komeda_component_get_old_state() technically can return a NULL pointer. komeda_compiz_set_input() even warns when this happens, but then proceeeds to use that NULL pointer to compare memory content there agains the new state to see if it changed. In this case, it's better to assume that the input changed as there is no old state to compare against and thus assume the changes happen anyway. Signed-off-by: Carsten Haitzler <carsten.haitzler@arm.com> Reviewed-by: Steven Price <steven.price@arm.com> Acked-by: Liviu Dudau <liviu.dudau@arm.com> [Applied small spelling fixes and fix suggested by Steven Price] Signed-off-by: Liviu Dudau <liviu.dudau@arm.com> Link: https://patchwork.freedesktop.org/patch/msgid/20201127110054.133686-1-carsten.haitzler@foss.arm.com
1351 lines
38 KiB
C
1351 lines
38 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
|
|
* Author: James.Qian.Wang <james.qian.wang@arm.com>
|
|
*
|
|
*/
|
|
|
|
#include <drm/drm_print.h>
|
|
#include <linux/clk.h>
|
|
#include "komeda_dev.h"
|
|
#include "komeda_kms.h"
|
|
#include "komeda_pipeline.h"
|
|
#include "komeda_framebuffer.h"
|
|
|
|
static inline bool is_switching_user(void *old, void *new)
|
|
{
|
|
if (!old || !new)
|
|
return false;
|
|
|
|
return old != new;
|
|
}
|
|
|
|
static struct komeda_pipeline_state *
|
|
komeda_pipeline_get_state(struct komeda_pipeline *pipe,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_private_state *priv_st;
|
|
|
|
priv_st = drm_atomic_get_private_obj_state(state, &pipe->obj);
|
|
if (IS_ERR(priv_st))
|
|
return ERR_CAST(priv_st);
|
|
|
|
return priv_to_pipe_st(priv_st);
|
|
}
|
|
|
|
struct komeda_pipeline_state *
|
|
komeda_pipeline_get_old_state(struct komeda_pipeline *pipe,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_private_state *priv_st;
|
|
|
|
priv_st = drm_atomic_get_old_private_obj_state(state, &pipe->obj);
|
|
if (priv_st)
|
|
return priv_to_pipe_st(priv_st);
|
|
return NULL;
|
|
}
|
|
|
|
static struct komeda_pipeline_state *
|
|
komeda_pipeline_get_new_state(struct komeda_pipeline *pipe,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_private_state *priv_st;
|
|
|
|
priv_st = drm_atomic_get_new_private_obj_state(state, &pipe->obj);
|
|
if (priv_st)
|
|
return priv_to_pipe_st(priv_st);
|
|
return NULL;
|
|
}
|
|
|
|
/* Assign pipeline for crtc */
|
|
static struct komeda_pipeline_state *
|
|
komeda_pipeline_get_state_and_set_crtc(struct komeda_pipeline *pipe,
|
|
struct drm_atomic_state *state,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct komeda_pipeline_state *st;
|
|
|
|
st = komeda_pipeline_get_state(pipe, state);
|
|
if (IS_ERR(st))
|
|
return st;
|
|
|
|
if (is_switching_user(crtc, st->crtc)) {
|
|
DRM_DEBUG_ATOMIC("CRTC%d required pipeline%d is busy.\n",
|
|
drm_crtc_index(crtc), pipe->id);
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
|
|
/* pipeline only can be disabled when the it is free or unused */
|
|
if (!crtc && st->active_comps) {
|
|
DRM_DEBUG_ATOMIC("Disabling a busy pipeline:%d.\n", pipe->id);
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
|
|
st->crtc = crtc;
|
|
|
|
if (crtc) {
|
|
struct komeda_crtc_state *kcrtc_st;
|
|
|
|
kcrtc_st = to_kcrtc_st(drm_atomic_get_new_crtc_state(state,
|
|
crtc));
|
|
|
|
kcrtc_st->active_pipes |= BIT(pipe->id);
|
|
kcrtc_st->affected_pipes |= BIT(pipe->id);
|
|
}
|
|
return st;
|
|
}
|
|
|
|
static struct komeda_component_state *
|
|
komeda_component_get_state(struct komeda_component *c,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_private_state *priv_st;
|
|
|
|
WARN_ON(!drm_modeset_is_locked(&c->pipeline->obj.lock));
|
|
|
|
priv_st = drm_atomic_get_private_obj_state(state, &c->obj);
|
|
if (IS_ERR(priv_st))
|
|
return ERR_CAST(priv_st);
|
|
|
|
return priv_to_comp_st(priv_st);
|
|
}
|
|
|
|
static struct komeda_component_state *
|
|
komeda_component_get_old_state(struct komeda_component *c,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct drm_private_state *priv_st;
|
|
|
|
priv_st = drm_atomic_get_old_private_obj_state(state, &c->obj);
|
|
if (priv_st)
|
|
return priv_to_comp_st(priv_st);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* komeda_component_get_state_and_set_user()
|
|
*
|
|
* @c: component to get state and set user
|
|
* @state: global atomic state
|
|
* @user: direct user, the binding user
|
|
* @crtc: the CRTC user, the big boss :)
|
|
*
|
|
* This function accepts two users:
|
|
* - The direct user: can be plane/crtc/wb_connector depends on component
|
|
* - The big boss (CRTC)
|
|
* CRTC is the big boss (the final user), because all component resources
|
|
* eventually will be assigned to CRTC, like the layer will be binding to
|
|
* kms_plane, but kms plane will be binding to a CRTC eventually.
|
|
*
|
|
* The big boss (CRTC) is for pipeline assignment, since &komeda_component isn't
|
|
* independent and can be assigned to CRTC freely, but belongs to a specific
|
|
* pipeline, only pipeline can be shared between crtc, and pipeline as a whole
|
|
* (include all the internal components) assigned to a specific CRTC.
|
|
*
|
|
* So when set a user to komeda_component, need first to check the status of
|
|
* component->pipeline to see if the pipeline is available on this specific
|
|
* CRTC. if the pipeline is busy (assigned to another CRTC), even the required
|
|
* component is free, the component still cannot be assigned to the direct user.
