linux/drivers/phy/xilinx/phy-zynqmp.c
Sean Anderson 76009ee76e phy: zynqmp: Allow variation in refclk rate
Due to limited available frequency ratios, the reference clock rate may
not be exactly the same as the required rate. Allow a small (100 ppm)
deviation.

Signed-off-by: Sean Anderson <sean.anderson@seco.com>
Link: https://lore.kernel.org/r/20230711194542.898230-1-sean.anderson@seco.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2023-07-12 22:27:44 +05:30

1031 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
*
* Copyright (C) 2018-2020 Xilinx Inc.
*
* Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
* Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
* Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
*
* This driver is tested for USB, SGMII, SATA and Display Port currently.
* PCIe should also work but that is experimental as of now.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <dt-bindings/phy/phy.h>
/*
* Lane Registers
*/
/* TX De-emphasis parameters */
#define L0_TX_ANA_TM_18 0x0048
#define L0_TX_ANA_TM_118 0x01d8
#define L0_TX_ANA_TM_118_FORCE_17_0 BIT(0)
/* DN Resistor calibration code parameters */
#define L0_TXPMA_ST_3 0x0b0c
#define L0_DN_CALIB_CODE 0x3f
/* PMA control parameters */
#define L0_TXPMD_TM_45 0x0cb4
#define L0_TXPMD_TM_48 0x0cc0
#define L0_TXPMD_TM_45_OVER_DP_MAIN BIT(0)
#define L0_TXPMD_TM_45_ENABLE_DP_MAIN BIT(1)
#define L0_TXPMD_TM_45_OVER_DP_POST1 BIT(2)
#define L0_TXPMD_TM_45_ENABLE_DP_POST1 BIT(3)
#define L0_TXPMD_TM_45_OVER_DP_POST2 BIT(4)
#define L0_TXPMD_TM_45_ENABLE_DP_POST2 BIT(5)
/* PCS control parameters */
#define L0_TM_DIG_6 0x106c
#define L0_TM_DIS_DESCRAMBLE_DECODER 0x0f
#define L0_TX_DIG_61 0x00f4
#define L0_TM_DISABLE_SCRAMBLE_ENCODER 0x0f
/* PLL Test Mode register parameters */
#define L0_TM_PLL_DIG_37 0x2094
#define L0_TM_COARSE_CODE_LIMIT 0x10
/* PLL SSC step size offsets */
#define L0_PLL_SS_STEPS_0_LSB 0x2368
#define L0_PLL_SS_STEPS_1_MSB 0x236c
#define L0_PLL_SS_STEP_SIZE_0_LSB 0x2370
#define L0_PLL_SS_STEP_SIZE_1 0x2374
#define L0_PLL_SS_STEP_SIZE_2 0x2378
#define L0_PLL_SS_STEP_SIZE_3_MSB 0x237c
#define L0_PLL_STATUS_READ_1 0x23e4
/* SSC step size parameters */
#define STEP_SIZE_0_MASK 0xff
#define STEP_SIZE_1_MASK 0xff
#define STEP_SIZE_2_MASK 0xff
#define STEP_SIZE_3_MASK 0x3
#define STEP_SIZE_SHIFT 8
#define FORCE_STEP_SIZE 0x10
#define FORCE_STEPS 0x20
#define STEPS_0_MASK 0xff
#define STEPS_1_MASK 0x07
/* Reference clock selection parameters */
#define L0_Ln_REF_CLK_SEL(n) (0x2860 + (n) * 4)
#define L0_REF_CLK_SEL_MASK 0x8f
/* Calibration digital logic parameters */
#define L3_TM_CALIB_DIG19 0xec4c
#define L3_CALIB_DONE_STATUS 0xef14
#define L3_TM_CALIB_DIG18 0xec48
#define L3_TM_CALIB_DIG19_NSW 0x07
#define L3_TM_CALIB_DIG18_NSW 0xe0
#define L3_TM_OVERRIDE_NSW_CODE 0x20
#define L3_CALIB_DONE 0x02
#define L3_NSW_SHIFT 5
#define L3_NSW_PIPE_SHIFT 4
#define L3_NSW_CALIB_SHIFT 3
#define PHY_REG_OFFSET 0x4000
/*
* Global Registers
*/
/* Refclk selection parameters */
#define PLL_REF_SEL(n) (0x10000 + (n) * 4)
#define PLL_FREQ_MASK 0x1f
#define PLL_STATUS_LOCKED 0x10
/* Inter Connect Matrix parameters */
#define ICM_CFG0 0x10010
#define ICM_CFG1 0x10014
#define ICM_CFG0_L0_MASK 0x07
#define ICM_CFG0_L1_MASK 0x70
#define ICM_CFG1_L2_MASK 0x07
#define ICM_CFG2_L3_MASK 0x70
#define ICM_CFG_SHIFT 4
