linux/drivers/iio/industrialio-core.c
Javier Carrasco 5bc2ea6089 iio: core: introduce trough info element for minimum values
The IIO_CHAN_INFO_PEAK info element is used for maximum values and
currently there is no equivalent for minimum values. Instead of
overloading the existing peak info element, a new info element can
be added.

In principle there is no need to add a _TROUGH_SCALE element as the
scale will be the same as the one required for INFO_PEAK, which in
turn is sometimes omitted if a single scale for peaks and raw values
is required.

Add an IIO_CHAN_INFO_TROUGH info element for minimum values.

Signed-off-by: Javier Carrasco <javier.carrasco.cruz@gmail.com>
Link: https://lore.kernel.org/r/20231211122747.9723-1-579lpy@gmail.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2023-12-11 19:37:10 +00:00

2197 lines
57 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* The industrial I/O core
*
* Copyright (c) 2008 Jonathan Cameron
*
* Based on elements of hwmon and input subsystems.
*/
#define pr_fmt(fmt) "iio-core: " fmt
#include <linux/anon_inodes.h>
#include <linux/cdev.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/idr.h>
#include <linux/kdev_t.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/poll.h>
#include <linux/property.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include <linux/iio/buffer.h>
#include <linux/iio/buffer_impl.h>
#include <linux/iio/events.h>
#include <linux/iio/iio-opaque.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include "iio_core.h"
#include "iio_core_trigger.h"
/* IDA to assign each registered device a unique id */
static DEFINE_IDA(iio_ida);
static dev_t iio_devt;
#define IIO_DEV_MAX 256
struct bus_type iio_bus_type = {
.name = "iio",
};
EXPORT_SYMBOL(iio_bus_type);
static struct dentry *iio_debugfs_dentry;
static const char * const iio_direction[] = {
[0] = "in",
[1] = "out",
};
static const char * const iio_chan_type_name_spec[] = {
[IIO_VOLTAGE] = "voltage",
[IIO_CURRENT] = "current",
[IIO_POWER] = "power",
[IIO_ACCEL] = "accel",
[IIO_ANGL_VEL] = "anglvel",
[IIO_MAGN] = "magn",
[IIO_LIGHT] = "illuminance",
[IIO_INTENSITY] = "intensity",
[IIO_PROXIMITY] = "proximity",
[IIO_TEMP] = "temp",
[IIO_INCLI] = "incli",
[IIO_ROT] = "rot",
[IIO_ANGL] = "angl",
[IIO_TIMESTAMP] = "timestamp",
[IIO_CAPACITANCE] = "capacitance",
[IIO_ALTVOLTAGE] = "altvoltage",
[IIO_CCT] = "cct",
[IIO_PRESSURE] = "pressure",
[IIO_HUMIDITYRELATIVE] = "humidityrelative",
[IIO_ACTIVITY] = "activity",
[IIO_STEPS] = "steps",
[IIO_ENERGY] = "energy",
[IIO_DISTANCE] = "distance",
[IIO_VELOCITY] = "velocity",
[IIO_CONCENTRATION] = "concentration",
[IIO_RESISTANCE] = "resistance",
[IIO_PH] = "ph",
[IIO_UVINDEX] = "uvindex",
[IIO_ELECTRICALCONDUCTIVITY] = "electricalconductivity",
[IIO_COUNT] = "count",
[IIO_INDEX] = "index",
[IIO_GRAVITY] = "gravity",
[IIO_POSITIONRELATIVE] = "positionrelative",
[IIO_PHASE] = "phase",
[IIO_MASSCONCENTRATION] = "massconcentration",
[IIO_DELTA_ANGL] = "deltaangl",
[IIO_DELTA_VELOCITY] = "deltavelocity",
[IIO_COLORTEMP] = "colortemp",
[IIO_CHROMATICITY] = "chromaticity",
};
static const char * const iio_modifier_names[] = {
[IIO_MOD_X] = "x",
[IIO_MOD_Y] = "y",
[IIO_MOD_Z] = "z",
[IIO_MOD_X_AND_Y] = "x&y",
[IIO_MOD_X_AND_Z] = "x&z",
[IIO_MOD_Y_AND_Z] = "y&z",
[IIO_MOD_X_AND_Y_AND_Z] = "x&y&z",
[IIO_MOD_X_OR_Y] = "x|y",
[IIO_MOD_X_OR_Z] = "x|z",
[IIO_MOD_Y_OR_Z] = "y|z",
[IIO_MOD_X_OR_Y_OR_Z] = "x|y|z",
[IIO_MOD_ROOT_SUM_SQUARED_X_Y] = "sqrt(x^2+y^2)",
[IIO_MOD_SUM_SQUARED_X_Y_Z] = "x^2+y^2+z^2",
[IIO_MOD_LIGHT_BOTH] = "both",
[IIO_MOD_LIGHT_IR] = "ir",
[IIO_MOD_LIGHT_CLEAR] = "clear",
[IIO_MOD_LIGHT_RED] = "red",
[IIO_MOD_LIGHT_GREEN] = "green",
[IIO_MOD_LIGHT_BLUE] = "blue",
[IIO_MOD_LIGHT_UV] = "uv",
[IIO_MOD_LIGHT_UVA] = "uva",
[IIO_MOD_LIGHT_UVB] = "uvb",
[IIO_MOD_LIGHT_DUV] = "duv",
[IIO_MOD_QUATERNION] = "quaternion",
[IIO_MOD_TEMP_AMBIENT] = "ambient",
[IIO_MOD_TEMP_OBJECT] = "object",
[IIO_MOD_NORTH_MAGN] = "from_north_magnetic",
[IIO_MOD_NORTH_TRUE] = "from_north_true",
[IIO_MOD_NORTH_MAGN_TILT_COMP] = "from_north_magnetic_tilt_comp",
[IIO_MOD_NORTH_TRUE_TILT_COMP] = "from_north_true_tilt_comp",
[IIO_MOD_RUNNING] = "running",
[IIO_MOD_JOGGING] = "jogging",
[IIO_MOD_WALKING] = "walking",
[IIO_MOD_STILL] = "still",
[IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z] = "sqrt(x^2+y^2+z^2)",
[IIO_MOD_I] = "i",
[IIO_MOD_Q] = "q",
[IIO_MOD_CO2] = "co2",
[IIO_MOD_VOC] = "voc",
[IIO_MOD_PM1] = "pm1",
[IIO_MOD_PM2P5] = "pm2p5",
[IIO_MOD_PM4] = "pm4",
[IIO_MOD_PM10] = "pm10",
[IIO_MOD_ETHANOL] = "ethanol",
[IIO_MOD_H2] = "h2",
[IIO_MOD_O2] = "o2",
[IIO_MOD_LINEAR_X] = "linear_x",
[IIO_MOD_LINEAR_Y] = "linear_y",
[IIO_MOD_LINEAR_Z] = "linear_z",
[IIO_MOD_PITCH] = "pitch",
[IIO_MOD_YAW] = "yaw",
[IIO_MOD_ROLL] = "roll",
};
/* relies on pairs of these shared then separate */
static const char * const iio_chan_info_postfix[] = {
[IIO_CHAN_INFO_RAW] = "raw",
[IIO_CHAN_INFO_PROCESSED] = "input",
[IIO_CHAN_INFO_SCALE] = "scale",
[IIO_CHAN_INFO_OFFSET] = "offset",
[IIO_CHAN_INFO_CALIBSCALE] = "calibscale",
[IIO_CHAN_INFO_CALIBBIAS] = "calibbias",
[IIO_CHAN_INFO_PEAK] = "peak_raw",
[IIO_CHAN_INFO_PEAK_SCALE] = "peak_scale",
[IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW] = "quadrature_correction_raw",
[IIO_CHAN_INFO_AVERAGE_RAW] = "mean_raw",
[IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY]
= "filter_low_pass_3db_frequency",
[IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY]
= "filter_high_pass_3db_frequency",
[IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency",
[IIO_CHAN_INFO_FREQUENCY] = "frequency",
[IIO_CHAN_INFO_PHASE] = "phase",
[IIO_CHAN_INFO_HARDWAREGAIN] = "hardwaregain",
[IIO_CHAN_INFO_HYSTERESIS] = "hysteresis",
[IIO_CHAN_INFO_HYSTERESIS_RELATIVE] = "hysteresis_relative",
[IIO_CHAN_INFO_INT_TIME] = "integration_time",
[IIO_CHAN_INFO_ENABLE] = "en",
[IIO_CHAN_INFO_CALIBHEIGHT] = "calibheight",
[IIO_CHAN_INFO_CALIBWEIGHT] = "calibweight",
[IIO_CHAN_INFO_DEBOUNCE_COUNT] = "debounce_count",
[IIO_CHAN_INFO_DEBOUNCE_TIME] = "debounce_time",
[IIO_CHAN_INFO_CALIBEMISSIVITY] = "calibemissivity",
[IIO_CHAN_INFO_OVERSAMPLING_RATIO] = "oversampling_ratio",
[IIO_CHAN_INFO_THERMOCOUPLE_TYPE] = "thermocouple_type",
[IIO_CHAN_INFO_CALIBAMBIENT] = "calibambient",
[IIO_CHAN_INFO_ZEROPOINT] = "zeropoint",
[IIO_CHAN_INFO_TROUGH] = "trough_raw",
};
/**
* iio_device_id() - query the unique ID for the device
* @indio_dev: Device structure whose ID is being queried
*
* The IIO device ID is a unique index used for example for the naming
* of the character device /dev/iio\:device[ID].