|
|
*/
|
|
static struct komeda_component_state *
|
|
komeda_component_get_state_and_set_user(struct komeda_component *c,
|
|
struct drm_atomic_state *state,
|
|
void *user,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct komeda_pipeline_state *pipe_st;
|
|
struct komeda_component_state *st;
|
|
|
|
/* First check if the pipeline is available */
|
|
pipe_st = komeda_pipeline_get_state_and_set_crtc(c->pipeline,
|
|
state, crtc);
|
|
if (IS_ERR(pipe_st))
|
|
return ERR_CAST(pipe_st);
|
|
|
|
st = komeda_component_get_state(c, state);
|
|
if (IS_ERR(st))
|
|
return st;
|
|
|
|
/* check if the component has been occupied */
|
|
if (is_switching_user(user, st->binding_user)) {
|
|
DRM_DEBUG_ATOMIC("required %s is busy.\n", c->name);
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
|
|
st->binding_user = user;
|
|
/* mark the component as active if user is valid */
|
|
if (st->binding_user)
|
|
pipe_st->active_comps |= BIT(c->id);
|
|
|
|
return st;
|
|
}
|
|
|
|
static void
|
|
komeda_component_add_input(struct komeda_component_state *state,
|
|
struct komeda_component_output *input,
|
|
int idx)
|
|
{
|
|
struct komeda_component *c = state->component;
|
|
|
|
WARN_ON((idx < 0 || idx >= c->max_active_inputs));
|
|
|
|
/* since the inputs[i] is only valid when it is active. So if a input[i]
|
|
* is a newly enabled input which switches from disable to enable, then
|
|
* the old inputs[i] is undefined (NOT zeroed), we can not rely on
|
|
* memcmp, but directly mark it changed
|
|
*/
|
|
if (!has_bit(idx, state->affected_inputs) ||
|
|
memcmp(&state->inputs[idx], input, sizeof(*input))) {
|
|
memcpy(&state->inputs[idx], input, sizeof(*input));
|
|
state->changed_active_inputs |= BIT(idx);
|
|
}
|
|
state->active_inputs |= BIT(idx);
|
|
state->affected_inputs |= BIT(idx);
|
|
}
|
|
|
|
static int
|
|
komeda_component_check_input(struct komeda_component_state *state,
|
|
struct komeda_component_output *input,
|
|
int idx)
|
|
{
|
|
struct komeda_component *c = state->component;
|
|
|
|
if ((idx < 0) || (idx >= c->max_active_inputs)) {
|
|
DRM_DEBUG_ATOMIC("%s required an invalid %s-input[%d].\n",
|
|
input->component->name, c->name, idx);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (has_bit(idx, state->active_inputs)) {
|
|
DRM_DEBUG_ATOMIC("%s required %s-input[%d] has been occupied already.\n",
|
|
input->component->name, c->name, idx);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
komeda_component_set_output(struct komeda_component_output *output,
|
|
struct komeda_component *comp,
|
|
u8 output_port)
|
|
{
|
|
output->component = comp;
|
|
output->output_port = output_port;
|
|
}
|
|
|
|
static int
|
|
komeda_component_validate_private(struct komeda_component *c,
|
|
struct komeda_component_state *st)
|
|
{
|
|
int err;
|
|
|
|
if (!c->funcs->validate)
|
|
return 0;
|
|
|
|
err = c->funcs->validate(c, st);
|
|
if (err)
|
|
DRM_DEBUG_ATOMIC("%s validate private failed.\n", c->name);
|
|
|
|
return err;
|
|
}
|
|
|
|
/* Get current available scaler from the component->supported_outputs */
|
|
static struct komeda_scaler *
|
|
komeda_component_get_avail_scaler(struct komeda_component *c,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct komeda_pipeline_state *pipe_st;
|
|
u32 avail_scalers;
|
|
|
|
pipe_st = komeda_pipeline_get_state(c->pipeline, state);
|
|
if (!pipe_st)
|
|
return NULL;
|
|
|
|
avail_scalers = (pipe_st->active_comps & KOMEDA_PIPELINE_SCALERS) ^
|
|
KOMEDA_PIPELINE_SCALERS;
|
|
|
|
c = komeda_component_pickup_output(c, avail_scalers);
|
|
|
|
return to_scaler(c);
|
|
}
|
|
|
|
static void
|
|
komeda_rotate_data_flow(struct komeda_data_flow_cfg *dflow, u32 rot)
|
|
{
|
|
if (drm_rotation_90_or_270(rot)) {
|
|
swap(dflow->in_h, dflow->in_w);
|
|
swap(dflow->total_in_h, dflow->total_in_w);
|
|
}
|
|
}
|
|
|
|
static int
|
|
komeda_layer_check_cfg(struct komeda_layer *layer,
|
|
struct komeda_fb *kfb,
|
|
struct komeda_data_flow_cfg *dflow)
|
|
{
|
|
u32 src_x, src_y, src_w, src_h;
|
|
u32 line_sz, max_line_sz;
|
|
|
|
if (!komeda_fb_is_layer_supported(kfb, layer->layer_type, dflow->rot))
|
|
return -EINVAL;
|
|
|
|
if (layer->base.id == KOMEDA_COMPONENT_WB_LAYER) {
|
|
src_x = dflow->out_x;
|
|
src_y = dflow->out_y;
|
|
src_w = dflow->out_w;
|
|
src_h = dflow->out_h;
|
|
} else {
|
|
src_x = dflow->in_x;
|
|
src_y = dflow->in_y;
|
|
src_w = dflow->in_w;
|
|
src_h = dflow->in_h;
|
|
}
|
|
|
|
if (komeda_fb_check_src_coords(kfb, src_x, src_y, src_w, src_h))
|
|
return -EINVAL;
|
|
|
|
if (!in_range(&layer->hsize_in, src_w)) {
|
|
DRM_DEBUG_ATOMIC("invalidate src_w %d.\n", src_w);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!in_range(&layer->vsize_in, src_h)) {
|
|
DRM_DEBUG_ATOMIC("invalidate src_h %d.\n", src_h);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (drm_rotation_90_or_270(dflow->rot))
|
|
line_sz = dflow->in_h;
|
|
else
|
|
line_sz = dflow->in_w;
|
|
|
|
if (kfb->base.format->hsub > 1)
|
|
max_line_sz = layer->yuv_line_sz;
|
|
else
|
|
max_line_sz = layer->line_sz;
|
|
|
|
if (line_sz > max_line_sz) {
|
|
DRM_DEBUG_ATOMIC("Required line_sz: %d exceeds the max size %d\n",
|
|
line_sz, max_line_sz);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
komeda_layer_validate(struct komeda_layer *layer,
|
|
struct komeda_plane_state *kplane_st,
|
|
struct komeda_data_flow_cfg *dflow)
|
|
{
|
|
struct drm_plane_state *plane_st = &kplane_st->base;
|
|
struct drm_framebuffer *fb = plane_st->fb;
|
|
struct komeda_fb *kfb = to_kfb(fb);
|
|
struct komeda_component_state *c_st;
|
|
struct komeda_layer_state *st;
|
|
int i, err;
|
|
|
|
err = komeda_layer_check_cfg(layer, kfb, dflow);
|
|
if (err)
|
|
return err;
|
|
|
|
c_st = komeda_component_get_state_and_set_user(&layer->base,
|
|
plane_st->state, plane_st->plane, plane_st->crtc);
|
|
if (IS_ERR(c_st))
|
|
return PTR_ERR(c_st);
|
|
|
|
st = to_layer_st(c_st);
|
|
|
|
st->rot = dflow->rot;
|
|
|
|
if (fb->modifier) {
|
|
st->hsize = kfb->aligned_w;
|
|
st->vsize = kfb->aligned_h;
|
|
st->afbc_crop_l = dflow->in_x;
|
|
st->afbc_crop_r = kfb->aligned_w - dflow->in_x - dflow->in_w;
|
|
st->afbc_crop_t = dflow->in_y;
|
|
st->afbc_crop_b = kfb->aligned_h - dflow->in_y - dflow->in_h;
|
|
} else {
|
|
st->hsize = dflow->in_w;
|
|
st->vsize = dflow->in_h;
|
|
st->afbc_crop_l = 0;
|
|
st->afbc_crop_r = 0;
|
|
st->afbc_crop_t = 0;
|
|
st->afbc_crop_b = 0;
|
|
}
|
|
|
|
for (i = 0; i < fb->format->num_planes; i++)
|
|
st->addr[i] = komeda_fb_get_pixel_addr(kfb, dflow->in_x,
|
|
dflow->in_y, i);
|
|
|
|
err = komeda_component_validate_private(&layer->base, c_st);
|
|
if (err)
|
|
return err;
|
|
|
|
/* update the data flow for the next stage */
|
|
komeda_component_set_output(&dflow->input, &layer->base, 0);
|
|
|
|
/*
|
|
* The rotation has been handled by layer, so adjusted the data flow for
|
|
* the next stage.
