > 0) {
|
|
/*
|
|
* Something went wrong. Clean up shadow/origin pages allocated
|
|
* on the last loop iteration, then delete mappings created
|
|
* during the previous iterations.
|
|
*/
|
|
if (shadow)
|
|
__free_pages(shadow, 1);
|
|
if (origin)
|
|
__free_pages(origin, 1);
|
|
__vunmap_range_noflush(
|
|
vmalloc_shadow(start),
|
|
vmalloc_shadow(start + clean * PAGE_SIZE));
|
|
__vunmap_range_noflush(
|
|
vmalloc_origin(start),
|
|
vmalloc_origin(start + clean * PAGE_SIZE));
|
|
}
|
|
flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
|
|
flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
|
|
kmsan_leave_runtime();
|
|
return err;
|
|
}
|
|
|
|
void kmsan_iounmap_page_range(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long v_shadow, v_origin;
|
|
struct page *shadow, *origin;
|
|
int nr;
|
|
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
|
|
nr = (end - start) / PAGE_SIZE;
|
|
kmsan_enter_runtime();
|
|
v_shadow = (unsigned long)vmalloc_shadow(start);
|
|
v_origin = (unsigned long)vmalloc_origin(start);
|
|
for (int i = 0; i < nr;
|
|
i++, v_shadow += PAGE_SIZE, v_origin += PAGE_SIZE) {
|
|
shadow = kmsan_vmalloc_to_page_or_null((void *)v_shadow);
|
|
origin = kmsan_vmalloc_to_page_or_null((void *)v_origin);
|
|
__vunmap_range_noflush(v_shadow, vmalloc_shadow(end));
|
|
__vunmap_range_noflush(v_origin, vmalloc_origin(end));
|
|
if (shadow)
|
|
__free_pages(shadow, 1);
|
|
if (origin)
|
|
__free_pages(origin, 1);
|
|
}
|
|
flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
|
|
flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
|
|
kmsan_leave_runtime();
|
|
}
|
|
|
|
void kmsan_copy_to_user(void __user *to, const void *from, size_t to_copy,
|
|
size_t left)
|
|
{
|
|
unsigned long ua_flags;
|
|
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
/*
|
|
* At this point we've copied the memory already. It's hard to check it
|
|
* before copying, as the size of actually copied buffer is unknown.
|
|
*/
|
|
|
|
/* copy_to_user() may copy zero bytes. No need to check. */
|
|
if (!to_copy)
|
|
return;
|
|
/* Or maybe copy_to_user() failed to copy anything. */
|
|
if (to_copy <= left)
|
|
return;
|
|
|
|
ua_flags = user_access_save();
|
|
if ((u64)to < TASK_SIZE) {
|
|
/* This is a user memory access, check it. */
|
|
kmsan_internal_check_memory((void *)from, to_copy - left, to,
|
|
REASON_COPY_TO_USER);
|
|
} else {
|
|
/* Otherwise this is a kernel memory access. This happens when a
|
|
* compat syscall passes an argument allocated on the kernel
|
|
* stack to a real syscall.
|
|
* Don't check anything, just copy the shadow of the copied
|
|
* bytes.
|
|
*/
|
|
kmsan_internal_memmove_metadata((void *)to, (void *)from,
|
|
to_copy - left);
|
|
}
|
|
user_access_restore(ua_flags);
|
|
}
|
|
EXPORT_SYMBOL(kmsan_copy_to_user);
|
|
|
|
/* Helper function to check an URB. */
|
|
void kmsan_handle_urb(const struct urb *urb, bool is_out)
|
|
{
|
|
if (!urb)
|
|
return;
|
|
if (is_out)
|
|
kmsan_internal_check_memory(urb->transfer_buffer,
|
|
urb->transfer_buffer_length,
|
|
/*user_addr*/ 0, REASON_SUBMIT_URB);
|
|
else
|
|
kmsan_internal_unpoison_memory(urb->transfer_buffer,
|
|
urb->transfer_buffer_length,
|
|
/*checked*/ false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kmsan_handle_urb);
|
|
|
|
static void kmsan_handle_dma_page(const void *addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
switch (dir) {
|
|
case DMA_BIDIRECTIONAL:
|
|
kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
|
|
REASON_ANY);
|
|
kmsan_internal_unpoison_memory((void *)addr, size,
|
|
/*checked*/ false);
|
|
break;
|
|
case DMA_TO_DEVICE:
|
|
kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
|
|
REASON_ANY);
|
|
break;
|
|
case DMA_FROM_DEVICE:
|
|
kmsan_internal_unpoison_memory((void *)addr, size,
|
|
/*checked*/ false);
|
|
break;
|
|
case DMA_NONE:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Helper function to handle DMA data transfers. */
|
|
void kmsan_handle_dma(struct page *page, size_t offset, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
u64 page_offset, to_go, addr;
|
|
|
|
if (PageHighMem(page))
|
|
return;
|
|
addr = (u64)page_address(page) + offset;
|
|
/*
|
|
* The kernel may occasionally give us adjacent DMA pages not belonging
|
|
* to the same allocation. Process them separately to avoid triggering
|
|
* internal KMSAN checks.
