71641d99ce
When an RPC-over-RDMA request is received, the Receive buffer contains a Transport Header possibly followed by an RPC message. Even though rq_arg.head[0] (as passed to NFSD) does not contain the Transport Header header, currently rq_arg.len includes the size of the Transport Header. That violates the intent of the xdr_buf API contract. .buflen should include everything, but .len should be exactly the length of the RPC message in the buffer. The rq_arg fields are summed together at the end of svc_rdma_recvfrom to obtain the correct return value. rq_arg.len really ought to contain the correct number of bytes already, but it currently doesn't due to the above misbehavior. Let's instead ensure that .buflen includes the length of the transport header, and that .len is always equal to head.iov_len + .page_len + tail.iov_len . Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
596 lines
16 KiB
C
596 lines
16 KiB
C
/*
|
|
* Copyright (c) 2016, 2017 Oracle. All rights reserved.
|
|
* Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
|
|
* Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the BSD-type
|
|
* license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
*
|
|
* Neither the name of the Network Appliance, Inc. nor the names of
|
|
* its contributors may be used to endorse or promote products
|
|
* derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Author: Tom Tucker <tom@opengridcomputing.com>
|
|
*/
|
|
|
|
/* Operation
|
|
*
|
|
* The main entry point is svc_rdma_recvfrom. This is called from
|
|
* svc_recv when the transport indicates there is incoming data to
|
|
* be read. "Data Ready" is signaled when an RDMA Receive completes,
|
|
* or when a set of RDMA Reads complete.
|
|
*
|
|
* An svc_rqst is passed in. This structure contains an array of
|
|
* free pages (rq_pages) that will contain the incoming RPC message.
|
|
*
|
|
* Short messages are moved directly into svc_rqst::rq_arg, and
|
|
* the RPC Call is ready to be processed by the Upper Layer.
|
|
* svc_rdma_recvfrom returns the length of the RPC Call message,
|
|
* completing the reception of the RPC Call.
|
|
*
|
|
* However, when an incoming message has Read chunks,
|
|
* svc_rdma_recvfrom must post RDMA Reads to pull the RPC Call's
|
|
* data payload from the client. svc_rdma_recvfrom sets up the
|
|
* RDMA Reads using pages in svc_rqst::rq_pages, which are
|
|
* transferred to an svc_rdma_op_ctxt for the duration of the
|
|
* I/O. svc_rdma_recvfrom then returns zero, since the RPC message
|
|
* is still not yet ready.
|
|
*
|
|
* When the Read chunk payloads have become available on the
|
|
* server, "Data Ready" is raised again, and svc_recv calls
|
|
* svc_rdma_recvfrom again. This second call may use a different
|
|
* svc_rqst than the first one, thus any information that needs
|
|
* to be preserved across these two calls is kept in an
|
|
* svc_rdma_op_ctxt.
|
|
*
|
|
* The second call to svc_rdma_recvfrom performs final assembly
|
|
* of the RPC Call message, using the RDMA Read sink pages kept in
|
|
* the svc_rdma_op_ctxt. The xdr_buf is copied from the
|
|
* svc_rdma_op_ctxt to the second svc_rqst. The second call returns
|
|
* the length of the completed RPC Call message.
|
|
*
|
|
* Page Management
|
|
*
|
|
* Pages under I/O must be transferred from the first svc_rqst to an
|
|
* svc_rdma_op_ctxt before the first svc_rdma_recvfrom call returns.
|
|
*
|
|
* The first svc_rqst supplies pages for RDMA Reads. These are moved
|
|
* from rqstp::rq_pages into ctxt::pages. The consumed elements of
|
|
* the rq_pages array are set to NULL and refilled with the first
|
|
* svc_rdma_recvfrom call returns.
|
|
*
|
|
* During the second svc_rdma_recvfrom call, RDMA Read sink pages
|
|
* are transferred from the svc_rdma_op_ctxt to the second svc_rqst
|
|
* (see rdma_read_complete() below).