|
|
*/
|
|
komeda_rotate_data_flow(dflow, st->rot);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
komeda_wb_layer_validate(struct komeda_layer *wb_layer,
|
|
struct drm_connector_state *conn_st,
|
|
struct komeda_data_flow_cfg *dflow)
|
|
{
|
|
struct komeda_fb *kfb = to_kfb(conn_st->writeback_job->fb);
|
|
struct komeda_component_state *c_st;
|
|
struct komeda_layer_state *st;
|
|
int i, err;
|
|
|
|
err = komeda_layer_check_cfg(wb_layer, kfb, dflow);
|
|
if (err)
|
|
return err;
|
|
|
|
c_st = komeda_component_get_state_and_set_user(&wb_layer->base,
|
|
conn_st->state, conn_st->connector, conn_st->crtc);
|
|
if (IS_ERR(c_st))
|
|
return PTR_ERR(c_st);
|
|
|
|
st = to_layer_st(c_st);
|
|
|
|
st->hsize = dflow->out_w;
|
|
st->vsize = dflow->out_h;
|
|
|
|
for (i = 0; i < kfb->base.format->num_planes; i++)
|
|
st->addr[i] = komeda_fb_get_pixel_addr(kfb, dflow->out_x,
|
|
dflow->out_y, i);
|
|
|
|
komeda_component_add_input(&st->base, &dflow->input, 0);
|
|
komeda_component_set_output(&dflow->input, &wb_layer->base, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool scaling_ratio_valid(u32 size_in, u32 size_out,
|
|
u32 max_upscaling, u32 max_downscaling)
|
|
{
|
|
if (size_out > size_in * max_upscaling)
|
|
return false;
|
|
else if (size_in > size_out * max_downscaling)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static int
|
|
komeda_scaler_check_cfg(struct komeda_scaler *scaler,
|
|
struct komeda_crtc_state *kcrtc_st,
|
|
struct komeda_data_flow_cfg *dflow)
|
|
{
|
|
u32 hsize_in, vsize_in, hsize_out, vsize_out;
|
|
u32 max_upscaling;
|
|
|
|
hsize_in = dflow->in_w;
|
|
vsize_in = dflow->in_h;
|
|
hsize_out = dflow->out_w;
|
|
vsize_out = dflow->out_h;
|
|
|
|
if (!in_range(&scaler->hsize, hsize_in) ||
|
|
!in_range(&scaler->hsize, hsize_out)) {
|
|
DRM_DEBUG_ATOMIC("Invalid horizontal sizes");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!in_range(&scaler->vsize, vsize_in) ||
|
|
!in_range(&scaler->vsize, vsize_out)) {
|
|
DRM_DEBUG_ATOMIC("Invalid vertical sizes");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* If input comes from compiz that means the scaling is for writeback
|
|
* and scaler can not do upscaling for writeback
|
|
*/
|
|
if (has_bit(dflow->input.component->id, KOMEDA_PIPELINE_COMPIZS))
|
|
max_upscaling = 1;
|
|
else
|
|
max_upscaling = scaler->max_upscaling;
|
|
|
|
if (!scaling_ratio_valid(hsize_in, hsize_out, max_upscaling,
|
|
scaler->max_downscaling)) {
|
|
DRM_DEBUG_ATOMIC("Invalid horizontal scaling ratio");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!scaling_ratio_valid(vsize_in, vsize_out, max_upscaling,
|
|
scaler->max_downscaling)) {
|
|
DRM_DEBUG_ATOMIC("Invalid vertical scaling ratio");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (hsize_in > hsize_out || vsize_in > vsize_out) {
|
|
struct komeda_pipeline *pipe = scaler->base.pipeline;
|
|
int err;
|
|
|
|
err = pipe->funcs->downscaling_clk_check(pipe,
|
|
&kcrtc_st->base.adjusted_mode,
|
|
komeda_crtc_get_aclk(kcrtc_st), dflow);
|
|
if (err) {
|
|
DRM_DEBUG_ATOMIC("aclk can't satisfy the clock requirement of the downscaling\n");
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
komeda_scaler_validate(void *user,
|
|
struct komeda_crtc_state *kcrtc_st,
|
|
struct komeda_data_flow_cfg *dflow)
|
|
{
|
|
struct drm_atomic_state *drm_st = kcrtc_st->base.state;
|
|
struct komeda_component_state *c_st;
|
|
struct komeda_scaler_state *st;
|
|
struct komeda_scaler *scaler;
|
|
int err = 0;
|
|
|
|
if (!(dflow->en_scaling || dflow->en_img_enhancement))
|
|
return 0;
|
|
|
|
scaler = komeda_component_get_avail_scaler(dflow->input.component,
|
|
drm_st);
|
|
if (!scaler) {
|
|
DRM_DEBUG_ATOMIC("No scaler available");
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = komeda_scaler_check_cfg(scaler, kcrtc_st, dflow);
|
|
if (err)
|
|
return err;
|
|
|
|
c_st = komeda_component_get_state_and_set_user(&scaler->base,
|
|
drm_st, user, kcrtc_st->base.crtc);
|
|
if (IS_ERR(c_st))
|
|
return PTR_ERR(c_st);
|
|
|
|
st = to_scaler_st(c_st);
|
|
|
|
st->hsize_in = dflow->in_w;
|
|
st->vsize_in = dflow->in_h;
|
|
st->hsize_out = dflow->out_w;
|
|
st->vsize_out = dflow->out_h;
|
|
st->right_crop = dflow->right_crop;
|
|
st->left_crop = dflow->left_crop;
|
|
st->total_vsize_in = dflow->total_in_h;
|
|
st->total_hsize_in = dflow->total_in_w;
|
|
st->total_hsize_out = dflow->total_out_w;
|
|
|
|
/* Enable alpha processing if the next stage needs the pixel alpha */
|
|
st->en_alpha = dflow->pixel_blend_mode != DRM_MODE_BLEND_PIXEL_NONE;
|
|
st->en_scaling = dflow->en_scaling;
|
|
st->en_img_enhancement = dflow->en_img_enhancement;
|
|
st->en_split = dflow->en_split;
|
|
st->right_part = dflow->right_part;
|
|
|
|
komeda_component_add_input(&st->base, &dflow->input, 0);
|
|
komeda_component_set_output(&dflow->input, &scaler->base, 0);
|
|
return err;
|
|
}
|
|
|
|
static void komeda_split_data_flow(struct komeda_scaler *scaler,
|
