Use rbtree_postorder_for_each_entry_safe() to destroy the rbtree instead of opencoding an alternate postorder iteration that modifies the tree Signed-off-by: Cody P Schafer <cody@linux.vnet.ibm.com> Cc: Michel Lespinasse <walken@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			3328 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3328 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This file is part of UBIFS.
 | |
|  *
 | |
|  * Copyright (C) 2006-2008 Nokia Corporation.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License version 2 as published by
 | |
|  * the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along with
 | |
|  * this program; if not, write to the Free Software Foundation, Inc., 51
 | |
|  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  *
 | |
|  * Authors: Adrian Hunter
 | |
|  *          Artem Bityutskiy (Битюцкий Артём)
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
 | |
|  * the UBIFS B-tree.
 | |
|  *
 | |
|  * At the moment the locking rules of the TNC tree are quite simple and
 | |
|  * straightforward. We just have a mutex and lock it when we traverse the
 | |
|  * tree. If a znode is not in memory, we read it from flash while still having
 | |
|  * the mutex locked.
 | |
|  */
 | |
| 
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/slab.h>
 | |
| #include "ubifs.h"
 | |
| 
 | |
| /*
 | |
|  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
 | |
|  * @NAME_LESS: name corresponding to the first argument is less than second
 | |
|  * @NAME_MATCHES: names match
 | |
|  * @NAME_GREATER: name corresponding to the second argument is greater than
 | |
|  *                first
 | |
|  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
 | |
|  *
 | |
|  * These constants were introduce to improve readability.
 | |
|  */
 | |
| enum {
 | |
| 	NAME_LESS    = 0,
 | |
| 	NAME_MATCHES = 1,
 | |
| 	NAME_GREATER = 2,
 | |
| 	NOT_ON_MEDIA = 3,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * insert_old_idx - record an index node obsoleted since the last commit start.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @lnum: LEB number of obsoleted index node
 | |
|  * @offs: offset of obsoleted index node
 | |
|  *
 | |
|  * Returns %0 on success, and a negative error code on failure.
 | |
|  *
 | |
|  * For recovery, there must always be a complete intact version of the index on
 | |
|  * flash at all times. That is called the "old index". It is the index as at the
 | |
|  * time of the last successful commit. Many of the index nodes in the old index
 | |
|  * may be dirty, but they must not be erased until the next successful commit
 | |
|  * (at which point that index becomes the old index).
 | |
|  *
 | |
|  * That means that the garbage collection and the in-the-gaps method of
 | |
|  * committing must be able to determine if an index node is in the old index.
 | |
|  * Most of the old index nodes can be found by looking up the TNC using the
 | |
|  * 'lookup_znode()' function. However, some of the old index nodes may have
 | |
|  * been deleted from the current index or may have been changed so much that
 | |
|  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
 | |
|  * That is what this function does. The RB-tree is ordered by LEB number and
 | |
|  * offset because they uniquely identify the old index node.
 | |
|  */
 | |
| static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
 | |
| {
 | |
| 	struct ubifs_old_idx *old_idx, *o;
 | |
| 	struct rb_node **p, *parent = NULL;
 | |
| 
 | |
| 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
 | |
| 	if (unlikely(!old_idx))
 | |
| 		return -ENOMEM;
 | |
| 	old_idx->lnum = lnum;
 | |
| 	old_idx->offs = offs;
 | |
| 
 | |
| 	p = &c->old_idx.rb_node;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		o = rb_entry(parent, struct ubifs_old_idx, rb);
 | |
| 		if (lnum < o->lnum)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (lnum > o->lnum)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else if (offs < o->offs)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (offs > o->offs)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else {
 | |
| 			ubifs_err("old idx added twice!");
 | |
| 			kfree(old_idx);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	rb_link_node(&old_idx->rb, parent, p);
 | |
| 	rb_insert_color(&old_idx->rb, &c->old_idx);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * insert_old_idx_znode - record a znode obsoleted since last commit start.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @znode: znode of obsoleted index node
 | |
|  *
 | |
|  * Returns %0 on success, and a negative error code on failure.
 | |
|  */
 | |
| int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
 | |
| {
 | |
| 	if (znode->parent) {
 | |
| 		struct ubifs_zbranch *zbr;
 | |
| 
 | |
| 		zbr = &znode->parent->zbranch[znode->iip];
 | |
| 		if (zbr->len)
 | |
| 			return insert_old_idx(c, zbr->lnum, zbr->offs);
 | |
| 	} else
 | |
| 		if (c->zroot.len)
 | |
| 			return insert_old_idx(c, c->zroot.lnum,
 | |
| 					      c->zroot.offs);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @znode: znode of obsoleted index node
 | |
|  *
 | |
|  * Returns %0 on success, and a negative error code on failure.
