02addaeaa7
The core device API performs extra housekeeping bits that are missing
from directly calling cpu_up/down().
See commit a6717c01dd
("powerpc/rtas: use device model APIs and
serialization during LPM") for an example description of what might go
wrong.
This also prepares to make cpu_up/down() a private interface of the CPU
subsystem.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Helge Deller <deller@gmx.de>
Link: https://lkml.kernel.org/r/20200323135110.30522-13-qais.yousef@arm.com
466 lines
13 KiB
C
466 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Initial setup-routines for HP 9000 based hardware.
|
|
*
|
|
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
|
|
* Modifications for PA-RISC (C) 1999-2008 Helge Deller <deller@gmx.de>
|
|
* Modifications copyright 1999 SuSE GmbH (Philipp Rumpf)
|
|
* Modifications copyright 2000 Martin K. Petersen <mkp@mkp.net>
|
|
* Modifications copyright 2000 Philipp Rumpf <prumpf@tux.org>
|
|
* Modifications copyright 2001 Ryan Bradetich <rbradetich@uswest.net>
|
|
*
|
|
* Initial PA-RISC Version: 04-23-1999 by Helge Deller
|
|
*/
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/random.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cpu.h>
|
|
#include <asm/param.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/hardware.h> /* for register_parisc_driver() stuff */
|
|
#include <asm/processor.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pdc.h>
|
|
#include <asm/pdcpat.h>
|
|
#include <asm/irq.h> /* for struct irq_region */
|
|
#include <asm/parisc-device.h>
|
|
|
|
struct system_cpuinfo_parisc boot_cpu_data __ro_after_init;
|
|
EXPORT_SYMBOL(boot_cpu_data);
|
|
#ifdef CONFIG_PA8X00
|
|
int _parisc_requires_coherency __ro_after_init;
|
|
EXPORT_SYMBOL(_parisc_requires_coherency);
|
|
#endif
|
|
|
|
DEFINE_PER_CPU(struct cpuinfo_parisc, cpu_data);
|
|
|
|
/*
|
|
** PARISC CPU driver - claim "device" and initialize CPU data structures.
|
|
**
|
|
** Consolidate per CPU initialization into (mostly) one module.
|
|
** Monarch CPU will initialize boot_cpu_data which shouldn't
|
|
** change once the system has booted.
|
|
**
|
|
** The callback *should* do per-instance initialization of
|
|
** everything including the monarch. "Per CPU" init code in
|
|
** setup.c:start_parisc() has migrated here and start_parisc()
|
|
** will call register_parisc_driver(&cpu_driver) before calling do_inventory().
|
|
**
|
|
** The goal of consolidating CPU initialization into one place is
|
|
** to make sure all CPUs get initialized the same way.
|
|
** The code path not shared is how PDC hands control of the CPU to the OS.
|
|
** The initialization of OS data structures is the same (done below).
|
|
*/
|
|
|
|
/**
|
|
* init_cpu_profiler - enable/setup per cpu profiling hooks.
|
|
* @cpunum: The processor instance.
|
|
*
|
|
* FIXME: doesn't do much yet...
|
|
*/
|
|
static void
|
|
init_percpu_prof(unsigned long cpunum)
|
|
{
|
|
}
|
|
|
|
|
|
/**
|
|
* processor_probe - Determine if processor driver should claim this device.
|
|
* @dev: The device which has been found.
|
|
*
|
|
* Determine if processor driver should claim this chip (return 0) or not
|
|
* (return 1). If so, initialize the chip and tell other partners in crime
|
|
* they have work to do.
|
|
*/
|
|
static int __init processor_probe(struct parisc_device *dev)
|
|
{
|
|
unsigned long txn_addr;
|
|
unsigned long cpuid;
|
|
struct cpuinfo_parisc *p;
|
|
struct pdc_pat_cpu_num cpu_info = { };
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (num_online_cpus() >= nr_cpu_ids) {
|
|
printk(KERN_INFO "num_online_cpus() >= nr_cpu_ids\n");
|
|
return 1;
|
|
}
|
|
#else
|
|
if (boot_cpu_data.cpu_count > 0) {
|
|
printk(KERN_INFO "CONFIG_SMP=n ignoring additional CPUs\n");
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/* logical CPU ID and update global counter
|
|
* May get overwritten by PAT code.