|
struct komeda_data_flow_cfg *dflow,
|
|
struct komeda_data_flow_cfg *l_dflow,
|
|
struct komeda_data_flow_cfg *r_dflow);
|
|
|
|
static int
|
|
komeda_splitter_validate(struct komeda_splitter *splitter,
|
|
struct drm_connector_state *conn_st,
|
|
struct komeda_data_flow_cfg *dflow,
|
|
struct komeda_data_flow_cfg *l_output,
|
|
struct komeda_data_flow_cfg *r_output)
|
|
{
|
|
struct komeda_component_state *c_st;
|
|
struct komeda_splitter_state *st;
|
|
|
|
if (!splitter) {
|
|
DRM_DEBUG_ATOMIC("Current HW doesn't support splitter.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!in_range(&splitter->hsize, dflow->in_w)) {
|
|
DRM_DEBUG_ATOMIC("split in_w:%d is out of the acceptable range.\n",
|
|
dflow->in_w);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!in_range(&splitter->vsize, dflow->in_h)) {
|
|
DRM_DEBUG_ATOMIC("split in_h: %d exceeds the acceptable range.\n",
|
|
dflow->in_h);
|
|
return -EINVAL;
|
|
}
|
|
|
|
c_st = komeda_component_get_state_and_set_user(&splitter->base,
|
|
conn_st->state, conn_st->connector, conn_st->crtc);
|
|
|
|
if (IS_ERR(c_st))
|
|
return PTR_ERR(c_st);
|
|
|
|
komeda_split_data_flow(splitter->base.pipeline->scalers[0],
|
|
dflow, l_output, r_output);
|
|
|
|
st = to_splitter_st(c_st);
|
|
st->hsize = dflow->in_w;
|
|
st->vsize = dflow->in_h;
|
|
st->overlap = dflow->overlap;
|
|
|
|
komeda_component_add_input(&st->base, &dflow->input, 0);
|
|
komeda_component_set_output(&l_output->input, &splitter->base, 0);
|
|
komeda_component_set_output(&r_output->input, &splitter->base, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
komeda_merger_validate(struct komeda_merger *merger,
|
|
void *user,
|
|
struct komeda_crtc_state *kcrtc_st,
|
|
struct komeda_data_flow_cfg *left_input,
|
|
struct komeda_data_flow_cfg *right_input,
|
|
struct komeda_data_flow_cfg *output)
|
|
{
|
|
struct komeda_component_state *c_st;
|
|
struct komeda_merger_state *st;
|
|
int err = 0;
|
|
|
|
if (!merger) {
|
|
DRM_DEBUG_ATOMIC("No merger is available");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!in_range(&merger->hsize_merged, output->out_w)) {
|
|
DRM_DEBUG_ATOMIC("merged_w: %d is out of the accepted range.\n",
|
|
output->out_w);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!in_range(&merger->vsize_merged, output->out_h)) {
|
|
DRM_DEBUG_ATOMIC("merged_h: %d is out of the accepted range.\n",
|
|
output->out_h);
|
|
return -EINVAL;
|
|
}
|
|
|
|
c_st = komeda_component_get_state_and_set_user(&merger->base,
|
|
kcrtc_st->base.state, kcrtc_st->base.crtc, kcrtc_st->base.crtc);
|
|
|
|
if (IS_ERR(c_st))
|
|
return PTR_ERR(c_st);
|
|
|
|
st = to_merger_st(c_st);
|
|
st->hsize_merged = output->out_w;
|
|
st->vsize_merged = output->out_h;
|
|
|
|
komeda_component_add_input(c_st, &left_input->input, 0);
|
|
komeda_component_add_input(c_st, &right_input->input, 1);
|
|
komeda_component_set_output(&output->input, &merger->base, 0);
|
|
|
|
return err;
|
|
}
|
|
|
|
void pipeline_composition_size(struct komeda_crtc_state *kcrtc_st,
|
|
u16 *hsize, u16 *vsize)
|
|
{
|
|
struct drm_display_mode *m = &kcrtc_st->base.adjusted_mode;
|
|
|
|
if (hsize)
|
|
*hsize = m->hdisplay;
|
|
if (vsize)
|
|
*vsize = m->vdisplay;
|
|
}
|
|
|
|
static int
|
|
komeda_compiz_set_input(struct komeda_compiz *compiz,
|
|
struct komeda_crtc_state *kcrtc_st,
|
|
struct komeda_data_flow_cfg *dflow)
|
|
{
|
|
struct drm_atomic_state *drm_st = kcrtc_st->base.state;
|
|
struct komeda_component_state *c_st, *old_st;
|
|
struct komeda_compiz_input_cfg *cin;
|
|
u16 compiz_w, compiz_h;
|
|
int idx = dflow->blending_zorder;
|
|
|
|
pipeline_composition_size(kcrtc_st, &compiz_w, &compiz_h);
|
|
/* check display rect */
|
|
if ((dflow->out_x + dflow->out_w > compiz_w) ||
|
|
(dflow->out_y + dflow->out_h > compiz_h) ||
|
|
dflow->out_w == 0 || dflow->out_h == 0) {
|
|
DRM_DEBUG_ATOMIC("invalid disp rect [x=%d, y=%d, w=%d, h=%d]\n",
|
|
dflow->out_x, dflow->out_y,
|
|
dflow->out_w, dflow->out_h);
|
|
return -EINVAL;
|
|
}
|
|
|
|
c_st = komeda_component_get_state_and_set_user(&compiz->base, drm_st,
|
|
kcrtc_st->base.crtc, kcrtc_st->base.crtc);
|
|
if (IS_ERR(c_st))
|
|
return PTR_ERR(c_st);
|
|
|
|
if (komeda_component_check_input(c_st, &dflow->input, idx))
|
|
return -EINVAL;
|
|
|
|
cin = &(to_compiz_st(c_st)->cins[idx]);
|
|
|
|
cin->hsize = dflow->out_w;
|
|
cin->vsize = dflow->out_h;
|
|
cin->hoffset = dflow->out_x;
|
|
cin->voffset = dflow->out_y;
|
|
cin->pixel_blend_mode = dflow->pixel_blend_mode;
|
|
cin->layer_alpha = dflow->layer_alpha;
|
|
|
|
old_st = komeda_component_get_old_state(&compiz->base, drm_st);
|
|
|
|
/* compare with old to check if this input has been changed */
|
|
if (WARN_ON(!old_st) ||
|
|
memcmp(&(to_compiz_st(old_st)->cins[idx]), cin, sizeof(*cin)))
|
|
c_st->changed_active_inputs |= BIT(idx);
|
|
|
|
komeda_component_add_input(c_st, &dflow->input, idx);
|
|
komeda_component_set_output(&dflow->input, &compiz->base, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