 | |
|  */
 | |
| static int ins_clr_old_idx_znode(struct ubifs_info *c,
 | |
| 				 struct ubifs_znode *znode)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (znode->parent) {
 | |
| 		struct ubifs_zbranch *zbr;
 | |
| 
 | |
| 		zbr = &znode->parent->zbranch[znode->iip];
 | |
| 		if (zbr->len) {
 | |
| 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			zbr->lnum = 0;
 | |
| 			zbr->offs = 0;
 | |
| 			zbr->len = 0;
 | |
| 		}
 | |
| 	} else
 | |
| 		if (c->zroot.len) {
 | |
| 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			c->zroot.lnum = 0;
 | |
| 			c->zroot.offs = 0;
 | |
| 			c->zroot.len = 0;
 | |
| 		}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * destroy_old_idx - destroy the old_idx RB-tree.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * During start commit, the old_idx RB-tree is used to avoid overwriting index
 | |
|  * nodes that were in the index last commit but have since been deleted.  This
 | |
|  * is necessary for recovery i.e. the old index must be kept intact until the
 | |
|  * new index is successfully written.  The old-idx RB-tree is used for the
 | |
|  * in-the-gaps method of writing index nodes and is destroyed every commit.
 | |
|  */
 | |
| void destroy_old_idx(struct ubifs_info *c)
 | |
| {
 | |
| 	struct ubifs_old_idx *old_idx, *n;
 | |
| 
 | |
| 	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
 | |
| 		kfree(old_idx);
 | |
| 
 | |
| 	c->old_idx = RB_ROOT;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * copy_znode - copy a dirty znode.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @znode: znode to copy
 | |
|  *
 | |
|  * A dirty znode being committed may not be changed, so it is copied.
 | |
|  */
 | |
| static struct ubifs_znode *copy_znode(struct ubifs_info *c,
 | |
| 				      struct ubifs_znode *znode)
 | |
| {
 | |
| 	struct ubifs_znode *zn;
 | |
| 
 | |
| 	zn = kmalloc(c->max_znode_sz, GFP_NOFS);
 | |
| 	if (unlikely(!zn))
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	memcpy(zn, znode, c->max_znode_sz);
 | |
| 	zn->cnext = NULL;
 | |
| 	__set_bit(DIRTY_ZNODE, &zn->flags);
 | |
| 	__clear_bit(COW_ZNODE, &zn->flags);
 | |
| 
 | |
| 	ubifs_assert(!ubifs_zn_obsolete(znode));
 | |
| 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
 | |
| 
 | |
| 	if (znode->level != 0) {
 | |
| 		int i;
 | |
| 		const int n = zn->child_cnt;
 | |
| 
 | |
| 		/* The children now have new parent */
 | |
| 		for (i = 0; i < n; i++) {
 | |
| 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
 | |
| 
 | |
| 			if (zbr->znode)
 | |
| 				zbr->znode->parent = zn;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	atomic_long_inc(&c->dirty_zn_cnt);
 | |
| 	return zn;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * add_idx_dirt - add dirt due to a dirty znode.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @lnum: LEB number of index node
 | |
|  * @dirt: size of index node
 | |
|  *
 | |
|  * This function updates lprops dirty space and the new size of the index.
 | |
|  */
 | |
| static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
 | |
| {
 | |
| 	c->calc_idx_sz -= ALIGN(dirt, 8);
 | |
| 	return ubifs_add_dirt(c, lnum, dirt);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dirty_cow_znode - ensure a znode is not being committed.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @zbr: branch of znode to check
 | |
|  *
 | |
|  * Returns dirtied znode on success or negative error code on failure.