/* Inter Connect Matrix allowed protocols */
#define ICM_PROTOCOL_PD 0x0
#define ICM_PROTOCOL_PCIE 0x1
#define ICM_PROTOCOL_SATA 0x2
#define ICM_PROTOCOL_USB 0x3
#define ICM_PROTOCOL_DP 0x4
#define ICM_PROTOCOL_SGMII 0x5
/* Test Mode common reset control parameters */
#define TM_CMN_RST 0x10018
#define TM_CMN_RST_EN 0x1
#define TM_CMN_RST_SET 0x2
#define TM_CMN_RST_MASK 0x3
/* Bus width parameters */
#define TX_PROT_BUS_WIDTH 0x10040
#define RX_PROT_BUS_WIDTH 0x10044
#define PROT_BUS_WIDTH_10 0x0
#define PROT_BUS_WIDTH_20 0x1
#define PROT_BUS_WIDTH_40 0x2
#define PROT_BUS_WIDTH_SHIFT(n) ((n) * 2)
#define PROT_BUS_WIDTH_MASK(n) GENMASK((n) * 2 + 1, (n) * 2)
/* Number of GT lanes */
#define NUM_LANES 4
/* SIOU SATA control register */
#define SATA_CONTROL_OFFSET 0x0100
/* Total number of controllers */
#define CONTROLLERS_PER_LANE 5
/* Protocol Type parameters */
#define XPSGTR_TYPE_USB0 0 /* USB controller 0 */
#define XPSGTR_TYPE_USB1 1 /* USB controller 1 */
#define XPSGTR_TYPE_SATA_0 2 /* SATA controller lane 0 */
#define XPSGTR_TYPE_SATA_1 3 /* SATA controller lane 1 */
#define XPSGTR_TYPE_PCIE_0 4 /* PCIe controller lane 0 */
#define XPSGTR_TYPE_PCIE_1 5 /* PCIe controller lane 1 */
#define XPSGTR_TYPE_PCIE_2 6 /* PCIe controller lane 2 */
#define XPSGTR_TYPE_PCIE_3 7 /* PCIe controller lane 3 */
#define XPSGTR_TYPE_DP_0 8 /* Display Port controller lane 0 */
#define XPSGTR_TYPE_DP_1 9 /* Display Port controller lane 1 */
#define XPSGTR_TYPE_SGMII0 10 /* Ethernet SGMII controller 0 */
#define XPSGTR_TYPE_SGMII1 11 /* Ethernet SGMII controller 1 */
#define XPSGTR_TYPE_SGMII2 12 /* Ethernet SGMII controller 2 */
#define XPSGTR_TYPE_SGMII3 13 /* Ethernet SGMII controller 3 */
/* Timeout values */
#define TIMEOUT_US 1000
struct xpsgtr_dev;
/**
* struct xpsgtr_ssc - structure to hold SSC settings for a lane
* @refclk_rate: PLL reference clock frequency
* @pll_ref_clk: value to be written to register for corresponding ref clk rate
* @steps: number of steps of SSC (Spread Spectrum Clock)
* @step_size: step size of each step
*/
struct xpsgtr_ssc {
u32 refclk_rate;
u8 pll_ref_clk;
u32 steps;
u32 step_size;
};
/**
* struct xpsgtr_phy - representation of a lane
* @phy: pointer to the kernel PHY device
* @type: controller which uses this lane
* @lane: lane number
* @protocol: protocol in which the lane operates
* @skip_phy_init: skip phy_init() if true
* @dev: pointer to the xpsgtr_dev instance
* @refclk: reference clock index
*/
struct xpsgtr_phy {
struct phy *phy;
u8 type;
u8 lane;
u8 protocol;
bool skip_phy_init;
struct xpsgtr_dev *dev;
unsigned int refclk;
};
/**
* struct xpsgtr_dev - representation of a ZynMP GT device
* @dev: pointer to device
* @serdes: serdes base address
* @siou: siou base address
* @gtr_mutex: mutex for locking
* @phys: PHY lanes
* @refclk_sscs: spread spectrum settings for the reference clocks
* @clk: reference clocks
* @tx_term_fix: fix for GT issue
* @saved_icm_cfg0: stored value of ICM CFG0 register
* @saved_icm_cfg1: stored value of ICM CFG1 register
*/
struct xpsgtr_dev {
struct device *dev;
void __iomem *serdes;
void __iomem *siou;
struct mutex gtr_mutex; /* mutex for locking */
struct xpsgtr_phy phys[NUM_LANES];
const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
struct clk *clk[NUM_LANES];
bool tx_term_fix;
unsigned int saved_icm_cfg0;
unsigned int saved_icm_cfg1;