|
|
*/
|
|
cpuid = boot_cpu_data.cpu_count;
|
|
txn_addr = dev->hpa.start; /* for legacy PDC */
|
|
cpu_info.cpu_num = cpu_info.cpu_loc = cpuid;
|
|
|
|
#ifdef CONFIG_64BIT
|
|
if (is_pdc_pat()) {
|
|
ulong status;
|
|
unsigned long bytecnt;
|
|
pdc_pat_cell_mod_maddr_block_t *pa_pdc_cell;
|
|
|
|
pa_pdc_cell = kmalloc(sizeof (*pa_pdc_cell), GFP_KERNEL);
|
|
if (!pa_pdc_cell)
|
|
panic("couldn't allocate memory for PDC_PAT_CELL!");
|
|
|
|
status = pdc_pat_cell_module(&bytecnt, dev->pcell_loc,
|
|
dev->mod_index, PA_VIEW, pa_pdc_cell);
|
|
|
|
BUG_ON(PDC_OK != status);
|
|
|
|
/* verify it's the same as what do_pat_inventory() found */
|
|
BUG_ON(dev->mod_info != pa_pdc_cell->mod_info);
|
|
BUG_ON(dev->pmod_loc != pa_pdc_cell->mod_location);
|
|
|
|
txn_addr = pa_pdc_cell->mod[0]; /* id_eid for IO sapic */
|
|
|
|
kfree(pa_pdc_cell);
|
|
|
|
/* get the cpu number */
|
|
status = pdc_pat_cpu_get_number(&cpu_info, dev->hpa.start);
|
|
BUG_ON(PDC_OK != status);
|
|
|
|
pr_info("Logical CPU #%lu is physical cpu #%lu at location "
|
|
"0x%lx with hpa %pa\n",
|
|
cpuid, cpu_info.cpu_num, cpu_info.cpu_loc,
|
|
&dev->hpa.start);
|
|
|
|
#undef USE_PAT_CPUID
|
|
#ifdef USE_PAT_CPUID
|
|
/* We need contiguous numbers for cpuid. Firmware's notion
|
|
* of cpuid is for physical CPUs and we just don't care yet.
|
|
* We'll care when we need to query PAT PDC about a CPU *after*
|
|
* boot time (ie shutdown a CPU from an OS perspective).
|
|
*/
|
|
if (cpu_info.cpu_num >= NR_CPUS) {
|
|
printk(KERN_WARNING "IGNORING CPU at %pa,"
|
|
" cpu_slot_id > NR_CPUS"
|
|
" (%ld > %d)\n",
|
|
&dev->hpa.start, cpu_info.cpu_num, NR_CPUS);
|
|
/* Ignore CPU since it will only crash */
|
|
boot_cpu_data.cpu_count--;
|
|
return 1;
|
|
} else {
|
|
cpuid = cpu_info.cpu_num;
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
p = &per_cpu(cpu_data, cpuid);
|
|
boot_cpu_data.cpu_count++;
|
|
|
|
/* initialize counters - CPU 0 gets it_value set in time_init() */
|
|
if (cpuid)
|
|
memset(p, 0, sizeof(struct cpuinfo_parisc));
|
|
|
|
p->loops_per_jiffy = loops_per_jiffy;
|
|
p->dev = dev; /* Save IODC data in case we need it */
|
|
p->hpa = dev->hpa.start; /* save CPU hpa */
|
|
p->cpuid = cpuid; /* save CPU id */
|
|
p->txn_addr = txn_addr; /* save CPU IRQ address */
|
|
p->cpu_num = cpu_info.cpu_num;
|
|
p->cpu_loc = cpu_info.cpu_loc;