|
|
*/
|
|
while (size > 0) {
|
|
page_offset = addr % PAGE_SIZE;
|
|
to_go = min(PAGE_SIZE - page_offset, (u64)size);
|
|
kmsan_handle_dma_page((void *)addr, to_go, dir);
|
|
addr += to_go;
|
|
size -= to_go;
|
|
}
|
|
}
|
|
|
|
void kmsan_handle_dma_sg(struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *item;
|
|
int i;
|
|
|
|
for_each_sg(sg, item, nents, i)
|
|
kmsan_handle_dma(sg_page(item), item->offset, item->length,
|
|
dir);
|
|
}
|
|
|
|
/* Functions from kmsan-checks.h follow. */
|
|
void kmsan_poison_memory(const void *address, size_t size, gfp_t flags)
|
|
{
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
kmsan_enter_runtime();
|
|
/* The users may want to poison/unpoison random memory. */
|
|
kmsan_internal_poison_memory((void *)address, size, flags,
|
|
KMSAN_POISON_NOCHECK);
|
|
kmsan_leave_runtime();
|
|
}
|
|
EXPORT_SYMBOL(kmsan_poison_memory);
|
|
|
|
void kmsan_unpoison_memory(const void *address, size_t size)
|
|
{
|
|
unsigned long ua_flags;
|
|
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
|
|
ua_flags = user_access_save();
|
|
kmsan_enter_runtime();
|
|
/* The users may want to poison/unpoison random memory. */
|
|
kmsan_internal_unpoison_memory((void *)address, size,
|
|
KMSAN_POISON_NOCHECK);
|
|
kmsan_leave_runtime();
|
|
user_access_restore(ua_flags);
|
|
}
|
|
EXPORT_SYMBOL(kmsan_unpoison_memory);
|
|
|
|
/*
|
|
* Version of kmsan_unpoison_memory() that can be called from within the KMSAN
|
|
* runtime.
|
|
*
|
|
* Non-instrumented IRQ entry functions receive struct pt_regs from assembly
|
|
* code. Those regs need to be unpoisoned, otherwise using them will result in
|
|
* false positives.
|
|
* Using kmsan_unpoison_memory() is not an option in entry code, because the
|
|
* return value of in_task() is inconsistent - as a result, certain calls to
|
|
* kmsan_unpoison_memory() are ignored. kmsan_unpoison_entry_regs() ensures that
|
|
* the registers are unpoisoned even if kmsan_in_runtime() is true in the early
|
|
* entry code.
|
|
*/
|
|
void kmsan_unpoison_entry_regs(const struct pt_regs *regs)
|
|
{
|
|
unsigned long ua_flags;
|
|
|
|
if (!kmsan_enabled)
|
|
return;
|
|
|
|
ua_flags = user_access_save();
|
|
kmsan_internal_unpoison_memory((void *)regs, sizeof(*regs),
|
|
KMSAN_POISON_NOCHECK);
|
|
user_access_restore(ua_flags);
|
|
}
|
|
|
|
void kmsan_check_memory(const void *addr, size_t size)
|
|
{
|
|
if (!kmsan_enabled)
|
|
return;
|
|
return kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
|
|
REASON_ANY);
|
|
}
|
|
EXPORT_SYMBOL(kmsan_check_memory);
|