*
* Returns: Unique ID for the device.
*/
int iio_device_id(struct iio_dev *indio_dev)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
return iio_dev_opaque->id;
}
EXPORT_SYMBOL_GPL(iio_device_id);
/**
* iio_buffer_enabled() - helper function to test if the buffer is enabled
* @indio_dev: IIO device structure for device
*
* Returns: True, if the buffer is enabled.
*/
bool iio_buffer_enabled(struct iio_dev *indio_dev)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
return iio_dev_opaque->currentmode &
(INDIO_BUFFER_HARDWARE | INDIO_BUFFER_SOFTWARE |
INDIO_BUFFER_TRIGGERED);
}
EXPORT_SYMBOL_GPL(iio_buffer_enabled);
#if defined(CONFIG_DEBUG_FS)
/*
* There's also a CONFIG_DEBUG_FS guard in include/linux/iio/iio.h for
* iio_get_debugfs_dentry() to make it inline if CONFIG_DEBUG_FS is undefined
*/
struct dentry *iio_get_debugfs_dentry(struct iio_dev *indio_dev)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
return iio_dev_opaque->debugfs_dentry;
}
EXPORT_SYMBOL_GPL(iio_get_debugfs_dentry);
#endif
/**
* iio_find_channel_from_si() - get channel from its scan index
* @indio_dev: device
* @si: scan index to match
*
* Returns:
* Constant pointer to iio_chan_spec, if scan index matches, NULL on failure.
*/
const struct iio_chan_spec
*iio_find_channel_from_si(struct iio_dev *indio_dev, int si)
{
int i;
for (i = 0; i < indio_dev->num_channels; i++)
if (indio_dev->channels[i].scan_index == si)
return &indio_dev->channels[i];
return NULL;
}
/* This turns up an awful lot */
ssize_t iio_read_const_attr(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%s\n", to_iio_const_attr(attr)->string);
}
EXPORT_SYMBOL(iio_read_const_attr);
/**
* iio_device_set_clock() - Set current timestamping clock for the device
* @indio_dev: IIO device structure containing the device
* @clock_id: timestamping clock POSIX identifier to set.
*
* Returns: 0 on success, or a negative error code.
*/
int iio_device_set_clock(struct iio_dev *indio_dev, clockid_t clock_id)
{
int ret;
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
const struct iio_event_interface *ev_int = iio_dev_opaque->event_interface;
ret = mutex_lock_interruptible(&iio_dev_opaque->mlock);
if (ret)
return ret;
if ((ev_int && iio_event_enabled(ev_int)) ||
iio_buffer_enabled(indio_dev)) {
mutex_unlock(&iio_dev_opaque->mlock);
return -EBUSY;
}
iio_dev_opaque->clock_id = clock_id;
mutex_unlock(&iio_dev_opaque->mlock);
return 0;
}
EXPORT_SYMBOL(iio_device_set_clock);
/**
* iio_device_get_clock() - Retrieve current timestamping clock for the device
* @indio_dev: IIO device structure containing the device
*
* Returns: Clock ID of the current timestamping clock for the device.
*/
clockid_t iio_device_get_clock(const struct iio_dev *indio_dev)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
return iio_dev_opaque->clock_id;
}
EXPORT_SYMBOL(iio_device_get_clock);
/**
* iio_get_time_ns() - utility function to get a time stamp for events etc
* @indio_dev: device
*
* Returns: Timestamp of the event in nanoseconds.
*/
s64 iio_get_time_ns(const struct iio_dev *indio_dev)
{
struct timespec64 tp;
switch (iio_device_get_clock(indio_dev)) {
case CLOCK_REALTIME:
return ktime_get_real_ns();
case CLOCK_MONOTONIC:
return ktime_get_ns();
case CLOCK_MONOTONIC_RAW:
return ktime_get_raw_ns();
case CLOCK_REALTIME_COARSE:
return ktime_to_ns(ktime_get_coarse_real());
case CLOCK_MONOTONIC_COARSE:
ktime_get_coarse_ts64(&tp);
return timespec64_to_ns(&tp);
case CLOCK_BOOTTIME:
return ktime_get_boottime_ns();
case CLOCK_TAI:
return ktime_get_clocktai_ns();
default:
BUG();
}
}
EXPORT_SYMBOL(iio_get_time_ns);
static int __init iio_init(void)
{
int ret;
/* Register sysfs bus */
ret = bus_register(&iio_bus_type);
if (ret < 0) {
pr_err("could not register bus type\n");
goto error_nothing;
}
ret = alloc_chrdev_region(&iio_devt, 0, IIO_DEV_MAX, "iio");
if (ret < 0) {
pr_err("failed to allocate char dev region\n");
goto error_unregister_bus_type;
}
iio_debugfs_dentry = debugfs_create_dir("iio", NULL);
return 0;
error_unregister_bus_type:
bus_unregister(&iio_bus_type);
error_nothing:
return ret;
}
static void __exit iio_exit(void)
{
if (iio_devt)
unregister_chrdev_region(iio_devt, IIO_DEV_MAX);
bus_unregister(&iio_bus_type);
debugfs_remove(iio_debugfs_dentry);
}
#if defined(CONFIG_DEBUG_FS)
static ssize_t iio_debugfs_read_reg(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
struct iio_dev *indio_dev = file->private_data;
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
unsigned int val = 0;
int ret;
if (*ppos > 0)
return simple_read_from_buffer(userbuf, count, ppos,
iio_dev_opaque->read_buf,
iio_dev_opaque->read_buf_len);
ret = indio_dev->info->debugfs_reg_access(indio_dev,
iio_dev_opaque->cached_reg_addr,
0, &val);
if (ret) {
dev_err(indio_dev->dev.parent, "%s: read failed\n", __func__);
return ret;
}
iio_dev_opaque->read_buf_len = snprintf(iio_dev_opaque->read_buf,
sizeof(iio_dev_opaque->read_buf),
"0x%X\n", val);
return simple_read_from_buffer(userbuf, count, ppos,
iio_dev_opaque->read_buf,
iio_dev_opaque->read_buf_len);
}
static ssize_t iio_debugfs_write_reg(struct file *file,
const char __user *userbuf, size_t count, loff_t *ppos)
{
struct iio_dev *indio_dev = file->private_data;
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
unsigned int reg, val;
char buf[80];
int ret;
count = min(count, sizeof(buf) - 1);
if (copy_from_user(buf, userbuf, count))
return -EFAULT;
buf[count] = 0;
ret = sscanf(buf, "%i %i", &reg, &val);
switch (ret) {
case 1:
iio_dev_opaque->cached_reg_addr = reg;
break;
case 2:
iio_dev_opaque->cached_reg_addr = reg;
ret = indio_dev->info->debugfs_reg_access(indio_dev, reg,
val, NULL);
if (ret) {
dev_err(indio_dev->dev.parent, "%s: write failed\n",
__func__);
return ret;
}
break;
default:
return -EINVAL;
}
return count;
}
static const struct file_operations iio_debugfs_reg_fops = {
.open = simple_open,
.read = iio_debugfs_read_reg,
.write = iio_debugfs_write_reg,
};
static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
debugfs_remove_recursive(iio_dev_opaque->debugfs_dentry);
}
static void iio_device_register_debugfs(struct iio_dev *indio_dev)
{
struct iio_dev_opaque *iio_dev_opaque;
if (indio_dev->info->debugfs_reg_access == NULL)
return;
if (!iio_debugfs_dentry)
return;
iio_dev_opaque = to_iio_dev_opaque(indio_dev);
iio_dev_opaque->debugfs_dentry =
debugfs_create_dir(dev_name(&indio_dev->dev),
iio_debugfs_dentry);
debugfs_create_file("direct_reg_access", 0644,
iio_dev_opaque->debugfs_dentry, indio_dev,
&iio_debugfs_reg_fops);
}
#else
static void iio_device_register_debugfs(struct iio_dev *indio_dev)
{
}
static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
{
}
#endif /* CONFIG_DEBUG_FS */
static ssize_t iio_read_channel_ext_info(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
const struct iio_chan_spec_ext_info *ext_info;
ext_info = &this_attr->c->ext_info[this_attr->address];
return ext_info->read(indio_dev, ext_info->private, this_attr->c, buf);
}
static ssize_t iio_write_channel_ext_info(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
const struct iio_chan_spec_ext_info *ext_info;
ext_info = &this_attr->c->ext_info[this_attr->address];
return ext_info->write(indio_dev, ext_info->private,
this_attr->c, buf, len);
}
ssize_t iio_enum_available_read(struct iio_dev *indio_dev,
uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
{
const struct iio_enum *e = (const struct iio_enum *)priv;
unsigned int i;
size_t len = 0;
if (!e->num_items)
return 0;
for (i = 0; i < e->num_items; ++i) {
if (!e->items[i])
continue;
len += sysfs_emit_at(buf, len, "%s ", e->items[i]);
}
/* replace last space with a newline */
buf[len - 1] = '\n';
return len;
}
EXPORT_SYMBOL_GPL(iio_enum_available_read);
ssize_t iio_enum_read(struct iio_dev *indio_dev,
uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
{
const struct iio_enum *e = (const struct iio_enum *)priv;
int i;
if (!e->get)
return -EINVAL;
i = e->get(indio_dev, chan);
if (i < 0)
return i;
if (i >= e->num_items || !e->items[i])
return -EINVAL;
return sysfs_emit(buf, "%s\n", e->items[i]);
}
EXPORT_SYMBOL_GPL(iio_enum_read);
ssize_t iio_enum_write(struct iio_dev *indio_dev,
uintptr_t priv, const struct iio_chan_spec *chan, const char *buf,
size_t len)
{
const struct iio_enum *e = (const struct iio_enum *)priv;
int ret;
if (!e->set)
return -EINVAL;
ret = __sysfs_match_string(e->items, e->num_items, buf);
if (ret < 0)
return ret;
ret = e->set(indio_dev, chan, ret);
return ret ? ret : len;
}
EXPORT_SYMBOL_GPL(iio_enum_write);
static const struct iio_mount_matrix iio_mount_idmatrix = {
.rotation = {
"1", "0", "0",
"0", "1", "0",
"0", "0", "1"
}
};
static int iio_setup_mount_idmatrix(const struct device *dev,
struct iio_mount_matrix *matrix)
{
*matrix = iio_mount_idmatrix;
dev_info(dev, "mounting matrix not found: using identity...\n");
return 0;
}
ssize_t iio_show_mount_matrix(struct iio_dev *indio_dev, uintptr_t priv,
const struct iio_chan_spec *chan, char *buf)
{
const struct iio_mount_matrix *mtx;
mtx = ((iio_get_mount_matrix_t *)priv)(indio_dev, chan);
if (IS_ERR(mtx))
return PTR_ERR(mtx);
if (!mtx)
mtx = &iio_mount_idmatrix;
return sysfs_emit(buf, "%s, %s, %s; %s, %s, %s; %s, %s, %s\n",
mtx->rotation[0], mtx->rotation[1], mtx->rotation[2],
mtx->rotation[3], mtx->rotation[4], mtx->rotation[5],
mtx->rotation[6], mtx->rotation[7], mtx->rotation[8]);
}
EXPORT_SYMBOL_GPL(iio_show_mount_matrix);
/**
* iio_read_mount_matrix() - retrieve iio device mounting matrix from
* device "mount-matrix" property
* @dev: device the mounting matrix property is assigned to
* @matrix: where to store retrieved matrix
*
* If device is assigned no mounting matrix property, a default 3x3 identity
* matrix will be filled in.
*
* Returns: 0 if success, or a negative error code on failure.
*/
int iio_read_mount_matrix(struct device *dev, struct iio_mount_matrix *matrix)
{
size_t len = ARRAY_SIZE(iio_mount_idmatrix.rotation);
int err;
err = device_property_read_string_array(dev, "mount-matrix", matrix->rotation, len);
if (err == len)
return 0;
if (err >= 0)
/* Invalid number of matrix entries. */
return -EINVAL;
if (err != -EINVAL)
/* Invalid matrix declaration format. */
return err;
/* Matrix was not declared at all: fallback to identity. */
return iio_setup_mount_idmatrix(dev, matrix);
}
EXPORT_SYMBOL(iio_read_mount_matrix);
static ssize_t __iio_format_value(char *buf, size_t offset, unsigned int type,
int size, const int *vals)
{
int tmp0, tmp1;
s64 tmp2;
bool scale_db = false;
switch (type) {
case IIO_VAL_INT:
return sysfs_emit_at(buf, offset, "%d", vals[0]);
case IIO_VAL_INT_PLUS_MICRO_DB:
scale_db = true;
fallthrough;
case IIO_VAL_INT_PLUS_MICRO:
if (vals[1] < 0)
return sysfs_emit_at(buf, offset, "-%d.%06u%s",
abs(vals[0]), -vals[1],
scale_db ? " dB" : "");
else
return sysfs_emit_at(buf, offset, "%d.%06u%s", vals[0],
vals[1], scale_db ? " dB" : "");
case IIO_VAL_INT_PLUS_NANO:
if (vals[1] < 0)
return sysfs_emit_at(buf, offset, "-%d.%09u",
abs(vals[0]), -vals[1]);
else
return sysfs_emit_at(buf, offset, "%d.%09u", vals[0],
vals[1]);
case IIO_VAL_FRACTIONAL:
tmp2 = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
tmp1 = vals[1];
tmp0 = (int)div_s64_rem(tmp2, 1000000000, &tmp1);
if ((tmp2 < 0) && (tmp0 == 0))
return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
else
return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
abs(tmp1));
case IIO_VAL_FRACTIONAL_LOG2:
tmp2 = shift_right((s64)vals[0] * 1000000000LL, vals[1]);
tmp0 = (int)div_s64_rem(tmp2, 1000000000LL, &tmp1);
if (tmp0 == 0 && tmp2 < 0)
return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
else
return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
abs(tmp1));
case IIO_VAL_INT_MULTIPLE:
{
int i;
int l = 0;
for (i = 0; i < size; ++i)
l += sysfs_emit_at(buf, offset + l, "%d ", vals[i]);
return l;
}
case IIO_VAL_CHAR:
return sysfs_emit_at(buf, offset, "%c", (char)vals[0]);
case IIO_VAL_INT_64:
tmp2 = (s64)((((u64)vals[1]) << 32) | (u32)vals[0]);
return sysfs_emit_at(buf, offset, "%lld", tmp2);
default:
return 0;
}
}
/**
* iio_format_value() - Formats a IIO value into its string representation
* @buf: The buffer to which the formatted value gets written
* which is assumed to be big enough (i.e. PAGE_SIZE).
* @type: One of the IIO_VAL_* constants. This decides how the val
* and val2 parameters are formatted.
* @size: Number of IIO value entries contained in vals
* @vals: Pointer to the values, exact meaning depends on the
* type parameter.
*
* Returns:
* 0 by default, a negative number on failure or the total number of characters
* written for a type that belongs to the IIO_VAL_* constant.
*/
ssize_t iio_format_value(char *buf, unsigned int type, int size, int *vals)
{
ssize_t len;
len = __iio_format_value(buf, 0, type, size, vals);
if (len >= PAGE_SIZE - 1)
return -EFBIG;
return len + sysfs_emit_at(buf, len, "\n");
}
EXPORT_SYMBOL_GPL(iio_format_value);
static ssize_t iio_read_channel_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
if (indio_dev->info->read_label)
return indio_dev->info->read_label(indio_dev, this_attr->c, buf);
if (this_attr->c->extend_name)
return sysfs_emit(buf, "%s\n", this_attr->c->extend_name);
return -EINVAL;
}
static ssize_t iio_read_channel_info(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int vals[INDIO_MAX_RAW_ELEMENTS];
int ret;
int val_len = 2;
if (indio_dev->info->read_raw_multi)
ret = indio_dev->info->read_raw_multi(indio_dev, this_attr->c,
INDIO_MAX_RAW_ELEMENTS,
vals, &val_len,
this_attr->address);
else
ret = indio_dev->info->read_raw(indio_dev, this_attr->c,
&vals[0], &vals[1], this_attr->address);
if (ret < 0)
return ret;
return iio_format_value(buf, ret, val_len, vals);
}
static ssize_t iio_format_list(char *buf, const int *vals, int type, int length,
const char *prefix, const char *suffix)
{
ssize_t len;
int stride;
int i;
switch (type) {
case IIO_VAL_INT:
stride = 1;
break;
default:
stride = 2;
break;
}
len = sysfs_emit(buf, prefix);
for (i = 0; i <= length - stride; i += stride) {
if (i != 0) {
len += sysfs_emit_at(buf, len, " ");
if (len >= PAGE_SIZE)
return -EFBIG;
}
len += __iio_format_value(buf, len, type, stride, &vals[i]);
if (len >= PAGE_SIZE)
return -EFBIG;
}
len += sysfs_emit_at(buf, len, "%s\n", suffix);
return len;
}
static ssize_t iio_format_avail_list(char *buf, const int *vals,
int type, int length)
{
return iio_format_list(buf, vals, type, length, "", "");
}
static ssize_t iio_format_avail_range(char *buf, const int *vals, int type)
{
int length;
/*
* length refers to the array size , not the number of elements.
* The purpose is to print the range [min , step ,max] so length should
* be 3 in case of int, and 6 for other types.
*/
switch (type) {
case IIO_VAL_INT:
length = 3;
break;
default:
length = 6;
break;
}
return iio_format_list(buf, vals, type, length, "[", "]");
}
static ssize_t iio_read_channel_info_avail(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
const int *vals;
int ret;
int length;
int type;
ret = indio_dev->info->read_avail(indio_dev, this_attr->c,
&vals, &type, &length,
this_attr->address);
if (ret < 0)
return ret;
switch (ret) {
case IIO_AVAIL_LIST:
return iio_format_avail_list(buf, vals, type, length);
case IIO_AVAIL_RANGE:
return iio_format_avail_range(buf, vals, type);
default:
return -EINVAL;
}
}
/**
* __iio_str_to_fixpoint() - Parse a fixed-point number from a string
* @str: The string to parse
* @fract_mult: Multiplier for the first decimal place, should be a power of 10
* @integer: The integer part of the number
* @fract: The fractional part of the number
* @scale_db: True if this should parse as dB
*
* Returns:
* 0 on success, or a negative error code if the string could not be parsed.
*/
static int __iio_str_to_fixpoint(const char *str, int fract_mult,
int *integer, int *fract, bool scale_db)
{
int i = 0, f = 0;
bool integer_part = true, negative = false;
if (fract_mult == 0) {
*fract = 0;
return kstrtoint(str, 0, integer);
}
if (str[0] == '-') {
negative = true;
str++;
} else if (str[0] == '+') {
str++;
}
while (*str) {
if ('0' <= *str && *str <= '9') {
if (integer_part) {
i = i * 10 + *str - '0';
} else {
f += fract_mult * (*str - '0');
fract_mult /= 10;
}
} else if (*str == '\n') {
if (*(str + 1) == '\0')
break;
return -EINVAL;
} else if (!strncmp(str, " dB", sizeof(" dB") - 1) && scale_db) {
/* Ignore the dB suffix */
str += sizeof(" dB") - 1;
continue;
} else if (!strncmp(str, "dB", sizeof("dB") - 1) && scale_db) {
/* Ignore the dB suffix */
str += sizeof("dB") - 1;
continue;
} else if (*str == '.' && integer_part) {
integer_part = false;
} else {
return -EINVAL;
}
str++;
}
if (negative) {
if (i)
i = -i;
else
f = -f;
}
*integer = i;
*fract = f;
return 0;
}
/**
* iio_str_to_fixpoint() - Parse a fixed-point number from a string
* @str: The string to parse
* @fract_mult: Multiplier for the first decimal place, should be a power of 10
* @integer: The integer part of the number
* @fract: The fractional part of the number
*
* Returns:
* 0 on success, or a negative error code if the string could not be parsed.
*/
int iio_str_to_fixpoint(const char *str, int fract_mult,
int *integer, int *fract)
{
return __iio_str_to_fixpoint(str, fract_mult, integer, fract, false);
}
EXPORT_SYMBOL_GPL(iio_str_to_fixpoint);
static ssize_t iio_write_channel_info(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int ret, fract_mult = 100000;
int integer, fract = 0;
bool is_char = false;
bool scale_db = false;
/* Assumes decimal - precision based on number of digits */
if (!indio_dev->info->write_raw)
return -EINVAL;
if (indio_dev->info->write_raw_get_fmt)
switch (indio_dev->info->write_raw_get_fmt(indio_dev,
this_attr->c, this_attr->address)) {
case IIO_VAL_INT:
fract_mult = 0;
break;
case IIO_VAL_INT_PLUS_MICRO_DB:
scale_db = true;
fallthrough;
case IIO_VAL_INT_PLUS_MICRO:
fract_mult = 100000;
break;
case IIO_VAL_INT_PLUS_NANO:
fract_mult = 100000000;
break;
case IIO_VAL_CHAR:
is_char = true;
break;
default:
return -EINVAL;
}
if (is_char) {
char ch;
if (sscanf(buf, "%c", &ch) != 1)
return -EINVAL;
integer = ch;
} else {
ret = __iio_str_to_fixpoint(buf, fract_mult, &integer, &fract,
scale_db);
if (ret)
return ret;
}
ret = indio_dev->info->write_raw(indio_dev, this_attr->c,
integer, fract, this_attr->address);
if (ret)
return ret;
return len;
}
static
int __iio_device_attr_init(struct device_attribute *dev_attr,
const char *postfix,
struct iio_chan_spec const *chan,
ssize_t (*readfunc)(struct device *dev,
struct device_attribute *attr,
char *buf),
ssize_t (*writefunc)(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len),
enum iio_shared_by shared_by)
{
int ret = 0;
char *name = NULL;
char *full_postfix;
sysfs_attr_init(&dev_attr->attr);
/* Build up postfix of <extend_name>_<modifier>_postfix */
if (chan->modified && (shared_by == IIO_SEPARATE)) {
if (chan->extend_name)
full_postfix = kasprintf(GFP_KERNEL, "%s_%s_%s",
iio_modifier_names[chan->channel2],
chan->extend_name,
postfix);
else
full_postfix = kasprintf(GFP_KERNEL, "%s_%s",
iio_modifier_names[chan->channel2],
postfix);
} else {
if (chan->extend_name == NULL || shared_by != IIO_SEPARATE)
full_postfix = kstrdup(postfix, GFP_KERNEL);
else
full_postfix = kasprintf(GFP_KERNEL,
"%s_%s",
chan->extend_name,
postfix);
}
if (full_postfix == NULL)
return -ENOMEM;
if (chan->differential) { /* Differential can not have modifier */
switch (shared_by) {
case IIO_SHARED_BY_ALL:
name = kasprintf(GFP_KERNEL, "%s", full_postfix);
break;
case IIO_SHARED_BY_DIR:
name = kasprintf(GFP_KERNEL, "%s_%s",
iio_direction[chan->output],
full_postfix);
break;
case IIO_SHARED_BY_TYPE:
name = kasprintf(GFP_KERNEL, "%s_%s-%s_%s",
iio_direction[chan->output],
iio_chan_type_name_spec[chan->type],
iio_chan_type_name_spec[chan->type],
full_postfix);
break;
case IIO_SEPARATE:
if (!chan->indexed) {
WARN(1, "Differential channels must be indexed\n");
ret = -EINVAL;
goto error_free_full_postfix;
}
name = kasprintf(GFP_KERNEL,
"%s_%s%d-%s%d_%s",
iio_direction[chan->output],
iio_chan_type_name_spec[chan->type],
chan->channel,
iio_chan_type_name_spec[chan->type],
chan->channel2,
full_postfix);
break;
}
} else { /* Single ended */
switch (shared_by) {
case IIO_SHARED_BY_ALL:
name = kasprintf(GFP_KERNEL, "%s", full_postfix);
break;
case IIO_SHARED_BY_DIR:
name = kasprintf(GFP_KERNEL, "%s_%s",
iio_direction[chan->output],
full_postfix);
break;
case IIO_SHARED_BY_TYPE:
name = kasprintf(GFP_KERNEL, "%s_%s_%s",
iio_direction[chan->output],
iio_chan_type_name_spec[chan->type],
full_postfix);
break;
case IIO_SEPARATE:
if (chan->indexed)
name = kasprintf(GFP_KERNEL, "%s_%s%d_%s",
iio_direction[chan->output],
iio_chan_type_name_spec[chan->type],
chan->channel,
full_postfix);
else
name = kasprintf(GFP_KERNEL, "%s_%s_%s",
iio_direction[chan->output],
iio_chan_type_name_spec[chan->type],
full_postfix);
break;
}
}
if (name == NULL) {
ret = -ENOMEM;
goto error_free_full_postfix;
}
dev_attr->attr.name = name;
if (readfunc) {
dev_attr->attr.mode |= 0444;
dev_attr->show = readfunc;
}
if (writefunc) {
dev_attr->attr.mode |= 0200;
dev_attr->store = writefunc;
}
error_free_full_postfix:
kfree(full_postfix);
return ret;
}
static void __iio_device_attr_deinit(struct device_attribute *dev_attr)
{
kfree(dev_attr->attr.name);
}
int __iio_add_chan_devattr(const char *postfix,
struct iio_chan_spec const *chan,
ssize_t (*readfunc)(struct device *dev,
struct device_attribute *attr,
char *buf),
ssize_t (*writefunc)(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len),
u64 mask,
enum iio_shared_by shared_by,
struct device *dev,
struct iio_buffer *buffer,
struct list_head *attr_list)
{
int ret;
struct iio_dev_attr *iio_attr, *t;
iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
if (iio_attr == NULL)
return -ENOMEM;
ret = __iio_device_attr_init(&iio_attr->dev_attr,
postfix, chan,
readfunc, writefunc, shared_by);
if (ret)
goto error_iio_dev_attr_free;
iio_attr->c = chan;
iio_attr->address = mask;
iio_attr->buffer = buffer;
list_for_each_entry(t, attr_list, l)
if (strcmp(t->dev_attr.attr.name,
iio_attr->dev_attr.attr.name) == 0) {
if (shared_by == IIO_SEPARATE)
dev_err(dev, "tried to double register : %s\n",
t->dev_attr.attr.name);
ret = -EBUSY;
goto error_device_attr_deinit;
}
list_add(&iio_attr->l, attr_list);
return 0;
error_device_attr_deinit:
__iio_device_attr_deinit(&iio_attr->dev_attr);
error_iio_dev_attr_free:
kfree(iio_attr);
return ret;
}
static int iio_device_add_channel_label(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
int ret;
if (!indio_dev->info->read_label && !chan->extend_name)
return 0;
ret = __iio_add_chan_devattr("label",
chan,
&iio_read_channel_label,
NULL,
0,
IIO_SEPARATE,
&indio_dev->dev,
NULL,
&iio_dev_opaque->channel_attr_list);
if (ret < 0)
return ret;
return 1;
}
static int iio_device_add_info_mask_type(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
enum iio_shared_by shared_by,
const long *infomask)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
int i, ret, attrcount = 0;
for_each_set_bit(i, infomask, sizeof(*infomask)*8) {
if (i >= ARRAY_SIZE(iio_chan_info_postfix))
return -EINVAL;
ret = __iio_add_chan_devattr(iio_chan_info_postfix[i],
chan,
&iio_read_channel_info,
&iio_write_channel_info,
i,
shared_by,
&indio_dev->dev,
NULL,
&iio_dev_opaque->channel_attr_list);
if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
continue;
if (ret < 0)
return ret;
attrcount++;
}
return attrcount;
}
static int iio_device_add_info_mask_type_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
enum iio_shared_by shared_by,
const long *infomask)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
int i, ret, attrcount = 0;
char *avail_postfix;
for_each_set_bit(i, infomask, sizeof(*infomask) * 8) {
if (i >= ARRAY_SIZE(iio_chan_info_postfix))
return -EINVAL;
avail_postfix = kasprintf(GFP_KERNEL,
"%s_available",
iio_chan_info_postfix[i]);
if (!avail_postfix)
return -ENOMEM;
ret = __iio_add_chan_devattr(avail_postfix,
chan,
&iio_read_channel_info_avail,
NULL,
i,
shared_by,
&indio_dev->dev,
NULL,
&iio_dev_opaque->channel_attr_list);
kfree(avail_postfix);
if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
continue;
if (ret < 0)
return ret;
attrcount++;
}
return attrcount;
}
static int iio_device_add_channel_sysfs(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
int ret, attrcount = 0;
const struct iio_chan_spec_ext_info *ext_info;
if (chan->channel < 0)
return 0;
ret = iio_device_add_info_mask_type(indio_dev, chan,
IIO_SEPARATE,
&chan->info_mask_separate);
if (ret < 0)
return ret;
attrcount += ret;
ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
IIO_SEPARATE,
&chan->info_mask_separate_available);
if (ret < 0)
return ret;
attrcount += ret;
ret = iio_device_add_info_mask_type(indio_dev, chan,
IIO_SHARED_BY_TYPE,
&chan->info_mask_shared_by_type);
if (ret < 0)
return ret;
attrcount += ret;
ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
IIO_SHARED_BY_TYPE,
&chan->info_mask_shared_by_type_available);
if (ret < 0)
return ret;
attrcount += ret;
ret = iio_device_add_info_mask_type(indio_dev, chan,
IIO_SHARED_BY_DIR,
&chan->info_mask_shared_by_dir);
if (ret < 0)
return ret;
attrcount += ret;
ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
IIO_SHARED_BY_DIR,
&chan->info_mask_shared_by_dir_available);
if (ret < 0)
return ret;
attrcount += ret;
ret = iio_device_add_info_mask_type(indio_dev, chan,
IIO_SHARED_BY_ALL,
&chan->info_mask_shared_by_all);
if (ret < 0)
return ret;
attrcount += ret;
ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
IIO_SHARED_BY_ALL,
&chan->info_mask_shared_by_all_available);
if (ret < 0)
return ret;
attrcount += ret;
ret = iio_device_add_channel_label(indio_dev, chan);
if (ret < 0)
return ret;
attrcount += ret;
if (chan->ext_info) {
unsigned int i = 0;
for (ext_info = chan->ext_info; ext_info->name; ext_info++) {
ret = __iio_add_chan_devattr(ext_info->name,
chan,
ext_info->read ?
&iio_read_channel_ext_info : NULL,
ext_info->write ?
&iio_write_channel_ext_info : NULL,
i,
ext_info->shared,
&indio_dev->dev,
NULL,
&iio_dev_opaque->channel_attr_list);
i++;
if (ret == -EBUSY && ext_info->shared)
continue;
if (ret)
return ret;
attrcount++;
}
}
return attrcount;
}
/**
* iio_free_chan_devattr_list() - Free a list of IIO device attributes
* @attr_list: List of IIO device attributes
*
* This function frees the memory allocated for each of the IIO device
* attributes in the list.
*/
void iio_free_chan_devattr_list(struct list_head *attr_list)
{
struct iio_dev_attr *p, *n;
list_for_each_entry_safe(p, n, attr_list, l) {
kfree_const(p->dev_attr.attr.name);
list_del(&p->l);
kfree(p);
}
}
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
return sysfs_emit(buf, "%s\n", indio_dev->name);
}
static DEVICE_ATTR_RO(name);
static ssize_t label_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
return sysfs_emit(buf, "%s\n", indio_dev->label);
}
static DEVICE_ATTR_RO(label);
static const char * const clock_names[] = {
[CLOCK_REALTIME] = "realtime",
[CLOCK_MONOTONIC] = "monotonic",
[CLOCK_PROCESS_CPUTIME_ID] = "process_cputime_id",
[CLOCK_THREAD_CPUTIME_ID] = "thread_cputime_id",
[CLOCK_MONOTONIC_RAW] = "monotonic_raw",
[CLOCK_REALTIME_COARSE] = "realtime_coarse",
[CLOCK_MONOTONIC_COARSE] = "monotonic_coarse",
[CLOCK_BOOTTIME] = "boottime",
[CLOCK_REALTIME_ALARM] = "realtime_alarm",
[CLOCK_BOOTTIME_ALARM] = "boottime_alarm",
[CLOCK_SGI_CYCLE] = "sgi_cycle",
[CLOCK_TAI] = "tai",
};
static ssize_t current_timestamp_clock_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
const struct iio_dev *indio_dev = dev_to_iio_dev(dev);
const clockid_t clk = iio_device_get_clock(indio_dev);
switch (clk) {
case CLOCK_REALTIME:
case CLOCK_MONOTONIC:
case CLOCK_MONOTONIC_RAW:
case CLOCK_REALTIME_COARSE:
case CLOCK_MONOTONIC_COARSE:
case CLOCK_BOOTTIME:
case CLOCK_TAI:
break;
default:
BUG();
}
return sysfs_emit(buf, "%s\n", clock_names[clk]);
}
static ssize_t current_timestamp_clock_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
clockid_t clk;
int ret;
ret = sysfs_match_string(clock_names, buf);
if (ret < 0)
return ret;
clk = ret;
switch (clk) {
case CLOCK_REALTIME:
case CLOCK_MONOTONIC:
case CLOCK_MONOTONIC_RAW:
case CLOCK_REALTIME_COARSE:
case CLOCK_MONOTONIC_COARSE:
case CLOCK_BOOTTIME:
case CLOCK_TAI:
break;
default:
return -EINVAL;
}
ret = iio_device_set_clock(dev_to_iio_dev(dev), clk);
if (ret)
return ret;
return len;
}
int iio_device_register_sysfs_group(struct iio_dev *indio_dev,
const struct attribute_group *group)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
const struct attribute_group **new, **old = iio_dev_opaque->groups;
unsigned int cnt = iio_dev_opaque->groupcounter;
new = krealloc_array(old, cnt + 2, sizeof(*new), GFP_KERNEL);
if (!new)
return -ENOMEM;
new[iio_dev_opaque->groupcounter++] = group;
new[iio_dev_opaque->groupcounter] = NULL;
iio_dev_opaque->groups = new;
return 0;
}
static DEVICE_ATTR_RW(current_timestamp_clock);
static int iio_device_register_sysfs(struct iio_dev *indio_dev)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
int i, ret = 0, attrcount, attrn, attrcount_orig = 0;
struct iio_dev_attr *p;
struct attribute **attr, *clk = NULL;
/* First count elements in any existing group */
if (indio_dev->info->attrs) {
attr = indio_dev->info->attrs->attrs;
while (*attr++ != NULL)
attrcount_orig++;
}
attrcount = attrcount_orig;
/*
* New channel registration method - relies on the fact a group does
* not need to be initialized if its name is NULL.
*/
if (indio_dev->channels)
for (i = 0; i < indio_dev->num_channels; i++) {
const struct iio_chan_spec *chan =
&indio_dev->channels[i];
if (chan->type == IIO_TIMESTAMP)
clk = &dev_attr_current_timestamp_clock.attr;
ret = iio_device_add_channel_sysfs(indio_dev, chan);
if (ret < 0)
goto error_clear_attrs;
attrcount += ret;
}
if (iio_dev_opaque->event_interface)
clk = &dev_attr_current_timestamp_clock.attr;
if (indio_dev->name)
attrcount++;
if (indio_dev->label)
attrcount++;
if (clk)
attrcount++;
iio_dev_opaque->chan_attr_group.attrs =
kcalloc(attrcount + 1,
sizeof(iio_dev_opaque->chan_attr_group.attrs[0]),
GFP_KERNEL);
if (iio_dev_opaque->chan_attr_group.attrs == NULL) {
ret = -ENOMEM;
goto error_clear_attrs;
}
/* Copy across original attributes, and point to original binary attributes */
if (indio_dev->info->attrs) {
memcpy(iio_dev_opaque->chan_attr_group.attrs,
indio_dev->info->attrs->attrs,
sizeof(iio_dev_opaque->chan_attr_group.attrs[0])
*attrcount_orig);
iio_dev_opaque->chan_attr_group.is_visible =
indio_dev->info->attrs->is_visible;
iio_dev_opaque->chan_attr_group.bin_attrs =
indio_dev->info->attrs->bin_attrs;
}
attrn = attrcount_orig;
/* Add all elements from the list. */
list_for_each_entry(p, &iio_dev_opaque->channel_attr_list, l)
iio_dev_opaque->chan_attr_group.attrs[attrn++] = &p->dev_attr.attr;
if (indio_dev->name)
iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_name.attr;
if (indio_dev->label)
iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_label.attr;
if (clk)
iio_dev_opaque->chan_attr_group.attrs[attrn++] = clk;
ret = iio_device_register_sysfs_group(indio_dev,
&iio_dev_opaque->chan_attr_group);
if (ret)
goto error_clear_attrs;
return 0;
error_clear_attrs:
iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
return ret;
}
static void iio_device_unregister_sysfs(struct iio_dev *indio_dev)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
kfree(iio_dev_opaque->chan_attr_group.attrs);
iio_dev_opaque->chan_attr_group.attrs = NULL;
kfree(iio_dev_opaque->groups);
iio_dev_opaque->groups = NULL;
}
static void iio_dev_release(struct device *device)
{
struct iio_dev *indio_dev = dev_to_iio_dev(device);
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
iio_device_unregister_trigger_consumer(indio_dev);
iio_device_unregister_eventset(indio_dev);
iio_device_unregister_sysfs(indio_dev);
iio_device_detach_buffers(indio_dev);
lockdep_unregister_key(&iio_dev_opaque->mlock_key);
ida_free(&iio_ida, iio_dev_opaque->id);
kfree(iio_dev_opaque);
}
const struct device_type iio_device_type = {
.name = "iio_device",
.release = iio_dev_release,
};
/**
* iio_device_alloc() - allocate an iio_dev from a driver
* @parent: Parent device.
* @sizeof_priv: Space to allocate for private structure.
*
* Returns:
* Pointer to allocated iio_dev on success, NULL on failure.