};
/*
* Configuration Data
*/
/* lookup table to hold all settings needed for a ref clock frequency */
static const struct xpsgtr_ssc ssc_lookup[] = {
{ 19200000, 0x05, 608, 264020 },
{ 20000000, 0x06, 634, 243454 },
{ 24000000, 0x07, 760, 168973 },
{ 26000000, 0x08, 824, 143860 },
{ 27000000, 0x09, 856, 86551 },
{ 38400000, 0x0a, 1218, 65896 },
{ 40000000, 0x0b, 634, 243454 },
{ 52000000, 0x0c, 824, 143860 },
{ 100000000, 0x0d, 1058, 87533 },
{ 108000000, 0x0e, 856, 86551 },
{ 125000000, 0x0f, 992, 119497 },
{ 135000000, 0x10, 1070, 55393 },
{ 150000000, 0x11, 792, 187091 }
};
/*
* I/O Accessors
*/
static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
{
return readl(gtr_dev->serdes + reg);
}
static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
{
writel(value, gtr_dev->serdes + reg);
}
static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
u32 clr, u32 set)
{
u32 value = xpsgtr_read(gtr_dev, reg);
value &= ~clr;
value |= set;
xpsgtr_write(gtr_dev, reg, value);
}
static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
{
void __iomem *addr = gtr_phy->dev->serdes
+ gtr_phy->lane * PHY_REG_OFFSET + reg;
return readl(addr);
}
static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
u32 reg, u32 value)
{
void __iomem *addr = gtr_phy->dev->serdes
+ gtr_phy->lane * PHY_REG_OFFSET + reg;
writel(value, addr);
}
static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
u32 reg, u32 clr, u32 set)
{
void __iomem *addr = gtr_phy->dev->serdes
+ gtr_phy->lane * PHY_REG_OFFSET + reg;
writel((readl(addr) & ~clr) | set, addr);
}
/*
* Hardware Configuration
*/
/* Wait for the PLL to lock (with a timeout). */
static int xpsgtr_wait_pll_lock(struct phy *phy)
{
struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
unsigned int timeout = TIMEOUT_US;
int ret;
dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
while (1) {
u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
ret = 0;
break;
}
if (--timeout == 0) {
ret = -ETIMEDOUT;
break;
}
udelay(1);
}
if (ret == -ETIMEDOUT)
dev_err(gtr_dev->dev,
"lane %u (type %u, protocol %u): PLL lock timeout\n",
gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
return ret;
}
/* Configure PLL and spread-sprectrum clock. */
static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
{
const struct xpsgtr_ssc *ssc;
u32 step_size;
ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
step_size = ssc->step_size;
xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
PLL_FREQ_MASK, ssc->pll_ref_clk);
/* Enable lane clock sharing, if required */
if (gtr_phy->refclk != gtr_phy->lane) {
/* Lane3 Ref Clock Selection Register */
xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
}
/* SSC step size [7:0] */
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);
/* SSC step size [15:8] */
step_size >>= STEP_SIZE_SHIFT;
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);
/* SSC step size [23:16] */
step_size >>= STEP_SIZE_SHIFT;
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);
/* SSC steps [7:0] */
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
STEPS_0_MASK, ssc->steps & STEPS_0_MASK);
/* SSC steps [10:8] */
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
STEPS_1_MASK,
(ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
/* SSC step size [24:25] */
step_size >>= STEP_SIZE_SHIFT;
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