komeda_compiz_validate(struct komeda_compiz *compiz,
|
|
struct komeda_crtc_state *state,
|
|
struct komeda_data_flow_cfg *dflow)
|
|
{
|
|
struct komeda_component_state *c_st;
|
|
struct komeda_compiz_state *st;
|
|
|
|
c_st = komeda_component_get_state_and_set_user(&compiz->base,
|
|
state->base.state, state->base.crtc, state->base.crtc);
|
|
if (IS_ERR(c_st))
|
|
return PTR_ERR(c_st);
|
|
|
|
st = to_compiz_st(c_st);
|
|
|
|
pipeline_composition_size(state, &st->hsize, &st->vsize);
|
|
|
|
komeda_component_set_output(&dflow->input, &compiz->base, 0);
|
|
|
|
/* compiz output dflow will be fed to the next pipeline stage, prepare
|
|
* the data flow configuration for the next stage
|
|
*/
|
|
if (dflow) {
|
|
dflow->in_w = st->hsize;
|
|
dflow->in_h = st->vsize;
|
|
dflow->out_w = dflow->in_w;
|
|
dflow->out_h = dflow->in_h;
|
|
/* the output data of compiz doesn't have alpha, it only can be
|
|
* used as bottom layer when blend it with master layers
|
|
*/
|
|
dflow->pixel_blend_mode = DRM_MODE_BLEND_PIXEL_NONE;
|
|
dflow->layer_alpha = 0xFF;
|
|
dflow->blending_zorder = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
komeda_improc_validate(struct komeda_improc *improc,
|
|
struct komeda_crtc_state *kcrtc_st,
|
|
struct komeda_data_flow_cfg *dflow)
|
|
{
|
|
struct drm_crtc *crtc = kcrtc_st->base.crtc;
|
|
struct drm_crtc_state *crtc_st = &kcrtc_st->base;
|
|
struct komeda_component_state *c_st;
|
|
struct komeda_improc_state *st;
|
|
|
|
c_st = komeda_component_get_state_and_set_user(&improc->base,
|
|
kcrtc_st->base.state, crtc, crtc);
|
|
if (IS_ERR(c_st))
|
|
return PTR_ERR(c_st);
|
|
|
|
st = to_improc_st(c_st);
|
|
|
|
st->hsize = dflow->in_w;
|
|
st->vsize = dflow->in_h;
|
|
|
|
if (drm_atomic_crtc_needs_modeset(crtc_st)) {
|
|
u32 output_depths, output_formats;
|
|
u32 avail_depths, avail_formats;
|
|
|
|
komeda_crtc_get_color_config(crtc_st, &output_depths,
|
|
&output_formats);
|
|
|
|
avail_depths = output_depths & improc->supported_color_depths;
|
|
if (avail_depths == 0) {
|
|
DRM_DEBUG_ATOMIC("No available color depths, conn depths: 0x%x & display: 0x%x\n",
|
|
output_depths,
|
|
improc->supported_color_depths);
|
|
return -EINVAL;
|
|
}
|
|
|
|
avail_formats = output_formats &
|
|
improc->supported_color_formats;
|
|
if (!avail_formats) {
|
|
DRM_DEBUG_ATOMIC("No available color_formats, conn formats 0x%x & display: 0x%x\n",
|
|
output_formats,
|
|
improc->supported_color_formats);
|
|
return -EINVAL;
|
|
}
|
|
|
|
st->color_depth = __fls(avail_depths);
|
|
st->color_format = BIT(__ffs(avail_formats));
|
|
}
|
|
|
|
if (kcrtc_st->base.color_mgmt_changed) {
|
|
drm_lut_to_fgamma_coeffs(kcrtc_st->base.gamma_lut,
|
|
st->fgamma_coeffs);
|
|
drm_ctm_to_coeffs(kcrtc_st->base.ctm, st->ctm_coeffs);
|
|
}
|
|
|
|
komeda_component_add_input(&st->base, &dflow->input, 0);
|
|
komeda_component_set_output(&dflow->input, &improc->base, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
komeda_timing_ctrlr_validate(struct komeda_timing_ctrlr *ctrlr,
|
|
struct komeda_crtc_state *kcrtc_st,
|
|
struct komeda_data_flow_cfg *dflow)
|
|
{
|
|
struct drm_crtc *crtc = kcrtc_st->base.crtc;
|
|
struct komeda_timing_ctrlr_state *st;
|
|
struct komeda_component_state *c_st;
|
|
|
|
c_st = komeda_component_get_state_and_set_user(&ctrlr->base,
|
|
kcrtc_st->base.state, crtc, crtc);
|
|
if (IS_ERR(c_st))
|
|
return PTR_ERR(c_st);
|
|
|
|
st = to_ctrlr_st(c_st);
|
|
|
|
komeda_component_add_input(&st->base, &dflow->input, 0);
|
|
komeda_component_set_output(&dflow->input, &ctrlr->base, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void komeda_complete_data_flow_cfg(struct komeda_layer *layer,
|
|
struct komeda_data_flow_cfg *dflow,
|
|
struct drm_framebuffer *fb)
|
|
{
|
|
struct komeda_scaler *scaler = layer->base.pipeline->scalers[0];
|
|
u32 w = dflow->in_w;
|
|
u32 h = dflow->in_h;
|
|
|
|
dflow->total_in_w = dflow->in_w;
|
|
dflow->total_in_h = dflow->in_h;
|
|
dflow->total_out_w = dflow->out_w;
|
|
|
|
/* if format doesn't have alpha, fix blend mode to PIXEL_NONE */
|
|
if (!fb->format->has_alpha)
|
|
dflow->pixel_blend_mode = DRM_MODE_BLEND_PIXEL_NONE;
|
|
|
|
if (drm_rotation_90_or_270(dflow->rot))
|
|
swap(w, h);
|
|
|
|
dflow->en_scaling = (w != dflow->out_w) || (h != dflow->out_h);
|
|
dflow->is_yuv = fb->format->is_yuv;
|
|
|
|
/* try to enable image enhancer if data flow is a 2x+ upscaling */
|
|
dflow->en_img_enhancement = dflow->out_w >= 2 * w ||
|
|
dflow->out_h >= 2 * h;
|
|
|
|
/* try to enable split if scaling exceed the scaler's acceptable
|
|
* input/output range.
|
|
*/
|
|
if (dflow->en_scaling && scaler)
|
|
dflow->en_split = !in_range(&scaler->hsize, dflow->in_w) ||
|
|
!in_range(&scaler->hsize, dflow->out_w);
|
|
}
|
|
|
|
static bool merger_is_available(struct komeda_pipeline *pipe,
|
|
struct komeda_data_flow_cfg *dflow)
|
|
{
|
|
u32 avail_inputs = pipe->merger ?