|
|
*/
|
|
|
|
#include <asm/unaligned.h>
|
|
#include <rdma/ib_verbs.h>
|
|
#include <rdma/rdma_cm.h>
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/sunrpc/xdr.h>
|
|
#include <linux/sunrpc/debug.h>
|
|
#include <linux/sunrpc/rpc_rdma.h>
|
|
#include <linux/sunrpc/svc_rdma.h>
|
|
|
|
#define RPCDBG_FACILITY RPCDBG_SVCXPRT
|
|
|
|
/*
|
|
* Replace the pages in the rq_argpages array with the pages from the SGE in
|
|
* the RDMA_RECV completion. The SGL should contain full pages up until the
|
|
* last one.
|
|
*/
|
|
static void rdma_build_arg_xdr(struct svc_rqst *rqstp,
|
|
struct svc_rdma_op_ctxt *ctxt,
|
|
u32 byte_count)
|
|
{
|
|
struct page *page;
|
|
u32 bc;
|
|
int sge_no;
|
|
|
|
/* Swap the page in the SGE with the page in argpages */
|
|
page = ctxt->pages[0];
|
|
put_page(rqstp->rq_pages[0]);
|
|
rqstp->rq_pages[0] = page;
|
|
|
|
/* Set up the XDR head */
|
|
rqstp->rq_arg.head[0].iov_base = page_address(page);
|
|
rqstp->rq_arg.head[0].iov_len =
|
|
min_t(size_t, byte_count, ctxt->sge[0].length);
|
|
rqstp->rq_arg.len = byte_count;
|
|
rqstp->rq_arg.buflen = byte_count;
|
|
|
|
/* Compute bytes past head in the SGL */
|
|
bc = byte_count - rqstp->rq_arg.head[0].iov_len;
|
|
|
|
/* If data remains, store it in the pagelist */
|
|
rqstp->rq_arg.page_len = bc;
|
|
rqstp->rq_arg.page_base = 0;
|
|
|
|
sge_no = 1;
|
|
while (bc && sge_no < ctxt->count) {
|
|
page = ctxt->pages[sge_no];
|
|
put_page(rqstp->rq_pages[sge_no]);
|
|
rqstp->rq_pages[sge_no] = page;
|
|
bc -= min_t(u32, bc, ctxt->sge[sge_no].length);
|
|
sge_no++;
|
|
}
|
|
rqstp->rq_respages = &rqstp->rq_pages[sge_no];
|
|
rqstp->rq_next_page = rqstp->rq_respages + 1;
|
|
|
|
/* If not all pages were used from the SGL, free the remaining ones */
|
|
bc = sge_no;
|
|
while (sge_no < ctxt->count) {
|
|
page = ctxt->pages[sge_no++];
|
|
put_page(page);
|
|
}
|
|
ctxt->count = bc;
|
|
|
|
/* Set up tail */
|
|
rqstp->rq_arg.tail[0].iov_base = NULL;
|
|
rqstp->rq_arg.tail[0].iov_len = 0;
|
|
}
|
|
|
|
/* This accommodates the largest possible Write chunk,
|
|
* in one segment.
|
|
*/
|
|
#define MAX_BYTES_WRITE_SEG ((u32)(RPCSVC_MAXPAGES << PAGE_SHIFT))
|
|
|
|
/* This accommodates the largest possible Position-Zero
|
|
* Read chunk or Reply chunk, in one segment.
|
|
*/
|
|
#define MAX_BYTES_SPECIAL_SEG ((u32)((RPCSVC_MAXPAGES + 2) << PAGE_SHIFT))
|
|
|
|
/* Sanity check the Read list.
|
|
*
|
|
* Implementation limits:
|
|
* - This implementation supports only one Read chunk.
|
|
*
|
|
* Sanity checks:
|
|
* - Read list does not overflow buffer.
|
|
* - Segment size limited by largest NFS data payload.
|
|
*
|
|
* The segment count is limited to how many segments can
|
|
* fit in the transport header without overflowing the
|
|
* buffer. That's about 40 Read segments for a 1KB inline
|
|
* threshold.
|
|
*
|
|
* Returns pointer to the following Write list.