|
|
|
|
store_cpu_topology(cpuid);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
** FIXME: review if any other initialization is clobbered
|
|
** for boot_cpu by the above memset().
|
|
*/
|
|
init_percpu_prof(cpuid);
|
|
#endif
|
|
|
|
/*
|
|
** CONFIG_SMP: init_smp_config() will attempt to get CPUs into
|
|
** OS control. RENDEZVOUS is the default state - see mem_set above.
|
|
** p->state = STATE_RENDEZVOUS;
|
|
*/
|
|
|
|
#if 0
|
|
/* CPU 0 IRQ table is statically allocated/initialized */
|
|
if (cpuid) {
|
|
struct irqaction actions[];
|
|
|
|
/*
|
|
** itimer and ipi IRQ handlers are statically initialized in
|
|
** arch/parisc/kernel/irq.c. ie Don't need to register them.
|
|
*/
|
|
actions = kmalloc(sizeof(struct irqaction)*MAX_CPU_IRQ, GFP_ATOMIC);
|
|
if (!actions) {
|
|
/* not getting it's own table, share with monarch */
|
|
actions = cpu_irq_actions[0];
|
|
}
|
|
|
|
cpu_irq_actions[cpuid] = actions;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Bring this CPU up now! (ignore bootstrap cpuid == 0)
|
|
*/
|
|
#ifdef CONFIG_SMP
|
|
if (cpuid) {
|
|
set_cpu_present(cpuid, true);
|
|
add_cpu(cpuid);
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* collect_boot_cpu_data - Fill the boot_cpu_data structure.
|
|
*
|
|
* This function collects and stores the generic processor information
|
|
* in the boot_cpu_data structure.
|
|
*/
|
|
void __init collect_boot_cpu_data(void)
|
|
{
|
|
unsigned long cr16_seed;
|
|
char orig_prod_num[64], current_prod_num[64], serial_no[64];
|
|
|
|
memset(&boot_cpu_data, 0, sizeof(boot_cpu_data));
|
|
|
|
cr16_seed = get_cycles();
|
|
add_device_randomness(&cr16_seed, sizeof(cr16_seed));
|
|
|
|
boot_cpu_data.cpu_hz = 100 * PAGE0->mem_10msec; /* Hz of this PARISC */
|
|
|
|
/* get CPU-Model Information... */
|
|
#define p ((unsigned long *)&boot_cpu_data.pdc.model)
|
|
if (pdc_model_info(&boot_cpu_data.pdc.model) == PDC_OK) {
|
|
printk(KERN_INFO
|
|
"model %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8]);
|
|
|
|
add_device_randomness(&boot_cpu_data.pdc.model,
|
|
sizeof(boot_cpu_data.pdc.model));
|
|
}
|
|
#undef p
|
|
|
|
if (pdc_model_versions(&boot_cpu_data.pdc.versions, 0) == PDC_OK) {
|
|
printk(KERN_INFO "vers %08lx\n",
|
|
boot_cpu_data.pdc.versions);
|
|
|
|
add_device_randomness(&boot_cpu_data.pdc.versions,
|
|
sizeof(boot_cpu_data.pdc.versions));
|
|
}
|
|
|
|
if (pdc_model_cpuid(&boot_cpu_data.pdc.cpuid) == PDC_OK) {
|
|
printk(KERN_INFO "CPUID vers %ld rev %ld (0x%08lx)\n",
|
|
(boot_cpu_data.pdc.cpuid >> 5) & 127,
|
|
boot_cpu_data.pdc.cpuid & 31,
|
|
boot_cpu_data.pdc.cpuid);
|
|
|
|
add_device_randomness(&boot_cpu_data.pdc.cpuid,
|
|
sizeof(boot_cpu_data.pdc.cpuid));
|
|
}
|
|
|
|
if (pdc_model_capabilities(&boot_cpu_data.pdc.capabilities) == PDC_OK)
|
|
printk(KERN_INFO "capabilities 0x%lx\n",
|
|
boot_cpu_data.pdc.capabilities);
|
|
|
|
if (pdc_model_sysmodel(boot_cpu_data.pdc.sys_model_name) == PDC_OK)
|
|
printk(KERN_INFO "model %s\n",
|
|
boot_cpu_data.pdc.sys_model_name);
|
|
|
|
dump_stack_set_arch_desc("%s", boot_cpu_data.pdc.sys_model_name);