 | |
|  */
 | |
| static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
 | |
| 					   struct ubifs_zbranch *zbr)
 | |
| {
 | |
| 	struct ubifs_znode *znode = zbr->znode;
 | |
| 	struct ubifs_znode *zn;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!ubifs_zn_cow(znode)) {
 | |
| 		/* znode is not being committed */
 | |
| 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
 | |
| 			atomic_long_inc(&c->dirty_zn_cnt);
 | |
| 			atomic_long_dec(&c->clean_zn_cnt);
 | |
| 			atomic_long_dec(&ubifs_clean_zn_cnt);
 | |
| 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
 | |
| 			if (unlikely(err))
 | |
| 				return ERR_PTR(err);
 | |
| 		}
 | |
| 		return znode;
 | |
| 	}
 | |
| 
 | |
| 	zn = copy_znode(c, znode);
 | |
| 	if (IS_ERR(zn))
 | |
| 		return zn;
 | |
| 
 | |
| 	if (zbr->len) {
 | |
| 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
 | |
| 		if (unlikely(err))
 | |
| 			return ERR_PTR(err);
 | |
| 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
 | |
| 	} else
 | |
| 		err = 0;
 | |
| 
 | |
| 	zbr->znode = zn;
 | |
| 	zbr->lnum = 0;
 | |
| 	zbr->offs = 0;
 | |
| 	zbr->len = 0;
 | |
| 
 | |
| 	if (unlikely(err))
 | |
| 		return ERR_PTR(err);
 | |
| 	return zn;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * lnc_add - add a leaf node to the leaf node cache.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @zbr: zbranch of leaf node
 | |
|  * @node: leaf node
 | |
|  *
 | |
|  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
 | |
|  * purpose of the leaf node cache is to save re-reading the same leaf node over
 | |
|  * and over again. Most things are cached by VFS, however the file system must
 | |
|  * cache directory entries for readdir and for resolving hash collisions. The
 | |
|  * present implementation of the leaf node cache is extremely simple, and
 | |
|  * allows for error returns that are not used but that may be needed if a more
 | |
|  * complex implementation is created.
 | |
|  *
 | |
|  * Note, this function does not add the @node object to LNC directly, but
 | |
|  * allocates a copy of the object and adds the copy to LNC. The reason for this
 | |
|  * is that @node has been allocated outside of the TNC subsystem and will be
 | |
|  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
 | |
|  * may be changed at any time, e.g. freed by the shrinker.
 | |
|  */
 | |
| static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 | |
| 		   const void *node)
 | |
| {
 | |
| 	int err;
 | |
| 	void *lnc_node;
 | |
| 	const struct ubifs_dent_node *dent = node;
 | |
| 
 | |
| 	ubifs_assert(!zbr->leaf);
 | |
| 	ubifs_assert(zbr->len != 0);
 | |
| 	ubifs_assert(is_hash_key(c, &zbr->key));
 | |
| 
 | |
| 	err = ubifs_validate_entry(c, dent);
 | |
| 	if (err) {
 | |
| 		dump_stack();
 | |
| 		ubifs_dump_node(c, dent);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
 | |
| 	if (!lnc_node)
 | |
| 		/* We don't have to have the cache, so no error */
 | |
| 		return 0;
 | |
| 
 | |
| 	zbr->leaf = lnc_node;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
|  /**
 | |
|  * lnc_add_directly - add a leaf node to the leaf-node-cache.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @zbr: zbranch of leaf node
 | |
|  * @node: leaf node
 | |
|  *
 | |
|  * This function is similar to 'lnc_add()', but it does not create a copy of
 | |
|  * @node but inserts @node to TNC directly.
 | |
|  */
 | |
| static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 | |
| 			    void *node)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	ubifs_assert(!zbr->leaf);
 | |
| 	ubifs_assert(zbr->len != 0);
 | |
| 
 | |
| 	err = ubifs_validate_entry(c, node);
 | |
| 	if (err) {
 | |
| 		dump_stack();
 | |
| 		ubifs_dump_node(c, node);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	zbr->leaf = node;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * lnc_free - remove a leaf node from the leaf node cache.
 | |
|  * @zbr: zbranch of leaf node
 | |
|  * @node: leaf node
 | |
|  */
 | |
| static void lnc_free(struct ubifs_zbranch *zbr)
 | |
| {
 | |
| 	if (!zbr->leaf)
 | |
| 		return;
 | |
| 	kfree(zbr->leaf);
 | |
| 	zbr->leaf = NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tnc_read_node_nm - read a "hashed" leaf node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @zbr: key and position of the node
 | |
|  * @node: node is returned here
 | |
|  *
 | |
|  * This function reads a "hashed" node defined by @zbr from the leaf node cache
 | |
|  * (in it is there) or from the hash media, in which case the node is also
 | |
|  * added to LNC. Returns zero in case of success or a negative negative error
 | |
|  * code in case of failure.