|
|
*/
|
|
static __be32 *xdr_check_read_list(__be32 *p, const __be32 *end)
|
|
{
|
|
u32 position;
|
|
bool first;
|
|
|
|
first = true;
|
|
while (*p++ != xdr_zero) {
|
|
if (first) {
|
|
position = be32_to_cpup(p++);
|
|
first = false;
|
|
} else if (be32_to_cpup(p++) != position) {
|
|
return NULL;
|
|
}
|
|
p++; /* handle */
|
|
if (be32_to_cpup(p++) > MAX_BYTES_SPECIAL_SEG)
|
|
return NULL;
|
|
p += 2; /* offset */
|
|
|
|
if (p > end)
|
|
return NULL;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/* The segment count is limited to how many segments can
|
|
* fit in the transport header without overflowing the
|
|
* buffer. That's about 60 Write segments for a 1KB inline
|
|
* threshold.
|
|
*/
|
|
static __be32 *xdr_check_write_chunk(__be32 *p, const __be32 *end,
|
|
u32 maxlen)
|
|
{
|
|
u32 i, segcount;
|
|
|
|
segcount = be32_to_cpup(p++);
|
|
for (i = 0; i < segcount; i++) {
|
|
p++; /* handle */
|
|
if (be32_to_cpup(p++) > maxlen)
|
|
return NULL;
|
|
p += 2; /* offset */
|
|
|
|
if (p > end)
|
|
return NULL;
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
/* Sanity check the Write list.
|
|
*
|
|
* Implementation limits:
|
|
* - This implementation supports only one Write chunk.
|
|
*
|
|
* Sanity checks:
|
|
* - Write list does not overflow buffer.
|
|
* - Segment size limited by largest NFS data payload.
|
|
*
|
|
* Returns pointer to the following Reply chunk.
|
|
*/
|
|
static __be32 *xdr_check_write_list(__be32 *p, const __be32 *end)
|
|
{
|
|
u32 chcount;
|
|
|
|
chcount = 0;
|
|
while (*p++ != xdr_zero) {
|
|
p = xdr_check_write_chunk(p, end, MAX_BYTES_WRITE_SEG);
|
|
if (!p)
|
|
return NULL;
|
|
if (chcount++ > 1)
|
|
return NULL;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/* Sanity check the Reply chunk.
|
|
*
|
|
* Sanity checks:
|
|
* - Reply chunk does not overflow buffer.
|
|
* - Segment size limited by largest NFS data payload.
|
|
*
|
|
* Returns pointer to the following RPC header.
|
|
*/
|
|
static __be32 *xdr_check_reply_chunk(__be32 *p, const __be32 *end)
|
|
{
|
|
if (*p++ != xdr_zero) {
|
|
p = xdr_check_write_chunk(p, end, MAX_BYTES_SPECIAL_SEG);
|
|
if (!p)
|
|
return NULL;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/* On entry, xdr->head[0].iov_base points to first byte in the
|
|
* RPC-over-RDMA header.
|
|
*
|
|
* On successful exit, head[0] points to first byte past the
|
|
* RPC-over-RDMA header. For RDMA_MSG, this is the RPC message.
|
|
* The length of the RPC-over-RDMA header is returned.
|
|
*
|
|
* Assumptions:
|
|
* - The transport header is entirely contained in the head iovec.