FORCE_STEP_SIZE | FORCE_STEPS);
}
/* Configure the lane protocol. */
static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
{
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
u8 protocol = gtr_phy->protocol;
switch (gtr_phy->lane) {
case 0:
xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
break;
case 1:
xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
protocol << ICM_CFG_SHIFT);
break;
case 2:
xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
break;
case 3:
xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
protocol << ICM_CFG_SHIFT);
break;
default:
/* We already checked 0 <= lane <= 3 */
break;
}
}
/* Bypass (de)scrambler and 8b/10b decoder and encoder. */
static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
{
xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
}
/* DP-specific initialization. */
static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy)
{
xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45,
L0_TXPMD_TM_45_OVER_DP_MAIN |
L0_TXPMD_TM_45_ENABLE_DP_MAIN |
L0_TXPMD_TM_45_OVER_DP_POST1 |
L0_TXPMD_TM_45_OVER_DP_POST2 |
L0_TXPMD_TM_45_ENABLE_DP_POST2);
xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118,
L0_TX_ANA_TM_118_FORCE_17_0);
}
/* SATA-specific initialization. */
static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy)
{
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
xpsgtr_bypass_scrambler_8b10b(gtr_phy);
writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET);
}
/* SGMII-specific initialization. */
static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
{
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
u32 mask = PROT_BUS_WIDTH_MASK(gtr_phy->lane);
u32 val = PROT_BUS_WIDTH_10 << PROT_BUS_WIDTH_SHIFT(gtr_phy->lane);
/* Set SGMII protocol TX and RX bus width to 10 bits. */
xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, mask, val);
xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, mask, val);
xpsgtr_bypass_scrambler_8b10b(gtr_phy);
}
/* Configure TX de-emphasis and margining for DP. */
static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre,
unsigned int voltage)
{
static const u8 voltage_swing[4][4] = {
{ 0x2a, 0x27, 0x24, 0x20 },
{ 0x27, 0x23, 0x20, 0xff },
{ 0x24, 0x20, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff }
};
static const u8 pre_emphasis[4][4] = {
{ 0x02, 0x02, 0x02, 0x02 },
{ 0x01, 0x01, 0x01, 0xff },
{ 0x00, 0x00, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff }
};
xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]);
xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]);
}
/*
* PHY Operations
*/
static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy)
{
/*
* As USB may save the snapshot of the states during hibernation, doing
* phy_init() will put the USB controller into reset, resulting in the
* losing of the saved snapshot. So try to avoid phy_init() for USB
* except when gtr_phy->skip_phy_init is false (this happens when FPD is
* shutdown during suspend or when gt lane is changed from current one)
*/
if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init)
return false;
else
return true;
}
/*
* There is a functional issue in the GT. The TX termination resistance can be
* out of spec due to a issue in the calibration logic. This is the workaround
* to fix it, required for XCZU9EG silicon.