|
|
|
|
boot_cpu_data.hversion = boot_cpu_data.pdc.model.hversion;
|
|
boot_cpu_data.sversion = boot_cpu_data.pdc.model.sversion;
|
|
|
|
boot_cpu_data.cpu_type = parisc_get_cpu_type(boot_cpu_data.hversion);
|
|
boot_cpu_data.cpu_name = cpu_name_version[boot_cpu_data.cpu_type][0];
|
|
boot_cpu_data.family_name = cpu_name_version[boot_cpu_data.cpu_type][1];
|
|
|
|
#ifdef CONFIG_PA8X00
|
|
_parisc_requires_coherency = (boot_cpu_data.cpu_type == mako) ||
|
|
(boot_cpu_data.cpu_type == mako2);
|
|
#endif
|
|
|
|
if (pdc_model_platform_info(orig_prod_num, current_prod_num, serial_no) == PDC_OK) {
|
|
printk(KERN_INFO "product %s, original product %s, S/N: %s\n",
|
|
current_prod_num[0] ? current_prod_num : "n/a",
|
|
orig_prod_num, serial_no);
|
|
add_device_randomness(orig_prod_num, strlen(orig_prod_num));
|
|
add_device_randomness(current_prod_num, strlen(current_prod_num));
|
|
add_device_randomness(serial_no, strlen(serial_no));
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* init_per_cpu - Handle individual processor initializations.
|
|
* @cpunum: logical processor number.
|
|
*
|
|
* This function handles initialization for *every* CPU
|
|
* in the system:
|
|
*
|
|
* o Set "default" CPU width for trap handlers
|
|
*
|
|
* o Enable FP coprocessor
|
|
* REVISIT: this could be done in the "code 22" trap handler.
|
|
* (frowands idea - that way we know which processes need FP
|
|
* registers saved on the interrupt stack.)
|
|
* NEWS FLASH: wide kernels need FP coprocessor enabled to handle
|
|
* formatted printing of %lx for example (double divides I think)
|
|
*
|
|
* o Enable CPU profiling hooks.
|
|
*/
|
|
int __init init_per_cpu(int cpunum)
|
|
{
|
|
int ret;
|
|
struct pdc_coproc_cfg coproc_cfg;
|
|
|
|
set_firmware_width();
|
|
ret = pdc_coproc_cfg(&coproc_cfg);
|
|
|
|
store_cpu_topology(cpunum);
|
|
|
|
if(ret >= 0 && coproc_cfg.ccr_functional) {
|
|
mtctl(coproc_cfg.ccr_functional, 10); /* 10 == Coprocessor Control Reg */
|
|
|
|
/* FWIW, FP rev/model is a more accurate way to determine
|
|
** CPU type. CPU rev/model has some ambiguous cases.
|
|
*/
|
|
per_cpu(cpu_data, cpunum).fp_rev = coproc_cfg.revision;
|
|
per_cpu(cpu_data, cpunum).fp_model = coproc_cfg.model;
|
|
|
|
if (cpunum == 0)
|
|
printk(KERN_INFO "FP[%d] enabled: Rev %ld Model %ld\n",
|
|
cpunum, coproc_cfg.revision, coproc_cfg.model);
|
|
|
|
/*
|
|
** store status register to stack (hopefully aligned)
|
|
** and clear the T-bit.
|
|
*/
|
|
asm volatile ("fstd %fr0,8(%sp)");
|
|
|
|
} else {
|
|
printk(KERN_WARNING "WARNING: No FP CoProcessor?!"
|
|
" (coproc_cfg.ccr_functional == 0x%lx, expected 0xc0)\n"
|
|
#ifdef CONFIG_64BIT
|
|
"Halting Machine - FP required\n"
|
|
#endif
|
|
, coproc_cfg.ccr_functional);
|
|
#ifdef CONFIG_64BIT
|
|
mdelay(100); /* previous chars get pushed to console */
|
|
panic("FP CoProc not reported");
|
|
#endif
|
|
}
|
|
|
|
/* FUTURE: Enable Performance Monitor : ccr bit 0x20 */
|
|
init_percpu_prof(cpunum);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Display CPU info for all CPUs.