|
|
pipe->merger->base.supported_inputs : 0;
|
|
|
|
return has_bit(dflow->input.component->id, avail_inputs);
|
|
}
|
|
|
|
int komeda_build_layer_data_flow(struct komeda_layer *layer,
|
|
struct komeda_plane_state *kplane_st,
|
|
struct komeda_crtc_state *kcrtc_st,
|
|
struct komeda_data_flow_cfg *dflow)
|
|
{
|
|
struct drm_plane *plane = kplane_st->base.plane;
|
|
struct komeda_pipeline *pipe = layer->base.pipeline;
|
|
int err;
|
|
|
|
DRM_DEBUG_ATOMIC("%s handling [PLANE:%d:%s]: src[x/y:%d/%d, w/h:%d/%d] disp[x/y:%d/%d, w/h:%d/%d]",
|
|
layer->base.name, plane->base.id, plane->name,
|
|
dflow->in_x, dflow->in_y, dflow->in_w, dflow->in_h,
|
|
dflow->out_x, dflow->out_y, dflow->out_w, dflow->out_h);
|
|
|
|
err = komeda_layer_validate(layer, kplane_st, dflow);
|
|
if (err)
|
|
return err;
|
|
|
|
err = komeda_scaler_validate(plane, kcrtc_st, dflow);
|
|
if (err)
|
|
return err;
|
|
|
|
/* if split, check if can put the data flow into merger */
|
|
if (dflow->en_split && merger_is_available(pipe, dflow))
|
|
return 0;
|
|
|
|
err = komeda_compiz_set_input(pipe->compiz, kcrtc_st, dflow);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Split is introduced for workaround scaler's input/output size limitation.
|
|
* The idea is simple, if one scaler can not fit the requirement, use two.
|
|
* So split splits the big source image to two half parts (left/right) and do
|
|
* the scaling by two scaler separately and independently.
|
|
* But split also imports an edge problem in the middle of the image when
|
|
* scaling, to avoid it, split isn't a simple half-and-half, but add an extra
|
|
* pixels (overlap) to both side, after split the left/right will be:
|
|
* - left: [0, src_length/2 + overlap]
|
|
* - right: [src_length/2 - overlap, src_length]
|
|
* The extra overlap do eliminate the edge problem, but which may also generates
|
|
* unnecessary pixels when scaling, we need to crop them before scaler output
|
|
* the result to the next stage. and for the how to crop, it depends on the
|
|
* unneeded pixels, another words the position where overlay has been added.
|
|
* - left: crop the right
|
|
* - right: crop the left
|
|
*
|
|
* The diagram for how to do the split
|
|
*
|
|
* <---------------------left->out_w ---------------->
|
|
* |--------------------------------|---right_crop-----| <- left after split
|
|
* \ \ /
|
|
* \ \<--overlap--->/
|
|
* |-----------------|-------------|(Middle)------|-----------------| <- src
|
|
* /<---overlap--->\ \
|
|
* / \ \
|
|
* right after split->|-----left_crop---|--------------------------------|
|
|
* ^<------------------- right->out_w --------------->^
|
|
*
|
|
* NOTE: To consistent with HW the output_w always contains the crop size.
|
|
*/
|
|
|
|
static void komeda_split_data_flow(struct komeda_scaler *scaler,
|
|
struct komeda_data_flow_cfg *dflow,
|
|
struct komeda_data_flow_cfg *l_dflow,
|
|
struct komeda_data_flow_cfg *r_dflow)
|
|
{
|
|
bool r90 = drm_rotation_90_or_270(dflow->rot);
|
|
bool flip_h = has_flip_h(dflow->rot);
|
|
u32 l_out, r_out, overlap;
|
|
|
|
memcpy(l_dflow, dflow, sizeof(*dflow));
|
|
memcpy(r_dflow, dflow, sizeof(*dflow));
|
|
|
|
l_dflow->right_part = false;
|
|
r_dflow->right_part = true;
|
|
r_dflow->blending_zorder = dflow->blending_zorder + 1;
|
|
|
|
overlap = 0;
|
|
if (dflow->en_scaling && scaler)
|
|
overlap += scaler->scaling_split_overlap;
|
|
|
|
/* original dflow may fed into splitter, and which doesn't need
|
|
* enhancement overlap
|
|
*/
|
|
dflow->overlap = overlap;
|
|
|
|
if (dflow->en_img_enhancement && scaler)
|
|
overlap += scaler->enh_split_overlap;
|
|
|
|
l_dflow->overlap = overlap;
|
|
r_dflow->overlap = overlap;
|
|
|
|
/* split the origin content */
|
|
/* left/right here always means the left/right part of display image,
|
|
* not the source Image
|
|
*/
|
|
/* DRM rotation is anti-clockwise */
|
|
if (r90) {
|
|
if (dflow->en_scaling) {
|
|
l_dflow->in_h = ALIGN(dflow->in_h, 2) / 2 + l_dflow->overlap;
|
|
r_dflow->in_h = l_dflow->in_h;
|
|
} else if (dflow->en_img_enhancement) {
|
|
/* enhancer only */
|
|
l_dflow->in_h = ALIGN(dflow->in_h, 2) / 2 + l_dflow->overlap;
|
|
r_dflow->in_h = dflow->in_h / 2 + r_dflow->overlap;
|
|
} else {
|
|
/* split without scaler, no overlap */
|
|
l_dflow->in_h = ALIGN(((dflow->in_h + 1) >> 1), 2);
|
|
r_dflow->in_h = dflow->in_h - l_dflow->in_h;
|
|
}
|
|
|
|
/* Consider YUV format, after split, the split source w/h
|
|
* may not aligned to 2. we have two choices for such case.
|
|
* 1. scaler is enabled (overlap != 0), we can do a alignment
|
|
* both left/right and crop the extra data by scaler.
|
|
* 2. scaler is not enabled, only align the split left
|
|
* src/disp, and the rest part assign to right
|
|
*/
|
|
if ((overlap != 0) && dflow->is_yuv) {
|
|
l_dflow->in_h = ALIGN(l_dflow->in_h, 2);
|
|
r_dflow->in_h = ALIGN(r_dflow->in_h, 2);
|
|
}
|
|
|
|
if (flip_h)
|
|
l_dflow->in_y = dflow->in_y + dflow->in_h - l_dflow->in_h;
|
|
else
|
|
r_dflow->in_y = dflow->in_y + dflow->in_h - r_dflow->in_h;
|
|
} else {
|
|
if (dflow->en_scaling) {
|
|
l_dflow->in_w = ALIGN(dflow->in_w, 2) / 2 + l_dflow->overlap;
|
|
r_dflow->in_w = l_dflow->in_w;
|
|
} else if (dflow->en_img_enhancement) {
|
|
l_dflow->in_w = ALIGN(dflow->in_w, 2) / 2 + l_dflow->overlap;
|
|
r_dflow->in_w = dflow->in_w / 2 + r_dflow->overlap;
|
|
} else {
|
|
l_dflow->in_w = ALIGN(((dflow->in_w + 1) >> 1), 2);
|
|
r_dflow->in_w = dflow->in_w - l_dflow->in_w;
|
|
}
|
|
|
|
/* do YUV alignment when scaler enabled */
|
|
if ((overlap != 0) && dflow->is_yuv) {
|
|
l_dflow->in_w = ALIGN(l_dflow->in_w, 2);
|
|
r_dflow->in_w = ALIGN(r_dflow->in_w, 2);
|
|
}
|
|
|
|
/* on flip_h, the left display content from the right-source */
|
|
if (flip_h)
|
|
l_dflow->in_x = dflow->in_w + dflow->in_x - l_dflow->in_w;
|
|
else
|
|
r_dflow->in_x = dflow->in_w + dflow->in_x - r_dflow->in_w;
|
|
}
|
|
|
|
/* split the disp_rect */
|
|
if (dflow->en_scaling || dflow->en_img_enhancement)
|
|
l_dflow->out_w = ((dflow->out_w + 1) >> 1);
|
|
else
|
|
l_dflow->out_w = ALIGN(((dflow->out_w + 1) >> 1), 2);
|
|
|
|
r_dflow->out_w = dflow->out_w - l_dflow->out_w;
|
|
|
|
l_dflow->out_x = dflow->out_x;
|
|
r_dflow->out_x = l_dflow->out_w + l_dflow->out_x;
|
|
|
|
/* calculate the scaling crop */
|
|
/* left scaler output more data and do crop */
|
|
if (r90) {
|
|
l_out = (dflow->out_w * l_dflow->in_h) / dflow->in_h;
|
|
r_out = (dflow->out_w * r_dflow->in_h) / dflow->in_h;
|
|
} else {
|
|
l_out = (dflow->out_w * l_dflow->in_w) / dflow->in_w;
|
|
r_out = (dflow->out_w * r_dflow->in_w) / dflow->in_w;
|
|
}
|
|
|
|
l_dflow->left_crop = 0;
|
|
l_dflow->right_crop = l_out - l_dflow->out_w;
|
|
r_dflow->left_crop = r_out - r_dflow->out_w;
|
|
r_dflow->right_crop = 0;
|
|
|
|
/* out_w includes the crop length */
|
|
l_dflow->out_w += l_dflow->right_crop + l_dflow->left_crop;
|
|
r_dflow->out_w += r_dflow->right_crop + r_dflow->left_crop;
|
|
}
|
|
|
|
/* For layer split, a plane state will be split to two data flows and handled
|
|
* by two separated komeda layer input pipelines. komeda supports two types of
|
|
* layer split:
|
|
* - none-scaling split:
|
|
* / layer-left -> \
|
|
* plane_state compiz-> ...
|
|
* \ layer-right-> /
|
|
*
|
|
* - scaling split:
|
|
* / layer-left -> scaler->\
|
|
* plane_state merger -> compiz-> ...
|
|
* \ layer-right-> scaler->/
|
|
*
|
|
* Since merger only supports scaler as input, so for none-scaling split, two
|
|
* layer data flows will be output to compiz directly. for scaling_split, two
|
|
* data flow will be merged by merger firstly, then merger outputs one merged
|
|
* data flow to compiz.
|
|
*/
|
|
int komeda_build_layer_split_data_flow(struct komeda_layer *left,
|
|
struct komeda_plane_state *kplane_st,
|
|
struct komeda_crtc_state *kcrtc_st,
|
|
struct komeda_data_flow_cfg *dflow)
|
|
{
|
|
struct drm_plane *plane = kplane_st->base.plane;
|
|
struct komeda_pipeline *pipe = left->base.pipeline;
|
|
struct komeda_layer *right = left->right;
|
|
struct komeda_data_flow_cfg l_dflow, r_dflow;
|
|
int err;
|
|
|
|
komeda_split_data_flow(pipe->scalers[0], dflow, &l_dflow, &r_dflow);
|
|
|
|
DRM_DEBUG_ATOMIC("Assign %s + %s to [PLANE:%d:%s]: "
|
|
"src[x/y:%d/%d, w/h:%d/%d] disp[x/y:%d/%d, w/h:%d/%d]",
|
|
left->base.name, right->base.name,
|
|
plane->base.id, plane->name,
|
|
dflow->in_x, dflow->in_y, dflow->in_w, dflow->in_h,
|
|
dflow->out_x, dflow->out_y, dflow->out_w, dflow->out_h);
|
|
|
|
err = komeda_build_layer_data_flow(left, kplane_st, kcrtc_st, &l_dflow);
|
|
if (err)
|
|
return err;
|
|
|
|
err = komeda_build_layer_data_flow(right, kplane_st, kcrtc_st, &r_dflow);
|
|
if (err)
|
|
return err;
|
|
|
|
/* The rotation has been handled by layer, so adjusted the data flow */
|
|
komeda_rotate_data_flow(dflow, dflow->rot);
|
|
|
|
/* left and right dflow has been merged to compiz already,
|
|
* no need merger to merge them anymore.
|
|
*/
|
|
if (r_dflow.input.component == l_dflow.input.component)
|
|
return 0;
|
|
|
|
/* line merger path */
|
|
err = komeda_merger_validate(pipe->merger, plane, kcrtc_st,
|
|
&l_dflow, &r_dflow, dflow);
|
|
if (err)
|
|
return err;
|
|
|
|
err = komeda_compiz_set_input(pipe->compiz, kcrtc_st, dflow);
|
|
|
|
return err;
|
|
}
|
|
|
|
/* writeback data path: compiz -> scaler -> wb_layer -> memory */
|
|
int komeda_build_wb_data_flow(struct komeda_layer *wb_layer,
|
|
struct drm_connector_state *conn_st,
|
|
struct komeda_crtc_state *kcrtc_st,
|
|
struct komeda_data_flow_cfg *dflow)
|
|
{
|
|
struct drm_connector *conn = conn_st->connector;
|
|
int err;
|
|
|
|
err = komeda_scaler_validate(conn, kcrtc_st, dflow);
|
|
if (err)
|
|
return err;
|
|
|
|
return komeda_wb_layer_validate(wb_layer, conn_st, dflow);
|
|
}
|
|
|
|
/* writeback scaling split data path:
|
|
* /-> scaler ->\
|
|
* compiz -> splitter merger -> wb_layer -> memory
|
|
* \-> scaler ->/
|
|
*/
|
|
int komeda_build_wb_split_data_flow(struct komeda_layer *wb_layer,
|
|
struct drm_connector_state *conn_st,
|
|
struct komeda_crtc_state *kcrtc_st,
|
|
struct komeda_data_flow_cfg *dflow)
|
|
{
|
|
struct komeda_pipeline *pipe = wb_layer->base.pipeline;
|
|
struct drm_connector *conn = conn_st->connector;
|
|
struct komeda_data_flow_cfg l_dflow, r_dflow;
|
|
int err;
|
|
|
|
err = komeda_splitter_validate(pipe->splitter, conn_st,
|
|
dflow, &l_dflow, &r_dflow);