 | |
|  */
 | |
| static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 | |
| 			    void *node)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	ubifs_assert(is_hash_key(c, &zbr->key));
 | |
| 
 | |
| 	if (zbr->leaf) {
 | |
| 		/* Read from the leaf node cache */
 | |
| 		ubifs_assert(zbr->len != 0);
 | |
| 		memcpy(node, zbr->leaf, zbr->len);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	err = ubifs_tnc_read_node(c, zbr, node);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Add the node to the leaf node cache */
 | |
| 	err = lnc_add(c, zbr, node);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * try_read_node - read a node if it is a node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @buf: buffer to read to
 | |
|  * @type: node type
 | |
|  * @len: node length (not aligned)
 | |
|  * @lnum: LEB number of node to read
 | |
|  * @offs: offset of node to read
 | |
|  *
 | |
|  * This function tries to read a node of known type and length, checks it and
 | |
|  * stores it in @buf. This function returns %1 if a node is present and %0 if
 | |
|  * a node is not present. A negative error code is returned for I/O errors.
 | |
|  * This function performs that same function as ubifs_read_node except that
 | |
|  * it does not require that there is actually a node present and instead
 | |
|  * the return code indicates if a node was read.
 | |
|  *
 | |
|  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
 | |
|  * is true (it is controlled by corresponding mount option). However, if
 | |
|  * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
 | |
|  * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
 | |
|  * because during mounting or re-mounting from R/O mode to R/W mode we may read
 | |
|  * journal nodes (when replying the journal or doing the recovery) and the
 | |
|  * journal nodes may potentially be corrupted, so checking is required.
 | |
|  */
 | |
| static int try_read_node(const struct ubifs_info *c, void *buf, int type,
 | |
| 			 int len, int lnum, int offs)
 | |
| {
 | |
| 	int err, node_len;
 | |
| 	struct ubifs_ch *ch = buf;
 | |
| 	uint32_t crc, node_crc;
 | |
| 
 | |
| 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 | |
| 
 | |
| 	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
 | |
| 	if (err) {
 | |
| 		ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
 | |
| 			  type, lnum, offs, err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (ch->node_type != type)
 | |
| 		return 0;
 | |
| 
 | |
| 	node_len = le32_to_cpu(ch->len);
 | |
| 	if (node_len != len)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
 | |
| 	    !c->remounting_rw)
 | |
| 		return 1;
 | |
| 
 | |
| 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 | |
| 	node_crc = le32_to_cpu(ch->crc);
 | |
| 	if (crc != node_crc)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fallible_read_node - try to read a leaf node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key:  key of node to read
 | |
|  * @zbr:  position of node
 | |
|  * @node: node returned
 | |
|  *
 | |
|  * This function tries to read a node and returns %1 if the node is read, %0
 | |
|  * if the node is not present, and a negative error code in the case of error.
 | |
|  */
 | |
| static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
 | |
| 			      struct ubifs_zbranch *zbr, void *node)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
 | |
| 
 | |
| 	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
 | |
| 			    zbr->offs);
 | |
| 	if (ret == 1) {
 | |
| 		union ubifs_key node_key;
 | |
| 		struct ubifs_dent_node *dent = node;
 | |
| 
 | |
| 		/* All nodes have key in the same place */
 | |
| 		key_read(c, &dent->key, &node_key);
 | |
| 		if (keys_cmp(c, key, &node_key) != 0)
 | |
| 			ret = 0;
 | |
| 	}
 | |
| 	if (ret == 0 && c->replaying)
 | |
| 		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
 | |
| 			zbr->lnum, zbr->offs, zbr->len);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * matches_name - determine if a direntry or xattr entry matches a given name.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @zbr: zbranch of dent
 | |
|  * @nm: name to match
 | |
|  *
 | |
|  * This function checks if xentry/direntry referred by zbranch @zbr matches name
 | |
|  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
 | |
|  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
 | |
|  * of failure, a negative error code is returned.