|
|
*/
|
|
static int svc_rdma_xdr_decode_req(struct xdr_buf *rq_arg)
|
|
{
|
|
__be32 *p, *end, *rdma_argp;
|
|
unsigned int hdr_len;
|
|
char *proc;
|
|
|
|
/* Verify that there's enough bytes for header + something */
|
|
if (rq_arg->len <= RPCRDMA_HDRLEN_ERR)
|
|
goto out_short;
|
|
|
|
rdma_argp = rq_arg->head[0].iov_base;
|
|
if (*(rdma_argp + 1) != rpcrdma_version)
|
|
goto out_version;
|
|
|
|
switch (*(rdma_argp + 3)) {
|
|
case rdma_msg:
|
|
proc = "RDMA_MSG";
|
|
break;
|
|
case rdma_nomsg:
|
|
proc = "RDMA_NOMSG";
|
|
break;
|
|
|
|
case rdma_done:
|
|
goto out_drop;
|
|
|
|
case rdma_error:
|
|
goto out_drop;
|
|
|
|
default:
|
|
goto out_proc;
|
|
}
|
|
|
|
end = (__be32 *)((unsigned long)rdma_argp + rq_arg->len);
|
|
p = xdr_check_read_list(rdma_argp + 4, end);
|
|
if (!p)
|
|
goto out_inval;
|
|
p = xdr_check_write_list(p, end);
|
|
if (!p)
|
|
goto out_inval;
|
|
p = xdr_check_reply_chunk(p, end);
|
|
if (!p)
|
|
goto out_inval;
|
|
if (p > end)
|
|
goto out_inval;
|
|
|
|
rq_arg->head[0].iov_base = p;
|
|
hdr_len = (unsigned long)p - (unsigned long)rdma_argp;
|
|
rq_arg->head[0].iov_len -= hdr_len;
|
|
rq_arg->len -= hdr_len;
|
|
dprintk("svcrdma: received %s request for XID 0x%08x, hdr_len=%u\n",
|
|
proc, be32_to_cpup(rdma_argp), hdr_len);
|
|
return hdr_len;
|
|
|
|
out_short:
|
|
dprintk("svcrdma: header too short = %d\n", rq_arg->len);
|
|
return -EINVAL;
|
|
|
|
out_version:
|
|
dprintk("svcrdma: bad xprt version: %u\n",
|
|
be32_to_cpup(rdma_argp + 1));
|
|
return -EPROTONOSUPPORT;
|
|
|
|
out_drop:
|
|
dprintk("svcrdma: dropping RDMA_DONE/ERROR message\n");
|
|
return 0;
|
|
|
|
out_proc:
|
|
dprintk("svcrdma: bad rdma procedure (%u)\n",
|
|
be32_to_cpup(rdma_argp + 3));
|
|
return -EINVAL;
|
|
|
|
out_inval:
|
|
dprintk("svcrdma: failed to parse transport header\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void rdma_read_complete(struct svc_rqst *rqstp,
|
|
struct svc_rdma_op_ctxt *head)
|
|
{
|
|
int page_no;
|
|
|
|
/* Copy RPC pages */
|
|
for (page_no = 0; page_no < head->count; page_no++) {
|
|
put_page(rqstp->rq_pages[page_no]);
|
|
rqstp->rq_pages[page_no] = head->pages[page_no];
|
|
}
|
|
|
|
/* Point rq_arg.pages past header */
|
|
rqstp->rq_arg.pages = &rqstp->rq_pages[head->hdr_count];
|
|
rqstp->rq_arg.page_len = head->arg.page_len;
|
|
|
|
/* rq_respages starts after the last arg page */
|
|
rqstp->rq_respages = &rqstp->rq_pages[page_no];
|
|
rqstp->rq_next_page = rqstp->rq_respages + 1;
|
|
|
|
/* Rebuild rq_arg head and tail. */
|
|
rqstp->rq_arg.head[0] = head->arg.head[0];
|
|
rqstp->rq_arg.tail[0] = head->arg.tail[0];
|
|
rqstp->rq_arg.len = head->arg.len;
|
|
rqstp->rq_arg.buflen = head->arg.buflen;
|
|
}
|
|
|
|
static void svc_rdma_send_error(struct svcxprt_rdma *xprt,
|
|
__be32 *rdma_argp, int status)
|
|
{
|
|
struct svc_rdma_op_ctxt *ctxt;
|
|
__be32 *p, *err_msgp;
|
|
unsigned int length;
|
|
struct page *page;
|
|
int ret;
|
|
|
|
ret = svc_rdma_repost_recv(xprt, GFP_KERNEL);