*/
static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy)
{
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
u32 timeout = TIMEOUT_US;
u32 nsw;
/* Enabling Test Mode control for CMN Rest */
xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
/* Set Test Mode reset */
xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00);
xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE);
/*
* As a part of work around sequence for PMOS calibration fix,
* we need to configure any lane ICM_CFG to valid protocol. This
* will deassert the CMN_Resetn signal.
*/
xpsgtr_lane_set_protocol(gtr_phy);
/* Clear Test Mode reset */
xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
dev_dbg(gtr_dev->dev, "calibrating...\n");
do {
u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS);
if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE)
break;
if (!--timeout) {
dev_err(gtr_dev->dev, "calibration time out\n");
return -ETIMEDOUT;
}
udelay(1);
} while (timeout > 0);
dev_dbg(gtr_dev->dev, "calibration done\n");
/* Reading NMOS Register Code */
nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE;
/* Set Test Mode reset */
xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
/* Writing NMOS register values back [5:3] */
xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT);
/* Writing NMOS register value [2:0] */
xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18,
((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) |
(1 << L3_NSW_PIPE_SHIFT));
/* Clear Test Mode reset */
xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
return 0;
}
static int xpsgtr_phy_init(struct phy *phy)
{
struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
int ret = 0;
mutex_lock(&gtr_dev->gtr_mutex);
/* Configure and enable the clock when peripheral phy_init call */
if (clk_prepare_enable(gtr_dev->clk[gtr_phy->lane]))
goto out;
/* Skip initialization if not required. */
if (!xpsgtr_phy_init_required(gtr_phy))
goto out;
if (gtr_dev->tx_term_fix) {
ret = xpsgtr_phy_tx_term_fix(gtr_phy);
if (ret < 0)
goto out;
gtr_dev->tx_term_fix = false;
}
/* Enable coarse code saturation limiting logic. */
xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
/*
* Configure the PLL, the lane protocol, and perform protocol-specific
* initialization.
*/
xpsgtr_configure_pll(gtr_phy);
xpsgtr_lane_set_protocol(gtr_phy);
switch (gtr_phy->protocol) {
case ICM_PROTOCOL_DP:
xpsgtr_phy_init_dp(gtr_phy);
break;
case ICM_PROTOCOL_SATA:
xpsgtr_phy_init_sata(gtr_phy);
break;
case ICM_PROTOCOL_SGMII:
xpsgtr_phy_init_sgmii(gtr_phy);
break;
}
out:
mutex_unlock(&gtr_dev->gtr_mutex);
return ret;
}
static int xpsgtr_phy_exit(struct phy *phy)
{
struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
gtr_phy->skip_phy_init = false;
/* Ensure that disable clock only, which configure for lane */
clk_disable_unprepare(gtr_dev->clk[gtr_phy->lane]);
return 0;
}
static int xpsgtr_phy_power_on(struct phy *phy)
{
struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
int ret = 0;
/* Skip initialization if not required. */
if (!xpsgtr_phy_init_required(gtr_phy))
return ret;
/*
* Wait for the PLL to lock. For DP, only wait on DP0 to avoid
* cumulating waits for both lanes. The user is expected to initialize
* lane 0 last.