 | |
|  */
 | |
| static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 | |
| 			const struct qstr *nm)
 | |
| {
 | |
| 	struct ubifs_dent_node *dent;
 | |
| 	int nlen, err;
 | |
| 
 | |
| 	/* If possible, match against the dent in the leaf node cache */
 | |
| 	if (!zbr->leaf) {
 | |
| 		dent = kmalloc(zbr->len, GFP_NOFS);
 | |
| 		if (!dent)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		err = ubifs_tnc_read_node(c, zbr, dent);
 | |
| 		if (err)
 | |
| 			goto out_free;
 | |
| 
 | |
| 		/* Add the node to the leaf node cache */
 | |
| 		err = lnc_add_directly(c, zbr, dent);
 | |
| 		if (err)
 | |
| 			goto out_free;
 | |
| 	} else
 | |
| 		dent = zbr->leaf;
 | |
| 
 | |
| 	nlen = le16_to_cpu(dent->nlen);
 | |
| 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 | |
| 	if (err == 0) {
 | |
| 		if (nlen == nm->len)
 | |
| 			return NAME_MATCHES;
 | |
| 		else if (nlen < nm->len)
 | |
| 			return NAME_LESS;
 | |
| 		else
 | |
| 			return NAME_GREATER;
 | |
| 	} else if (err < 0)
 | |
| 		return NAME_LESS;
 | |
| 	else
 | |
| 		return NAME_GREATER;
 | |
| 
 | |
| out_free:
 | |
| 	kfree(dent);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_znode - get a TNC znode that may not be loaded yet.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @znode: parent znode
 | |
|  * @n: znode branch slot number
 | |
|  *
 | |
|  * This function returns the znode or a negative error code.
 | |
|  */
 | |
| static struct ubifs_znode *get_znode(struct ubifs_info *c,
 | |
| 				     struct ubifs_znode *znode, int n)
 | |
| {
 | |
| 	struct ubifs_zbranch *zbr;
 | |
| 
 | |
| 	zbr = &znode->zbranch[n];
 | |
| 	if (zbr->znode)
 | |
| 		znode = zbr->znode;
 | |
| 	else
 | |
| 		znode = ubifs_load_znode(c, zbr, znode, n);
 | |
| 	return znode;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tnc_next - find next TNC entry.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @zn: znode is passed and returned here
 | |
|  * @n: znode branch slot number is passed and returned here
 | |
|  *
 | |
|  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
 | |
|  * no next entry, or a negative error code otherwise.
 | |
|  */
 | |
| static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 | |
| {
 | |
| 	struct ubifs_znode *znode = *zn;
 | |
| 	int nn = *n;
 | |
| 
 | |
| 	nn += 1;
 | |
| 	if (nn < znode->child_cnt) {
 | |
| 		*n = nn;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	while (1) {
 | |
| 		struct ubifs_znode *zp;
 | |
| 
 | |
| 		zp = znode->parent;
 | |
| 		if (!zp)
 | |
| 			return -ENOENT;
 | |
| 		nn = znode->iip + 1;
 | |
| 		znode = zp;
 | |
| 		if (nn < znode->child_cnt) {
 | |
| 			znode = get_znode(c, znode, nn);
 | |
| 			if (IS_ERR(znode))
 | |
| 				return PTR_ERR(znode);
 | |
| 			while (znode->level != 0) {
 | |
| 				znode = get_znode(c, znode, 0);
 | |
| 				if (IS_ERR(znode))
 | |
| 					return PTR_ERR(znode);
 | |
| 			}
 | |
| 			nn = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	*zn = znode;
 | |
| 	*n = nn;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tnc_prev - find previous TNC entry.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @zn: znode is returned here
 | |
|  * @n: znode branch slot number is passed and returned here
 | |
|  *
 | |
|  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
 | |
|  * there is no next entry, or a negative error code otherwise.
 | |
|  */
 | |
| static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 | |
| {
 | |
| 	struct ubifs_znode *znode = *zn;
 | |
| 	int nn = *n;
 | |
| 
 | |
| 	if (nn > 0) {
 | |
| 		*n = nn - 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	while (1) {
 | |
| 		struct ubifs_znode *zp;
 | |
| 
 | |
| 		zp = znode->parent;
 | |
| 		if (!zp)
 | |
| 			return -ENOENT;
 | |
| 		nn = znode->iip - 1;
 | |
| 		znode = zp;
 | |
| 		if (nn >= 0) {
 | |
| 			znode = get_znode(c, znode, nn);
 | |
| 			if (IS_ERR(znode))
 | |
| 				return PTR_ERR(znode);
 | |
| 			while (znode->level != 0) {
 | |
| 				nn = znode->child_cnt - 1;
 | |
| 				znode = get_znode(c, znode, nn);
 | |
| 				if (IS_ERR(znode))
 | |
| 					return PTR_ERR(znode);
 | |
| 			}
 | |
| 			nn = znode->child_cnt - 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	*zn = znode;
 | |
| 	*n = nn;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * resolve_collision - resolve a collision.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: key of a directory or extended attribute entry
 | |
|  * @zn: znode is returned here
 | |
|  * @n: zbranch number is passed and returned here
 | |
|  * @nm: name of the entry
 | |
|  *
 | |
|  * This function is called for "hashed" keys to make sure that the found key
 | |
|  * really corresponds to the looked up node (directory or extended attribute
 | |
|  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
 | |
|  * %0 is returned if @nm is not found and @zn and @n are set to the previous
 | |
|  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
 | |
|  * This means that @n may be set to %-1 if the leftmost key in @zn is the
 | |
|  * previous one. A negative error code is returned on failures.
