Add support for booting 64-bit x86 kernels from 32-bit firmware running on 64-bit capable CPUs without requiring the bootloader to implement the EFI handover protocol or allocate the setup block, etc etc, all of which can be done by the stub itself, using code that already exists. Instead, create an ordinary EFI application entrypoint but implemented in 32-bit code [so that it can be invoked by 32-bit firmware], and stash the address of this 32-bit entrypoint in the .compat section where the bootloader can find it. Note that we use the setup block embedded in the binary to go through startup_32(), but it gets reallocated and copied in efi_pe_entry(), using the same code that runs when the x86 kernel is booted in EFI mode from native firmware. This requires the loaded image protocol to be installed on the kernel image's EFI handle, and point to the kernel image itself and not to its loader. This, in turn, requires the bootloader to use the LoadImage() boot service to load the 64-bit image from 32-bit firmware, which is in fact supported by firmware based on EDK2. (Only StartImage() will fail, and instead, the newly added entrypoint needs to be invoked) Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.
Description
Languages
C
97.6%
Assembly
1%
Shell
0.5%
Python
0.3%
Makefile
0.3%