*/
if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
gtr_phy->type == XPSGTR_TYPE_DP_0)
ret = xpsgtr_wait_pll_lock(phy);
return ret;
}
static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts)
{
struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
if (gtr_phy->protocol != ICM_PROTOCOL_DP)
return 0;
xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]);
return 0;
}
static const struct phy_ops xpsgtr_phyops = {
.init = xpsgtr_phy_init,
.exit = xpsgtr_phy_exit,
.power_on = xpsgtr_phy_power_on,
.configure = xpsgtr_phy_configure,
.owner = THIS_MODULE,
};
/*
* OF Xlate Support
*/
/* Set the lane type and protocol based on the PHY type and instance number. */
static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
unsigned int phy_instance)
{
unsigned int num_phy_types;
const int *phy_types;
switch (phy_type) {
case PHY_TYPE_SATA: {
static const int types[] = {
XPSGTR_TYPE_SATA_0,
XPSGTR_TYPE_SATA_1,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_SATA;
break;
}
case PHY_TYPE_USB3: {
static const int types[] = {
XPSGTR_TYPE_USB0,
XPSGTR_TYPE_USB1,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_USB;
break;
}
case PHY_TYPE_DP: {
static const int types[] = {
XPSGTR_TYPE_DP_0,
XPSGTR_TYPE_DP_1,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_DP;
break;
}
case PHY_TYPE_PCIE: {
static const int types[] = {
XPSGTR_TYPE_PCIE_0,
XPSGTR_TYPE_PCIE_1,
XPSGTR_TYPE_PCIE_2,
XPSGTR_TYPE_PCIE_3,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_PCIE;
break;
}
case PHY_TYPE_SGMII: {
static const int types[] = {
XPSGTR_TYPE_SGMII0,
XPSGTR_TYPE_SGMII1,
XPSGTR_TYPE_SGMII2,
XPSGTR_TYPE_SGMII3,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_SGMII;
break;
}
default:
return -EINVAL;
}
if (phy_instance >= num_phy_types)
return -EINVAL;
gtr_phy->type = phy_types[phy_instance];
return 0;
}
/*
* Valid combinations of controllers and lanes (Interconnect Matrix).
*/
static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
{ XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
{ XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
{ XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
{ XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
};
/* Translate OF phandle and args to PHY instance. */
static struct phy *xpsgtr_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
struct xpsgtr_phy *gtr_phy;
unsigned int phy_instance;
unsigned int phy_lane;
unsigned int phy_type;
unsigned int refclk;
unsigned int i;
int ret;
if (args->args_count != 4) {
dev_err(dev, "Invalid number of cells in 'phy' property\n");
return ERR_PTR(-EINVAL);
}
/*
* Get the PHY parameters from the OF arguments and derive the lane
* type.
*/
phy_lane = args->args[0];
if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) {
dev_err(dev, "Invalid lane number %u\n", phy_lane);
return ERR_PTR(-ENODEV);
}
gtr_phy = &gtr_dev->phys[phy_lane];
phy_type = args->args[1];
phy_instance = args->args[2];
ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
if (ret < 0) {
dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n");
return ERR_PTR(ret);
}
refclk = args->args[3];
if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
!gtr_dev->refclk_sscs[refclk]) {
dev_err(dev, "Invalid reference clock number %u\n", refclk);
return ERR_PTR(-EINVAL);
}
gtr_phy->refclk = refclk;
/*
* Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
* is allowed to operate on the lane.
*/
for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
if (icm_matrix[phy_lane][i] == gtr_phy->type)
return gtr_phy->phy;
}
return ERR_PTR(-EINVAL);
}
/*
* Power Management
*/
static int xpsgtr_runtime_suspend(struct device *dev)
{
struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
/* Save the snapshot ICM_CFG registers. */
gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
return 0;
}
static int xpsgtr_runtime_resume(struct device *dev)
{
struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
unsigned int icm_cfg0, icm_cfg1;
unsigned int i;
bool skip_phy_init;
icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
/* Return if no GT lanes got configured before suspend. */
if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1)
return 0;
/* Check if the ICM configurations changed after suspend. */
if (icm_cfg0 == gtr_dev->saved_icm_cfg0 &&
icm_cfg1 == gtr_dev->saved_icm_cfg1)
skip_phy_init = true;
else
skip_phy_init = false;
/* Update the skip_phy_init for all gtr_phy instances. */
for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++)
gtr_dev->phys[i].skip_phy_init = skip_phy_init;
return 0;
}
static DEFINE_RUNTIME_DEV_PM_OPS(xpsgtr_pm_ops, xpsgtr_runtime_suspend,
xpsgtr_runtime_resume, NULL);
/*
* Probe & Platform Driver
*/
static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev)
{
unsigned int refclk;
for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) {
unsigned long rate;
unsigned int i;
struct clk *clk;
char name[8];
snprintf(name, sizeof(name), "ref%u", refclk);
clk = devm_clk_get_optional(gtr_dev->dev, name);
if (IS_ERR(clk)) {
return dev_err_probe(gtr_dev->dev, PTR_ERR(clk),
"Failed to get ref clock %u\n",
refclk);
}
if (!clk)
continue;
gtr_dev->clk[refclk] = clk;
/*
* Get the spread spectrum (SSC) settings for the reference
* clock rate.