|
|
*/
|
|
int
|
|
show_cpuinfo (struct seq_file *m, void *v)
|
|
{
|
|
unsigned long cpu;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
const struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
|
|
#ifdef CONFIG_SMP
|
|
if (0 == cpuinfo->hpa)
|
|
continue;
|
|
#endif
|
|
seq_printf(m, "processor\t: %lu\n"
|
|
"cpu family\t: PA-RISC %s\n",
|
|
cpu, boot_cpu_data.family_name);
|
|
|
|
seq_printf(m, "cpu\t\t: %s\n", boot_cpu_data.cpu_name );
|
|
|
|
/* cpu MHz */
|
|
seq_printf(m, "cpu MHz\t\t: %d.%06d\n",
|
|
boot_cpu_data.cpu_hz / 1000000,
|
|
boot_cpu_data.cpu_hz % 1000000 );
|
|
|
|
#ifdef CONFIG_PARISC_CPU_TOPOLOGY
|
|
seq_printf(m, "physical id\t: %d\n",
|
|
topology_physical_package_id(cpu));
|
|
seq_printf(m, "siblings\t: %d\n",
|
|
cpumask_weight(topology_core_cpumask(cpu)));
|
|
seq_printf(m, "core id\t\t: %d\n", topology_core_id(cpu));
|
|
#endif
|
|
|
|
seq_printf(m, "capabilities\t:");
|
|
if (boot_cpu_data.pdc.capabilities & PDC_MODEL_OS32)
|
|
seq_puts(m, " os32");
|
|
if (boot_cpu_data.pdc.capabilities & PDC_MODEL_OS64)
|
|
seq_puts(m, " os64");
|
|
if (boot_cpu_data.pdc.capabilities & PDC_MODEL_IOPDIR_FDC)
|
|
seq_puts(m, " iopdir_fdc");
|
|
switch (boot_cpu_data.pdc.capabilities & PDC_MODEL_NVA_MASK) {
|
|
case PDC_MODEL_NVA_SUPPORTED:
|
|
seq_puts(m, " nva_supported");
|
|
break;
|
|
case PDC_MODEL_NVA_SLOW:
|
|
seq_puts(m, " nva_slow");
|
|
break;
|
|
case PDC_MODEL_NVA_UNSUPPORTED:
|
|
seq_puts(m, " needs_equivalent_aliasing");
|
|
break;
|
|
}
|
|
seq_printf(m, " (0x%02lx)\n", boot_cpu_data.pdc.capabilities);
|
|
|
|
seq_printf(m, "model\t\t: %s\n"
|
|
"model name\t: %s\n",
|
|
boot_cpu_data.pdc.sys_model_name,
|
|
cpuinfo->dev ?
|
|
cpuinfo->dev->name : "Unknown");
|
|
|
|
seq_printf(m, "hversion\t: 0x%08x\n"
|
|
"sversion\t: 0x%08x\n",
|
|
boot_cpu_data.hversion,
|
|
boot_cpu_data.sversion );
|
|
|
|
/* print cachesize info */
|
|
show_cache_info(m);
|
|
|
|
seq_printf(m, "bogomips\t: %lu.%02lu\n",
|
|
cpuinfo->loops_per_jiffy / (500000 / HZ),
|
|
(cpuinfo->loops_per_jiffy / (5000 / HZ)) % 100);
|
|
|
|
seq_printf(m, "software id\t: %ld\n\n",
|
|
boot_cpu_data.pdc.model.sw_id);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const struct parisc_device_id processor_tbl[] __initconst = {
|
|
{ HPHW_NPROC, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, SVERSION_ANY_ID },
|
|
{ 0, }
|
|
};
|
|
|
|
static struct parisc_driver cpu_driver __refdata = {
|
|
.name = "CPU",
|
|
.id_table = processor_tbl,
|
|
.probe = processor_probe
|
|
};
|
|
|
|
/**
|
|
* processor_init - Processor initialization procedure.
|
|
*
|
|
* Register this driver.
|
|
*/
|
|
void __init processor_init(void)
|
|
{
|
|
register_parisc_driver(&cpu_driver);
|
|
}
|