|
|
if (ret)
|
|
return;
|
|
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (!page)
|
|
return;
|
|
err_msgp = page_address(page);
|
|
|
|
p = err_msgp;
|
|
*p++ = *rdma_argp;
|
|
*p++ = *(rdma_argp + 1);
|
|
*p++ = xprt->sc_fc_credits;
|
|
*p++ = rdma_error;
|
|
if (status == -EPROTONOSUPPORT) {
|
|
*p++ = err_vers;
|
|
*p++ = rpcrdma_version;
|
|
*p++ = rpcrdma_version;
|
|
} else {
|
|
*p++ = err_chunk;
|
|
}
|
|
length = (unsigned long)p - (unsigned long)err_msgp;
|
|
|
|
/* Map transport header; no RPC message payload */
|
|
ctxt = svc_rdma_get_context(xprt);
|
|
ret = svc_rdma_map_reply_hdr(xprt, ctxt, err_msgp, length);
|
|
if (ret) {
|
|
dprintk("svcrdma: Error %d mapping send for protocol error\n",
|
|
ret);
|
|
return;
|
|
}
|
|
|
|
ret = svc_rdma_post_send_wr(xprt, ctxt, 1, 0);
|
|
if (ret) {
|
|
dprintk("svcrdma: Error %d posting send for protocol error\n",
|
|
ret);
|
|
svc_rdma_unmap_dma(ctxt);
|
|
svc_rdma_put_context(ctxt, 1);
|
|
}
|
|
}
|
|
|
|
/* By convention, backchannel calls arrive via rdma_msg type
|
|
* messages, and never populate the chunk lists. This makes
|
|
* the RPC/RDMA header small and fixed in size, so it is
|
|
* straightforward to check the RPC header's direction field.
|
|
*/
|
|
static bool svc_rdma_is_backchannel_reply(struct svc_xprt *xprt,
|
|
__be32 *rdma_resp)
|
|
{
|
|
__be32 *p;
|
|
|
|
if (!xprt->xpt_bc_xprt)
|
|
return false;
|
|
|
|
p = rdma_resp + 3;
|
|
if (*p++ != rdma_msg)
|
|
return false;
|
|
|
|
if (*p++ != xdr_zero)
|
|
return false;
|
|
if (*p++ != xdr_zero)
|
|
return false;
|
|
if (*p++ != xdr_zero)
|
|
return false;
|
|
|
|
/* XID sanity */
|
|
if (*p++ != *rdma_resp)
|
|
return false;
|
|
/* call direction */
|
|
if (*p == cpu_to_be32(RPC_CALL))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* svc_rdma_recvfrom - Receive an RPC call
|
|
* @rqstp: request structure into which to receive an RPC Call
|
|
*
|
|
* Returns:
|
|
* The positive number of bytes in the RPC Call message,
|
|
* %0 if there were no Calls ready to return,
|
|
* %-EINVAL if the Read chunk data is too large,
|
|
* %-ENOMEM if rdma_rw context pool was exhausted,
|
|
* %-ENOTCONN if posting failed (connection is lost),
|
|
* %-EIO if rdma_rw initialization failed (DMA mapping, etc).
|
|
*
|
|
* Called in a loop when XPT_DATA is set. XPT_DATA is cleared only
|
|
* when there are no remaining ctxt's to process.
|
|
*
|
|
* The next ctxt is removed from the "receive" lists.
|
|
*
|
|
* - If the ctxt completes a Read, then finish assembling the Call
|
|
* message and return the number of bytes in the message.
|
|
*
|
|
* - If the ctxt completes a Receive, then construct the Call
|
|
* message from the contents of the Receive buffer.
|
|
*
|
|
* - If there are no Read chunks in this message, then finish
|
|
* assembling the Call message and return the number of bytes
|
|
* in the message.
|
|
*
|
|
* - If there are Read chunks in this message, post Read WRs to
|
|
* pull that payload and return 0.
|
|
*/
|
|
int svc_rdma_recvfrom(struct svc_rqst *rqstp)
|
|
{
|
|
struct svc_xprt *xprt = rqstp->rq_xprt;
|
|
struct svcxprt_rdma *rdma_xprt =
|
|
container_of(xprt, struct svcxprt_rdma, sc_xprt);
|
|
struct svc_rdma_op_ctxt *ctxt;
|
|
__be32 *p;
|
|
int ret;
|
|
|
|
spin_lock(&rdma_xprt->sc_rq_dto_lock);
|
|
if (!list_empty(&rdma_xprt->sc_read_complete_q)) {
|
|
ctxt = list_first_entry(&rdma_xprt->sc_read_complete_q,
|
|
struct svc_rdma_op_ctxt, list);
|
|
list_del(&ctxt->list);
|
|
spin_unlock(&rdma_xprt->sc_rq_dto_lock);
|
|
rdma_read_complete(rqstp, ctxt);
|
|
goto complete;
|
|
} else if (!list_empty(&rdma_xprt->sc_rq_dto_q)) {
|
|
ctxt = list_first_entry(&rdma_xprt->sc_rq_dto_q,
|
|
struct svc_rdma_op_ctxt, list);
|
|
list_del(&ctxt->list);
|
|
} else {
|
|
/* No new incoming requests, terminate the loop */
|
|
clear_bit(XPT_DATA, &xprt->xpt_flags);
|
|
spin_unlock(&rdma_xprt->sc_rq_dto_lock);
|
|
return 0;
|
|
}
|
|
spin_unlock(&rdma_xprt->sc_rq_dto_lock);
|
|
|
|
dprintk("svcrdma: recvfrom: ctxt=%p on xprt=%p, rqstp=%p\n",
|
|
ctxt, rdma_xprt, rqstp);
|
|
atomic_inc(&rdma_stat_recv);
|
|
|
|
/* Build up the XDR from the receive buffers. */
|
|
rdma_build_arg_xdr(rqstp, ctxt, ctxt->byte_len);
|
|
|
|
/* Decode the RDMA header. */
|
|
p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
|
|
ret = svc_rdma_xdr_decode_req(&rqstp->rq_arg);
|
|
if (ret < 0)
|
|
goto out_err;
|
|
if (ret == 0)
|
|
goto out_drop;
|
|
rqstp->rq_xprt_hlen = ret;
|
|
|
|
if (svc_rdma_is_backchannel_reply(xprt, p)) {
|
|
ret = svc_rdma_handle_bc_reply(xprt->xpt_bc_xprt, p,
|
|
&rqstp->rq_arg);
|
|
svc_rdma_put_context(ctxt, 0);
|
|
if (ret)
|
|
goto repost;
|
|
return ret;
|
|
}
|
|
|
|
p += rpcrdma_fixed_maxsz;
|
|
if (*p != xdr_zero)
|
|
goto out_readchunk;
|
|
|
|
complete:
|
|
svc_rdma_put_context(ctxt, 0);
|
|
dprintk("svcrdma: recvfrom: xprt=%p, rqstp=%p, rq_arg.len=%u\n",
|
|
rdma_xprt, rqstp, rqstp->rq_arg.len);
|
|
rqstp->rq_prot = IPPROTO_MAX;
|
|
svc_xprt_copy_addrs(rqstp, xprt);
|
|
return rqstp->rq_arg.len;
|
|
|
|
out_readchunk:
|
|
ret = svc_rdma_recv_read_chunk(rdma_xprt, rqstp, ctxt, p);
|
|
if (ret < 0)
|
|
goto out_postfail;
|
|
return 0;
|
|
|
|
out_err:
|
|
svc_rdma_send_error(rdma_xprt, p, ret);
|
|
svc_rdma_put_context(ctxt, 0);
|
|
return 0;
|
|
|
|
out_postfail:
|
|
if (ret == -EINVAL)
|
|
svc_rdma_send_error(rdma_xprt, p, ret);
|
|
svc_rdma_put_context(ctxt, 1);
|
|
return ret;
|
|
|
|
out_drop:
|
|
svc_rdma_put_context(ctxt, 1);
|
|
repost:
|
|
return svc_rdma_repost_recv(rdma_xprt, GFP_KERNEL);
|
|
}
|