*/
rate = clk_get_rate(clk);
for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
/* Allow an error of 100 ppm */
unsigned long error = ssc_lookup[i].refclk_rate / 10000;
if (abs(rate - ssc_lookup[i].refclk_rate) < error) {
gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
break;
}
}
if (i == ARRAY_SIZE(ssc_lookup)) {
dev_err(gtr_dev->dev,
"Invalid rate %lu for reference clock %u\n",
rate, refclk);
return -EINVAL;
}
}
return 0;
}
static int xpsgtr_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct xpsgtr_dev *gtr_dev;
struct phy_provider *provider;
unsigned int port;
int ret;
gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL);
if (!gtr_dev)
return -ENOMEM;
gtr_dev->dev = &pdev->dev;
platform_set_drvdata(pdev, gtr_dev);
mutex_init(&gtr_dev->gtr_mutex);
if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr"))
gtr_dev->tx_term_fix =
of_property_read_bool(np, "xlnx,tx-termination-fix");
/* Acquire resources. */
gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes");
if (IS_ERR(gtr_dev->serdes))
return PTR_ERR(gtr_dev->serdes);
gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou");
if (IS_ERR(gtr_dev->siou))
return PTR_ERR(gtr_dev->siou);
ret = xpsgtr_get_ref_clocks(gtr_dev);
if (ret)
return ret;
/* Create PHYs. */
for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) {
struct xpsgtr_phy *gtr_phy = &gtr_dev->phys[port];
struct phy *phy;
gtr_phy->lane = port;
gtr_phy->dev = gtr_dev;
phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops);
if (IS_ERR(phy)) {
dev_err(&pdev->dev, "failed to create PHY\n");
return PTR_ERR(phy);
}
gtr_phy->phy = phy;
phy_set_drvdata(phy, gtr_phy);
}
/* Register the PHY provider. */
provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate);
if (IS_ERR(provider)) {
dev_err(&pdev->dev, "registering provider failed\n");
return PTR_ERR(provider);
}
pm_runtime_set_active(gtr_dev->dev);
pm_runtime_enable(gtr_dev->dev);
ret = pm_runtime_resume_and_get(gtr_dev->dev);
if (ret < 0) {
pm_runtime_disable(gtr_dev->dev);
return ret;
}
return 0;
}
static int xpsgtr_remove(struct platform_device *pdev)
{
struct xpsgtr_dev *gtr_dev = platform_get_drvdata(pdev);
pm_runtime_disable(gtr_dev->dev);
pm_runtime_put_noidle(gtr_dev->dev);
pm_runtime_set_suspended(gtr_dev->dev);
return 0;
}
static const struct of_device_id xpsgtr_of_match[] = {
{ .compatible = "xlnx,zynqmp-psgtr", },
{ .compatible = "xlnx,zynqmp-psgtr-v1.1", },
{},
};
MODULE_DEVICE_TABLE(of, xpsgtr_of_match);
static struct platform_driver xpsgtr_driver = {
.probe = xpsgtr_probe,
.remove = xpsgtr_remove,
.driver = {
.name = "xilinx-psgtr",
.of_match_table = xpsgtr_of_match,
.pm = pm_ptr(&xpsgtr_pm_ops),
},
};
module_platform_driver(xpsgtr_driver);
MODULE_AUTHOR("Xilinx Inc.");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver");