0e3f7d1200
The HV_REGISTER_ are used as arguments to hv_set/get_register(), which delegate to arch-specific mechanisms for getting/setting synthetic Hyper-V MSRs. On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via the get/set vp registers hypercalls. The naming matches the TLFS document, although these register names are not specific to arm64. However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where HV_REGISTER_ is *only* used for used for VP register names used by the get/set register hypercalls. To fix this inconsistency and prevent future confusion, change the arch-generic aliases used by callers of hv_set/get_register() to have the prefix HV_MSR_ instead of HV_REGISTER_. Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the generic HV_MSR_'s point to the corresponding HV_X64_MSR_. Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h, since these are not specific to arm64. On arm64, the generic HV_MSR_'s point to the corresponding HV_REGISTER_. While at it, rename hv_get/set_registers() and related functions to hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for Hyper-V MSRs and this naming makes that clear. Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Michael Kelley <mhklinux@outlook.com> Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org> Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
503 lines
14 KiB
C
503 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (c) 2009, Microsoft Corporation.
|
|
*
|
|
* Authors:
|
|
* Haiyang Zhang <haiyangz@microsoft.com>
|
|
* Hank Janssen <hjanssen@microsoft.com>
|
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/hyperv.h>
|
|
#include <linux/random.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <clocksource/hyperv_timer.h>
|
|
#include <asm/mshyperv.h>
|
|
#include <linux/set_memory.h>
|
|
#include "hyperv_vmbus.h"
|
|
|
|
/* The one and only */
|
|
struct hv_context hv_context;
|
|
|
|
/*
|
|
* hv_init - Main initialization routine.
|
|
*
|
|
* This routine must be called before any other routines in here are called
|
|
*/
|
|
int hv_init(void)
|
|
{
|
|
hv_context.cpu_context = alloc_percpu(struct hv_per_cpu_context);
|
|
if (!hv_context.cpu_context)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* hv_post_message - Post a message using the hypervisor message IPC.
|
|
*
|
|
* This involves a hypercall.
|
|
*/
|
|
int hv_post_message(union hv_connection_id connection_id,
|
|
enum hv_message_type message_type,
|
|
void *payload, size_t payload_size)
|
|
{
|
|
struct hv_input_post_message *aligned_msg;
|
|
unsigned long flags;
|
|
u64 status;
|
|
|
|
if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
|
|
return -EMSGSIZE;
|
|
|
|
local_irq_save(flags);
|
|
|
|
/*
|
|
* A TDX VM with the paravisor must use the decrypted post_msg_page: see
|
|
* the comment in struct hv_per_cpu_context. A SNP VM with the paravisor
|
|
* can use the encrypted hyperv_pcpu_input_arg because it copies the
|
|
* input into the GHCB page, which has been decrypted by the paravisor.
|
|
*/
|
|
if (hv_isolation_type_tdx() && ms_hyperv.paravisor_present)
|
|
aligned_msg = this_cpu_ptr(hv_context.cpu_context)->post_msg_page;
|
|
else
|
|
aligned_msg = *this_cpu_ptr(hyperv_pcpu_input_arg);
|
|
|
|
aligned_msg->connectionid = connection_id;
|
|
aligned_msg->reserved = 0;
|
|
aligned_msg->message_type = message_type;
|
|
aligned_msg->payload_size = payload_size;
|
|
memcpy((void *)aligned_msg->payload, payload, payload_size);
|
|
|
|
if (ms_hyperv.paravisor_present) {
|
|
if (hv_isolation_type_tdx())
|
|
status = hv_tdx_hypercall(HVCALL_POST_MESSAGE,
|
|
virt_to_phys(aligned_msg), 0);
|
|
else if (hv_isolation_type_snp())
|
|
status = hv_ghcb_hypercall(HVCALL_POST_MESSAGE,
|
|
aligned_msg, NULL,
|
|
sizeof(*aligned_msg));
|
|
else
|
|
status = HV_STATUS_INVALID_PARAMETER;
|
|
} else {
|
|
status = hv_do_hypercall(HVCALL_POST_MESSAGE,
|
|
aligned_msg, NULL);
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
|
|
return hv_result(status);
|
|
}
|
|
|
|
int hv_synic_alloc(void)
|
|
{
|
|
int cpu, ret = -ENOMEM;
|
|
struct hv_per_cpu_context *hv_cpu;
|
|
|
|
/*
|
|
* First, zero all per-cpu memory areas so hv_synic_free() can
|
|
* detect what memory has been allocated and cleanup properly
|
|
* after any failures.
|
|
*/
|
|
for_each_present_cpu(cpu) {
|
|
hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
|
|
memset(hv_cpu, 0, sizeof(*hv_cpu));
|
|
}
|
|
|
|
hv_context.hv_numa_map = kcalloc(nr_node_ids, sizeof(struct cpumask),
|
|
GFP_KERNEL);
|
|
if (hv_context.hv_numa_map == NULL) {
|
|
pr_err("Unable to allocate NUMA map\n");
|
|
goto err;
|
|
}
|
|
|
|
for_each_present_cpu(cpu) {
|
|
hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
|
|
|
|
tasklet_init(&hv_cpu->msg_dpc,
|
|
vmbus_on_msg_dpc, (unsigned long) hv_cpu);
|
|
|
|
if (ms_hyperv.paravisor_present && hv_isolation_type_tdx()) {
|
|
hv_cpu->post_msg_page = (void *)get_zeroed_page(GFP_ATOMIC);
|
|
if (hv_cpu->post_msg_page == NULL) {
|
|
pr_err("Unable to allocate post msg page\n");
|
|
goto err;
|
|
}
|
|
|
|
ret = set_memory_decrypted((unsigned long)hv_cpu->post_msg_page, 1);
|
|
if (ret) {
|
|
pr_err("Failed to decrypt post msg page: %d\n", ret);
|
|
/* Just leak the page, as it's unsafe to free the page. */
|
|
hv_cpu->post_msg_page = NULL;
|
|
goto err;
|
|
}
|
|
|
|
memset(hv_cpu->post_msg_page, 0, PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Synic message and event pages are allocated by paravisor.
|
|
* Skip these pages allocation here.
|
|
*/
|
|
if (!ms_hyperv.paravisor_present && !hv_root_partition) {
|
|
hv_cpu->synic_message_page =
|
|
(void *)get_zeroed_page(GFP_ATOMIC);
|
|
if (hv_cpu->synic_message_page == NULL) {
|
|
pr_err("Unable to allocate SYNIC message page\n");
|
|
goto err;
|
|
}
|
|
|
|
hv_cpu->synic_event_page =
|
|
(void *)get_zeroed_page(GFP_ATOMIC);
|
|
if (hv_cpu->synic_event_page == NULL) {
|
|
pr_err("Unable to allocate SYNIC event page\n");
|
|
|
|
free_page((unsigned long)hv_cpu->synic_message_page);
|
|
hv_cpu->synic_message_page = NULL;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (!ms_hyperv.paravisor_present &&
|
|
(hv_isolation_type_snp() || hv_isolation_type_tdx())) {
|
|
ret = set_memory_decrypted((unsigned long)
|
|
hv_cpu->synic_message_page, 1);
|
|
if (ret) {
|
|
pr_err("Failed to decrypt SYNIC msg page: %d\n", ret);
|
|
hv_cpu->synic_message_page = NULL;
|
|
|
|
/*
|
|
* Free the event page here so that hv_synic_free()
|
|
* won't later try to re-encrypt it.
|
|
*/
|
|
free_page((unsigned long)hv_cpu->synic_event_page);
|
|
hv_cpu->synic_event_page = NULL;
|
|
goto err;
|
|
}
|
|
|
|
ret = set_memory_decrypted((unsigned long)
|
|
hv_cpu->synic_event_page, 1);
|
|
if (ret) {
|
|
pr_err("Failed to decrypt SYNIC event page: %d\n", ret);
|
|
hv_cpu->synic_event_page = NULL;
|
|
goto err;
|
|
}
|
|
|
|
memset(hv_cpu->synic_message_page, 0, PAGE_SIZE);
|
|
memset(hv_cpu->synic_event_page, 0, PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
/*
|
|
* Any memory allocations that succeeded will be freed when
|
|
* the caller cleans up by calling hv_synic_free()
|
|
*/
|
|
return ret;
|
|
}
|
|
|
|
|
|
void hv_synic_free(void)
|
|
{
|
|
int cpu, ret;
|
|
|
|
for_each_present_cpu(cpu) {
|
|
struct hv_per_cpu_context *hv_cpu
|
|
= per_cpu_ptr(hv_context.cpu_context, cpu);
|
|
|
|
/* It's better to leak the page if the encryption fails. */
|
|
if (ms_hyperv.paravisor_present && hv_isolation_type_tdx()) {
|
|
if (hv_cpu->post_msg_page) {
|
|
ret = set_memory_encrypted((unsigned long)
|
|
hv_cpu->post_msg_page, 1);
|
|
if (ret) {
|
|
pr_err("Failed to encrypt post msg page: %d\n", ret);
|
|
hv_cpu->post_msg_page = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!ms_hyperv.paravisor_present &&
|
|
(hv_isolation_type_snp() || hv_isolation_type_tdx())) {
|
|
if (hv_cpu->synic_message_page) {
|
|
ret = set_memory_encrypted((unsigned long)
|
|
hv_cpu->synic_message_page, 1);
|
|
if (ret) {
|
|
pr_err("Failed to encrypt SYNIC msg page: %d\n", ret);
|
|
hv_cpu->synic_message_page = NULL;
|
|
}
|
|
}
|
|
|
|
if (hv_cpu->synic_event_page) {
|
|
ret = set_memory_encrypted((unsigned long)
|
|
hv_cpu->synic_event_page, 1);
|
|
if (ret) {
|
|
pr_err("Failed to encrypt SYNIC event page: %d\n", ret);
|
|
hv_cpu->synic_event_page = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
free_page((unsigned long)hv_cpu->post_msg_page);
|
|
free_page((unsigned long)hv_cpu->synic_event_page);
|
|
free_page((unsigned long)hv_cpu->synic_message_page);
|
|
}
|
|
|
|
kfree(hv_context.hv_numa_map);
|
|
}
|
|
|
|
/*
|
|
* hv_synic_init - Initialize the Synthetic Interrupt Controller.
|
|
*
|
|
* If it is already initialized by another entity (ie x2v shim), we need to
|
|
* retrieve the initialized message and event pages. Otherwise, we create and
|
|
* initialize the message and event pages.
|
|
*/
|
|
void hv_synic_enable_regs(unsigned int cpu)
|
|
{
|
|
struct hv_per_cpu_context *hv_cpu
|
|
= per_cpu_ptr(hv_context.cpu_context, cpu);
|
|
union hv_synic_simp simp;
|
|
union hv_synic_siefp siefp;
|
|
union hv_synic_sint shared_sint;
|
|
union hv_synic_scontrol sctrl;
|
|
|
|
/* Setup the Synic's message page */
|
|
simp.as_uint64 = hv_get_msr(HV_MSR_SIMP);
|
|
simp.simp_enabled = 1;
|
|
|
|
if (ms_hyperv.paravisor_present || hv_root_partition) {
|
|
/* Mask out vTOM bit. ioremap_cache() maps decrypted */
|
|
u64 base = (simp.base_simp_gpa << HV_HYP_PAGE_SHIFT) &
|
|
~ms_hyperv.shared_gpa_boundary;
|
|
hv_cpu->synic_message_page
|
|
= (void *)ioremap_cache(base, HV_HYP_PAGE_SIZE);
|
|
if (!hv_cpu->synic_message_page)
|
|
pr_err("Fail to map synic message page.\n");
|
|
} else {
|
|
simp.base_simp_gpa = virt_to_phys(hv_cpu->synic_message_page)
|
|
>> HV_HYP_PAGE_SHIFT;
|
|
}
|
|
|
|
hv_set_msr(HV_MSR_SIMP, simp.as_uint64);
|
|
|
|
/* Setup the Synic's event page */
|
|
siefp.as_uint64 = hv_get_msr(HV_MSR_SIEFP);
|
|
siefp.siefp_enabled = 1;
|
|
|
|
if (ms_hyperv.paravisor_present || hv_root_partition) {
|
|
/* Mask out vTOM bit. ioremap_cache() maps decrypted */
|
|
u64 base = (siefp.base_siefp_gpa << HV_HYP_PAGE_SHIFT) &
|
|
~ms_hyperv.shared_gpa_boundary;
|
|
hv_cpu->synic_event_page
|
|
= (void *)ioremap_cache(base, HV_HYP_PAGE_SIZE);
|
|
if (!hv_cpu->synic_event_page)
|
|
pr_err("Fail to map synic event page.\n");
|
|
} else {
|
|
siefp.base_siefp_gpa = virt_to_phys(hv_cpu->synic_event_page)
|
|
>> HV_HYP_PAGE_SHIFT;
|
|
}
|
|
|
|
hv_set_msr(HV_MSR_SIEFP, siefp.as_uint64);
|
|
|
|
/* Setup the shared SINT. */
|
|
if (vmbus_irq != -1)
|
|
enable_percpu_irq(vmbus_irq, 0);
|
|
shared_sint.as_uint64 = hv_get_msr(HV_MSR_SINT0 + VMBUS_MESSAGE_SINT);
|
|
|
|
shared_sint.vector = vmbus_interrupt;
|
|
shared_sint.masked = false;
|
|
|
|
/*
|
|
* On architectures where Hyper-V doesn't support AEOI (e.g., ARM64),
|
|
* it doesn't provide a recommendation flag and AEOI must be disabled.
|
|
*/
|
|
#ifdef HV_DEPRECATING_AEOI_RECOMMENDED
|
|
shared_sint.auto_eoi =
|
|
!(ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED);
|
|
#else
|
|
shared_sint.auto_eoi = 0;
|
|
#endif
|
|
hv_set_msr(HV_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
|
|
|
|
/* Enable the global synic bit */
|
|
sctrl.as_uint64 = hv_get_msr(HV_MSR_SCONTROL);
|
|
sctrl.enable = 1;
|
|
|
|
hv_set_msr(HV_MSR_SCONTROL, sctrl.as_uint64);
|
|
}
|
|
|
|
int hv_synic_init(unsigned int cpu)
|
|
{
|
|
hv_synic_enable_regs(cpu);
|
|
|
|
hv_stimer_legacy_init(cpu, VMBUS_MESSAGE_SINT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* hv_synic_cleanup - Cleanup routine for hv_synic_init().
|
|
*/
|
|
void hv_synic_disable_regs(unsigned int cpu)
|
|
{
|
|
struct hv_per_cpu_context *hv_cpu
|
|
= per_cpu_ptr(hv_context.cpu_context, cpu);
|
|
union hv_synic_sint shared_sint;
|
|
union hv_synic_simp simp;
|
|
union hv_synic_siefp siefp;
|
|
union hv_synic_scontrol sctrl;
|
|
|
|
shared_sint.as_uint64 = hv_get_msr(HV_MSR_SINT0 + VMBUS_MESSAGE_SINT);
|
|
|
|
shared_sint.masked = 1;
|
|
|
|
/* Need to correctly cleanup in the case of SMP!!! */
|
|
/* Disable the interrupt */
|
|
hv_set_msr(HV_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
|
|
|
|
simp.as_uint64 = hv_get_msr(HV_MSR_SIMP);
|
|
/*
|
|
* In Isolation VM, sim and sief pages are allocated by
|
|
* paravisor. These pages also will be used by kdump
|
|
* kernel. So just reset enable bit here and keep page
|
|
* addresses.
|
|
*/
|
|
simp.simp_enabled = 0;
|
|
if (ms_hyperv.paravisor_present || hv_root_partition) {
|
|
iounmap(hv_cpu->synic_message_page);
|
|
hv_cpu->synic_message_page = NULL;
|
|
} else {
|
|
simp.base_simp_gpa = 0;
|
|
}
|
|
|
|
hv_set_msr(HV_MSR_SIMP, simp.as_uint64);
|
|
|
|
siefp.as_uint64 = hv_get_msr(HV_MSR_SIEFP);
|
|
siefp.siefp_enabled = 0;
|
|
|
|
if (ms_hyperv.paravisor_present || hv_root_partition) {
|
|
iounmap(hv_cpu->synic_event_page);
|
|
hv_cpu->synic_event_page = NULL;
|
|
} else {
|
|
siefp.base_siefp_gpa = 0;
|
|
}
|
|
|
|
hv_set_msr(HV_MSR_SIEFP, siefp.as_uint64);
|
|
|
|
/* Disable the global synic bit */
|
|
sctrl.as_uint64 = hv_get_msr(HV_MSR_SCONTROL);
|
|
sctrl.enable = 0;
|
|
hv_set_msr(HV_MSR_SCONTROL, sctrl.as_uint64);
|
|
|
|
if (vmbus_irq != -1)
|
|
disable_percpu_irq(vmbus_irq);
|
|
}
|
|
|
|
#define HV_MAX_TRIES 3
|
|
/*
|
|
* Scan the event flags page of 'this' CPU looking for any bit that is set. If we find one
|
|
* bit set, then wait for a few milliseconds. Repeat these steps for a maximum of 3 times.
|
|
* Return 'true', if there is still any set bit after this operation; 'false', otherwise.
|
|
*
|
|
* If a bit is set, that means there is a pending channel interrupt. The expectation is
|
|
* that the normal interrupt handling mechanism will find and process the channel interrupt
|
|
* "very soon", and in the process clear the bit.
|
|
*/
|
|
static bool hv_synic_event_pending(void)
|
|
{
|
|
struct hv_per_cpu_context *hv_cpu = this_cpu_ptr(hv_context.cpu_context);
|
|
union hv_synic_event_flags *event =
|
|
(union hv_synic_event_flags *)hv_cpu->synic_event_page + VMBUS_MESSAGE_SINT;
|
|
unsigned long *recv_int_page = event->flags; /* assumes VMBus version >= VERSION_WIN8 */
|
|
bool pending;
|
|
u32 relid;
|
|
int tries = 0;
|
|
|
|
retry:
|
|
pending = false;
|
|
for_each_set_bit(relid, recv_int_page, HV_EVENT_FLAGS_COUNT) {
|
|
/* Special case - VMBus channel protocol messages */
|
|
if (relid == 0)
|
|
continue;
|
|
pending = true;
|
|
break;
|
|
}
|
|
if (pending && tries++ < HV_MAX_TRIES) {
|
|
usleep_range(10000, 20000);
|
|
goto retry;
|
|
}
|
|
return pending;
|
|
}
|
|
|
|
int hv_synic_cleanup(unsigned int cpu)
|
|
{
|
|
struct vmbus_channel *channel, *sc;
|
|
bool channel_found = false;
|
|
|
|
if (vmbus_connection.conn_state != CONNECTED)
|
|
goto always_cleanup;
|
|
|
|
/*
|
|
* Hyper-V does not provide a way to change the connect CPU once
|
|
* it is set; we must prevent the connect CPU from going offline
|
|
* while the VM is running normally. But in the panic or kexec()
|
|
* path where the vmbus is already disconnected, the CPU must be
|
|
* allowed to shut down.
|
|
*/
|
|
if (cpu == VMBUS_CONNECT_CPU)
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* Search for channels which are bound to the CPU we're about to
|
|
* cleanup. In case we find one and vmbus is still connected, we
|
|
* fail; this will effectively prevent CPU offlining.
|
|
*
|
|
* TODO: Re-bind the channels to different CPUs.
|
|
*/
|
|
mutex_lock(&vmbus_connection.channel_mutex);
|
|
list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
|
|
if (channel->target_cpu == cpu) {
|
|
channel_found = true;
|
|
break;
|
|
}
|
|
list_for_each_entry(sc, &channel->sc_list, sc_list) {
|
|
if (sc->target_cpu == cpu) {
|
|
channel_found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (channel_found)
|
|
break;
|
|
}
|
|
mutex_unlock(&vmbus_connection.channel_mutex);
|
|
|
|
if (channel_found)
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* channel_found == false means that any channels that were previously
|
|
* assigned to the CPU have been reassigned elsewhere with a call of
|
|
* vmbus_send_modifychannel(). Scan the event flags page looking for
|
|
* bits that are set and waiting with a timeout for vmbus_chan_sched()
|
|
* to process such bits. If bits are still set after this operation
|
|
* and VMBus is connected, fail the CPU offlining operation.
|
|
*/
|
|
if (vmbus_proto_version >= VERSION_WIN10_V4_1 && hv_synic_event_pending())
|
|
return -EBUSY;
|
|
|
|
always_cleanup:
|
|
hv_stimer_legacy_cleanup(cpu);
|
|
|
|
hv_synic_disable_regs(cpu);
|
|
|
|
return 0;
|
|
}
|