|
|
if (err)
|
|
return err;
|
|
err = komeda_scaler_validate(conn, kcrtc_st, &l_dflow);
|
|
if (err)
|
|
return err;
|
|
|
|
err = komeda_scaler_validate(conn, kcrtc_st, &r_dflow);
|
|
if (err)
|
|
return err;
|
|
|
|
err = komeda_merger_validate(pipe->merger, conn_st, kcrtc_st,
|
|
&l_dflow, &r_dflow, dflow);
|
|
if (err)
|
|
return err;
|
|
|
|
return komeda_wb_layer_validate(wb_layer, conn_st, dflow);
|
|
}
|
|
|
|
/* build display output data flow, the data path is:
|
|
* compiz -> improc -> timing_ctrlr
|
|
*/
|
|
int komeda_build_display_data_flow(struct komeda_crtc *kcrtc,
|
|
struct komeda_crtc_state *kcrtc_st)
|
|
{
|
|
struct komeda_pipeline *master = kcrtc->master;
|
|
struct komeda_pipeline *slave = kcrtc->slave;
|
|
struct komeda_data_flow_cfg m_dflow; /* master data flow */
|
|
struct komeda_data_flow_cfg s_dflow; /* slave data flow */
|
|
int err;
|
|
|
|
memset(&m_dflow, 0, sizeof(m_dflow));
|
|
memset(&s_dflow, 0, sizeof(s_dflow));
|
|
|
|
if (slave && has_bit(slave->id, kcrtc_st->active_pipes)) {
|
|
err = komeda_compiz_validate(slave->compiz, kcrtc_st, &s_dflow);
|
|
if (err)
|
|
return err;
|
|
|
|
/* merge the slave dflow into master pipeline */
|
|
err = komeda_compiz_set_input(master->compiz, kcrtc_st,
|
|
&s_dflow);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = komeda_compiz_validate(master->compiz, kcrtc_st, &m_dflow);
|
|
if (err)
|
|
return err;
|
|
|
|
err = komeda_improc_validate(master->improc, kcrtc_st, &m_dflow);
|
|
if (err)
|
|
return err;
|
|
|
|
err = komeda_timing_ctrlr_validate(master->ctrlr, kcrtc_st, &m_dflow);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
komeda_pipeline_unbound_components(struct komeda_pipeline *pipe,
|
|
struct komeda_pipeline_state *new)
|
|
{
|
|
struct drm_atomic_state *drm_st = new->obj.state;
|
|
struct komeda_pipeline_state *old = priv_to_pipe_st(pipe->obj.state);
|
|
struct komeda_component_state *c_st;
|
|
struct komeda_component *c;
|
|
u32 disabling_comps, id;
|
|
|
|
WARN_ON(!old);
|
|
|
|
disabling_comps = (~new->active_comps) & old->active_comps;
|
|
|
|
/* unbound all disabling component */
|
|
dp_for_each_set_bit(id, disabling_comps) {
|
|
c = komeda_pipeline_get_component(pipe, id);
|
|
c_st = komeda_component_get_state_and_set_user(c,
|
|
drm_st, NULL, new->crtc);
|
|
WARN_ON(IS_ERR(c_st));
|
|
}
|
|
}
|
|
|
|
/* release unclaimed pipeline resource */
|
|
int komeda_release_unclaimed_resources(struct komeda_pipeline *pipe,
|
|
struct komeda_crtc_state *kcrtc_st)
|
|
{
|
|
struct drm_atomic_state *drm_st = kcrtc_st->base.state;
|
|
struct komeda_pipeline_state *st;
|
|
|
|
/* ignore the pipeline which is not affected */
|
|
if (!pipe || !has_bit(pipe->id, kcrtc_st->affected_pipes))
|
|
return 0;
|
|
|
|
if (has_bit(pipe->id, kcrtc_st->active_pipes))
|
|
st = komeda_pipeline_get_new_state(pipe, drm_st);
|
|
else
|
|
st = komeda_pipeline_get_state_and_set_crtc(pipe, drm_st, NULL);
|
|
|
|
if (WARN_ON(IS_ERR_OR_NULL(st)))
|
|
return -EINVAL;
|
|
|
|
komeda_pipeline_unbound_components(pipe, st);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Since standalong disabled components must be disabled separately and in the
|
|
* last, So a complete disable operation may needs to call pipeline_disable
|
|
* twice (two phase disabling).
|
|
* Phase 1: disable the common components, flush it.
|
|
* Phase 2: disable the standalone disabled components, flush it.
|
|
*
|
|
* RETURNS:
|
|
* true: disable is not complete, needs a phase 2 disable.
|
|
* false: disable is complete.
|
|
*/
|
|
bool komeda_pipeline_disable(struct komeda_pipeline *pipe,
|
|
struct drm_atomic_state *old_state)
|
|
{
|
|
struct komeda_pipeline_state *old;
|
|
struct komeda_component *c;
|
|
struct komeda_component_state *c_st;
|
|
u32 id, disabling_comps = 0;
|
|
|
|
old = komeda_pipeline_get_old_state(pipe, old_state);
|
|
|
|
disabling_comps = old->active_comps &
|
|
(~pipe->standalone_disabled_comps);
|
|
if (!disabling_comps)
|
|
disabling_comps = old->active_comps &
|
|
pipe->standalone_disabled_comps;
|
|
|
|
DRM_DEBUG_ATOMIC("PIPE%d: active_comps: 0x%x, disabling_comps: 0x%x.\n",
|
|
pipe->id, old->active_comps, disabling_comps);
|
|
|
|
dp_for_each_set_bit(id, disabling_comps) {
|
|
c = komeda_pipeline_get_component(pipe, id);
|
|
c_st = priv_to_comp_st(c->obj.state);
|
|
|
|
/*
|
|
* If we disabled a component then all active_inputs should be
|
|
* put in the list of changed_active_inputs, so they get
|
|
* re-enabled.
|
|
* This usually happens during a modeset when the pipeline is
|
|
* first disabled and then the actual state gets committed
|
|
* again.
|
|
*/
|
|
c_st->changed_active_inputs |= c_st->active_inputs;
|
|
|
|
c->funcs->disable(c);
|
|
}
|
|
|
|
/* Update the pipeline state, if there are components that are still
|
|
* active, return true for calling the phase 2 disable.
|
|
*/
|
|
old->active_comps &= ~disabling_comps;
|
|
|
|
return old->active_comps ? true : false;
|
|
}
|
|
|
|
void komeda_pipeline_update(struct komeda_pipeline *pipe,
|
|
struct drm_atomic_state *old_state)
|
|
{
|
|
struct komeda_pipeline_state *new = priv_to_pipe_st(pipe->obj.state);
|
|
struct komeda_pipeline_state *old;
|
|
struct komeda_component *c;
|
|
u32 id, changed_comps = 0;
|
|
|
|
old = komeda_pipeline_get_old_state(pipe, old_state);
|
|
|
|
changed_comps = new->active_comps | old->active_comps;
|
|
|
|
DRM_DEBUG_ATOMIC("PIPE%d: active_comps: 0x%x, changed: 0x%x.\n",
|
|
pipe->id, new->active_comps, changed_comps);
|
|
|
|
dp_for_each_set_bit(id, changed_comps) {
|
|
c = komeda_pipeline_get_component(pipe, id);
|
|
|
|
if (new->active_comps & BIT(c->id))
|
|
c->funcs->update(c, priv_to_comp_st(c->obj.state));
|
|
else
|
|
c->funcs->disable(c);
|
|
}
|
|
}
|