*/
struct iio_dev *iio_device_alloc(struct device *parent, int sizeof_priv)
{
struct iio_dev_opaque *iio_dev_opaque;
struct iio_dev *indio_dev;
size_t alloc_size;
alloc_size = sizeof(struct iio_dev_opaque);
if (sizeof_priv) {
alloc_size = ALIGN(alloc_size, IIO_DMA_MINALIGN);
alloc_size += sizeof_priv;
}
iio_dev_opaque = kzalloc(alloc_size, GFP_KERNEL);
if (!iio_dev_opaque)
return NULL;
indio_dev = &iio_dev_opaque->indio_dev;
indio_dev->priv = (char *)iio_dev_opaque +
ALIGN(sizeof(struct iio_dev_opaque), IIO_DMA_MINALIGN);
indio_dev->dev.parent = parent;
indio_dev->dev.type = &iio_device_type;
indio_dev->dev.bus = &iio_bus_type;
device_initialize(&indio_dev->dev);
mutex_init(&iio_dev_opaque->mlock);
mutex_init(&iio_dev_opaque->info_exist_lock);
INIT_LIST_HEAD(&iio_dev_opaque->channel_attr_list);
iio_dev_opaque->id = ida_alloc(&iio_ida, GFP_KERNEL);
if (iio_dev_opaque->id < 0) {
/* cannot use a dev_err as the name isn't available */
pr_err("failed to get device id\n");
kfree(iio_dev_opaque);
return NULL;
}
if (dev_set_name(&indio_dev->dev, "iio:device%d", iio_dev_opaque->id)) {
ida_free(&iio_ida, iio_dev_opaque->id);
kfree(iio_dev_opaque);
return NULL;
}
INIT_LIST_HEAD(&iio_dev_opaque->buffer_list);
INIT_LIST_HEAD(&iio_dev_opaque->ioctl_handlers);
lockdep_register_key(&iio_dev_opaque->mlock_key);
lockdep_set_class(&iio_dev_opaque->mlock, &iio_dev_opaque->mlock_key);
return indio_dev;
}
EXPORT_SYMBOL(iio_device_alloc);
/**
* iio_device_free() - free an iio_dev from a driver
* @dev: the iio_dev associated with the device
*/
void iio_device_free(struct iio_dev *dev)
{
if (dev)
put_device(&dev->dev);
}
EXPORT_SYMBOL(iio_device_free);
static void devm_iio_device_release(void *iio_dev)
{
iio_device_free(iio_dev);
}
/**
* devm_iio_device_alloc - Resource-managed iio_device_alloc()
* @parent: Device to allocate iio_dev for, and parent for this IIO device
* @sizeof_priv: Space to allocate for private structure.
*
* Managed iio_device_alloc. iio_dev allocated with this function is
* automatically freed on driver detach.
*
* Returns:
* Pointer to allocated iio_dev on success, NULL on failure.
*/
struct iio_dev *devm_iio_device_alloc(struct device *parent, int sizeof_priv)
{
struct iio_dev *iio_dev;
int ret;
iio_dev = iio_device_alloc(parent, sizeof_priv);
if (!iio_dev)
return NULL;
ret = devm_add_action_or_reset(parent, devm_iio_device_release,
iio_dev);
if (ret)
return NULL;
return iio_dev;
}
EXPORT_SYMBOL_GPL(devm_iio_device_alloc);
/**
* iio_chrdev_open() - chrdev file open for buffer access and ioctls
* @inode: Inode structure for identifying the device in the file system
* @filp: File structure for iio device used to keep and later access
* private data
*
* Returns: 0 on success or -EBUSY if the device is already opened
*/
static int iio_chrdev_open(struct inode *inode, struct file *filp)
{
struct iio_dev_opaque *iio_dev_opaque =
container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
struct iio_dev_buffer_pair *ib;
if (test_and_set_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags))
return -EBUSY;
iio_device_get(indio_dev);
ib = kmalloc(sizeof(*ib), GFP_KERNEL);
if (!ib) {
iio_device_put(indio_dev);
clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
return -ENOMEM;
}
ib->indio_dev = indio_dev;
ib->buffer = indio_dev->buffer;
filp->private_data = ib;
return 0;
}
/**
* iio_chrdev_release() - chrdev file close buffer access and ioctls
* @inode: Inode structure pointer for the char device
* @filp: File structure pointer for the char device
*
* Returns: 0 for successful release.
*/
static int iio_chrdev_release(struct inode *inode, struct file *filp)
{
struct iio_dev_buffer_pair *ib = filp->private_data;
struct iio_dev_opaque *iio_dev_opaque =
container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
kfree(ib);
clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
iio_device_put(indio_dev);
return 0;
}
void iio_device_ioctl_handler_register(struct iio_dev *indio_dev,
struct iio_ioctl_handler *h)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
list_add_tail(&h->entry, &iio_dev_opaque->ioctl_handlers);
}
void iio_device_ioctl_handler_unregister(struct iio_ioctl_handler *h)
{
list_del(&h->entry);
}
static long iio_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct iio_dev_buffer_pair *ib = filp->private_data;
struct iio_dev *indio_dev = ib->indio_dev;
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
struct iio_ioctl_handler *h;
int ret = -ENODEV;
mutex_lock(&iio_dev_opaque->info_exist_lock);
/*
* The NULL check here is required to prevent crashing when a device
* is being removed while userspace would still have open file handles
* to try to access this device.
*/
if (!indio_dev->info)
goto out_unlock;
list_for_each_entry(h, &iio_dev_opaque->ioctl_handlers, entry) {
ret = h->ioctl(indio_dev, filp, cmd, arg);
if (ret != IIO_IOCTL_UNHANDLED)
break;
}
if (ret == IIO_IOCTL_UNHANDLED)
ret = -ENODEV;
out_unlock:
mutex_unlock(&iio_dev_opaque->info_exist_lock);
return ret;
}
static const struct file_operations iio_buffer_fileops = {
.owner = THIS_MODULE,
.llseek = noop_llseek,
.read = iio_buffer_read_outer_addr,
.write = iio_buffer_write_outer_addr,
.poll = iio_buffer_poll_addr,
.unlocked_ioctl = iio_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.open = iio_chrdev_open,
.release = iio_chrdev_release,
};
static const struct file_operations iio_event_fileops = {
.owner = THIS_MODULE,
.llseek = noop_llseek,
.unlocked_ioctl = iio_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.open = iio_chrdev_open,
.release = iio_chrdev_release,
};
static int iio_check_unique_scan_index(struct iio_dev *indio_dev)
{
int i, j;
const struct iio_chan_spec *channels = indio_dev->channels;
if (!(indio_dev->modes & INDIO_ALL_BUFFER_MODES))
return 0;
for (i = 0; i < indio_dev->num_channels - 1; i++) {
if (channels[i].scan_index < 0)
continue;
for (j = i + 1; j < indio_dev->num_channels; j++)
if (channels[i].scan_index == channels[j].scan_index) {
dev_err(&indio_dev->dev,
"Duplicate scan index %d\n",
channels[i].scan_index);
return -EINVAL;
}
}
return 0;
}
static int iio_check_extended_name(const struct iio_dev *indio_dev)
{
unsigned int i;
if (!indio_dev->info->read_label)
return 0;
for (i = 0; i < indio_dev->num_channels; i++) {
if (indio_dev->channels[i].extend_name) {
dev_err(&indio_dev->dev,
"Cannot use labels and extend_name at the same time\n");
return -EINVAL;
}
}
return 0;
}
static const struct iio_buffer_setup_ops noop_ring_setup_ops;
static void iio_sanity_check_avail_scan_masks(struct iio_dev *indio_dev)
{
unsigned int num_masks, masklength, longs_per_mask;
const unsigned long *av_masks;
int i;
av_masks = indio_dev->available_scan_masks;
masklength = indio_dev->masklength;
longs_per_mask = BITS_TO_LONGS(masklength);
/*
* The code determining how many available_scan_masks is in the array
* will be assuming the end of masks when first long with all bits
* zeroed is encountered. This is incorrect for masks where mask
* consists of more than one long, and where some of the available masks
* has long worth of bits zeroed (but has subsequent bit(s) set). This
* is a safety measure against bug where array of masks is terminated by
* a single zero while mask width is greater than width of a long.
*/
if (longs_per_mask > 1)
dev_warn(indio_dev->dev.parent,
"multi long available scan masks not fully supported\n");
if (bitmap_empty(av_masks, masklength))
dev_warn(indio_dev->dev.parent, "empty scan mask\n");
for (num_masks = 0; *av_masks; num_masks++)
av_masks += longs_per_mask;
if (num_masks < 2)
return;
av_masks = indio_dev->available_scan_masks;
/*
* Go through all the masks from first to one before the last, and see
* that no mask found later from the available_scan_masks array is a
* subset of mask found earlier. If this happens, then the mask found
* later will never get used because scanning the array is stopped when
* the first suitable mask is found. Drivers should order the array of
* available masks in the order of preference (presumably the least
* costy to access masks first).
*/
for (i = 0; i < num_masks - 1; i++) {
const unsigned long *mask1;
int j;
mask1 = av_masks + i * longs_per_mask;
for (j = i + 1; j < num_masks; j++) {
const unsigned long *mask2;
mask2 = av_masks + j * longs_per_mask;
if (bitmap_subset(mask2, mask1, masklength))
dev_warn(indio_dev->dev.parent,
"available_scan_mask %d subset of %d. Never used\n",
j, i);
}
}
}
int __iio_device_register(struct iio_dev *indio_dev, struct module *this_mod)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
struct fwnode_handle *fwnode = NULL;
int ret;
if (!indio_dev->info)
return -EINVAL;
iio_dev_opaque->driver_module = this_mod;
/* If the calling driver did not initialize firmware node, do it here */
if (dev_fwnode(&indio_dev->dev))
fwnode = dev_fwnode(&indio_dev->dev);
/* The default dummy IIO device has no parent */
else if (indio_dev->dev.parent)
fwnode = dev_fwnode(indio_dev->dev.parent);
device_set_node(&indio_dev->dev, fwnode);
fwnode_property_read_string(fwnode, "label", &indio_dev->label);
ret = iio_check_unique_scan_index(indio_dev);
if (ret < 0)
return ret;
ret = iio_check_extended_name(indio_dev);
if (ret < 0)
return ret;
iio_device_register_debugfs(indio_dev);
ret = iio_buffers_alloc_sysfs_and_mask(indio_dev);
if (ret) {
dev_err(indio_dev->dev.parent,
"Failed to create buffer sysfs interfaces\n");
goto error_unreg_debugfs;
}
if (indio_dev->available_scan_masks)
iio_sanity_check_avail_scan_masks(indio_dev);
ret = iio_device_register_sysfs(indio_dev);
if (ret) {
dev_err(indio_dev->dev.parent,
"Failed to register sysfs interfaces\n");
goto error_buffer_free_sysfs;
}
ret = iio_device_register_eventset(indio_dev);
if (ret) {
dev_err(indio_dev->dev.parent,
"Failed to register event set\n");
goto error_free_sysfs;
}
if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
iio_device_register_trigger_consumer(indio_dev);
if ((indio_dev->modes & INDIO_ALL_BUFFER_MODES) &&
indio_dev->setup_ops == NULL)
indio_dev->setup_ops = &noop_ring_setup_ops;
if (iio_dev_opaque->attached_buffers_cnt)
cdev_init(&iio_dev_opaque->chrdev, &iio_buffer_fileops);
else if (iio_dev_opaque->event_interface)
cdev_init(&iio_dev_opaque->chrdev, &iio_event_fileops);
if (iio_dev_opaque->attached_buffers_cnt || iio_dev_opaque->event_interface) {
indio_dev->dev.devt = MKDEV(MAJOR(iio_devt), iio_dev_opaque->id);
iio_dev_opaque->chrdev.owner = this_mod;
}
/* assign device groups now; they should be all registered now */
indio_dev->dev.groups = iio_dev_opaque->groups;
ret = cdev_device_add(&iio_dev_opaque->chrdev, &indio_dev->dev);
if (ret < 0)
goto error_unreg_eventset;
return 0;
error_unreg_eventset:
iio_device_unregister_eventset(indio_dev);
error_free_sysfs:
iio_device_unregister_sysfs(indio_dev);
error_buffer_free_sysfs:
iio_buffers_free_sysfs_and_mask(indio_dev);
error_unreg_debugfs:
iio_device_unregister_debugfs(indio_dev);
return ret;
}
EXPORT_SYMBOL(__iio_device_register);
/**
* iio_device_unregister() - unregister a device from the IIO subsystem
* @indio_dev: Device structure representing the device.
*/
void iio_device_unregister(struct iio_dev *indio_dev)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
cdev_device_del(&iio_dev_opaque->chrdev, &indio_dev->dev);
mutex_lock(&iio_dev_opaque->info_exist_lock);
iio_device_unregister_debugfs(indio_dev);
iio_disable_all_buffers(indio_dev);
indio_dev->info = NULL;
iio_device_wakeup_eventset(indio_dev);
iio_buffer_wakeup_poll(indio_dev);
mutex_unlock(&iio_dev_opaque->info_exist_lock);
iio_buffers_free_sysfs_and_mask(indio_dev);
}
EXPORT_SYMBOL(iio_device_unregister);
static void devm_iio_device_unreg(void *indio_dev)
{
iio_device_unregister(indio_dev);
}
int __devm_iio_device_register(struct device *dev, struct iio_dev *indio_dev,
struct module *this_mod)
{
int ret;
ret = __iio_device_register(indio_dev, this_mod);
if (ret)
return ret;
return devm_add_action_or_reset(dev, devm_iio_device_unreg, indio_dev);
}
EXPORT_SYMBOL_GPL(__devm_iio_device_register);
/**
* iio_device_claim_direct_mode - Keep device in direct mode
* @indio_dev: the iio_dev associated with the device
*
* If the device is in direct mode it is guaranteed to stay
* that way until iio_device_release_direct_mode() is called.
*
* Use with iio_device_release_direct_mode()
*
* Returns: 0 on success, -EBUSY on failure.
*/
int iio_device_claim_direct_mode(struct iio_dev *indio_dev)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
mutex_lock(&iio_dev_opaque->mlock);
if (iio_buffer_enabled(indio_dev)) {
mutex_unlock(&iio_dev_opaque->mlock);
return -EBUSY;
}
return 0;
}
EXPORT_SYMBOL_GPL(iio_device_claim_direct_mode);
/**
* iio_device_release_direct_mode - releases claim on direct mode
* @indio_dev: the iio_dev associated with the device
*
* Release the claim. Device is no longer guaranteed to stay
* in direct mode.
*
* Use with iio_device_claim_direct_mode()
*/
void iio_device_release_direct_mode(struct iio_dev *indio_dev)
{
mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock);
}
EXPORT_SYMBOL_GPL(iio_device_release_direct_mode);
/**
* iio_device_claim_buffer_mode - Keep device in buffer mode
* @indio_dev: the iio_dev associated with the device
*
* If the device is in buffer mode it is guaranteed to stay
* that way until iio_device_release_buffer_mode() is called.
*
* Use with iio_device_release_buffer_mode().
*
* Returns: 0 on success, -EBUSY on failure.
*/
int iio_device_claim_buffer_mode(struct iio_dev *indio_dev)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
mutex_lock(&iio_dev_opaque->mlock);
if (iio_buffer_enabled(indio_dev))
return 0;
mutex_unlock(&iio_dev_opaque->mlock);
return -EBUSY;
}
EXPORT_SYMBOL_GPL(iio_device_claim_buffer_mode);
/**
* iio_device_release_buffer_mode - releases claim on buffer mode
* @indio_dev: the iio_dev associated with the device
*
* Release the claim. Device is no longer guaranteed to stay
* in buffer mode.
*
* Use with iio_device_claim_buffer_mode().
*/
void iio_device_release_buffer_mode(struct iio_dev *indio_dev)
{
mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock);
}
EXPORT_SYMBOL_GPL(iio_device_release_buffer_mode);
/**
* iio_device_get_current_mode() - helper function providing read-only access to
* the opaque @currentmode variable
* @indio_dev: IIO device structure for device
*/
int iio_device_get_current_mode(struct iio_dev *indio_dev)
{
struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
return iio_dev_opaque->currentmode;
}
EXPORT_SYMBOL_GPL(iio_device_get_current_mode);
subsys_initcall(iio_init);
module_exit(iio_exit);
MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
MODULE_DESCRIPTION("Industrial I/O core");
MODULE_LICENSE("GPL");