 | |
|  */
 | |
| static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
 | |
| 			     struct ubifs_znode **zn, int *n,
 | |
| 			     const struct qstr *nm)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
 | |
| 	if (unlikely(err < 0))
 | |
| 		return err;
 | |
| 	if (err == NAME_MATCHES)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (err == NAME_GREATER) {
 | |
| 		/* Look left */
 | |
| 		while (1) {
 | |
| 			err = tnc_prev(c, zn, n);
 | |
| 			if (err == -ENOENT) {
 | |
| 				ubifs_assert(*n == 0);
 | |
| 				*n = -1;
 | |
| 				return 0;
 | |
| 			}
 | |
| 			if (err < 0)
 | |
| 				return err;
 | |
| 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 | |
| 				/*
 | |
| 				 * We have found the branch after which we would
 | |
| 				 * like to insert, but inserting in this znode
 | |
| 				 * may still be wrong. Consider the following 3
 | |
| 				 * znodes, in the case where we are resolving a
 | |
| 				 * collision with Key2.
 | |
| 				 *
 | |
| 				 *                  znode zp
 | |
| 				 *            ----------------------
 | |
| 				 * level 1     |  Key0  |  Key1  |
 | |
| 				 *            -----------------------
 | |
| 				 *                 |            |
 | |
| 				 *       znode za  |            |  znode zb
 | |
| 				 *          ------------      ------------
 | |
| 				 * level 0  |  Key0  |        |  Key2  |
 | |
| 				 *          ------------      ------------
 | |
| 				 *
 | |
| 				 * The lookup finds Key2 in znode zb. Lets say
 | |
| 				 * there is no match and the name is greater so
 | |
| 				 * we look left. When we find Key0, we end up
 | |
| 				 * here. If we return now, we will insert into
 | |
| 				 * znode za at slot n = 1.  But that is invalid
 | |
| 				 * according to the parent's keys.  Key2 must
 | |
| 				 * be inserted into znode zb.
 | |
| 				 *
 | |
| 				 * Note, this problem is not relevant for the
 | |
| 				 * case when we go right, because
 | |
| 				 * 'tnc_insert()' would correct the parent key.
 | |
| 				 */
 | |
| 				if (*n == (*zn)->child_cnt - 1) {
 | |
| 					err = tnc_next(c, zn, n);
 | |
| 					if (err) {
 | |
| 						/* Should be impossible */
 | |
| 						ubifs_assert(0);
 | |
| 						if (err == -ENOENT)
 | |
| 							err = -EINVAL;
 | |
| 						return err;
 | |
| 					}
 | |
| 					ubifs_assert(*n == 0);
 | |
| 					*n = -1;
 | |
| 				}
 | |
| 				return 0;
 | |
| 			}
 | |
| 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
 | |
| 			if (err < 0)
 | |
| 				return err;
 | |
| 			if (err == NAME_LESS)
 | |
| 				return 0;
 | |
| 			if (err == NAME_MATCHES)
 | |
| 				return 1;
 | |
| 			ubifs_assert(err == NAME_GREATER);
 | |
| 		}
 | |
| 	} else {
 | |
| 		int nn = *n;
 | |
| 		struct ubifs_znode *znode = *zn;
 | |
| 
 | |
| 		/* Look right */
 | |
| 		while (1) {
 | |
| 			err = tnc_next(c, &znode, &nn);
 | |
| 			if (err == -ENOENT)
 | |
| 				return 0;
 | |
| 			if (err < 0)
 | |
| 				return err;
 | |
| 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
 | |
| 				return 0;
 | |
| 			err = matches_name(c, &znode->zbranch[nn], nm);
 | |
| 			if (err < 0)
 | |
| 				return err;
 | |
| 			if (err == NAME_GREATER)
 | |
| 				return 0;
 | |
| 			*zn = znode;
 | |
| 			*n = nn;
 | |
| 			if (err == NAME_MATCHES)
 | |
| 				return 1;
 | |
| 			ubifs_assert(err == NAME_LESS);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fallible_matches_name - determine if a dent matches a given name.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @zbr: zbranch of dent
 | |
|  * @nm: name to match
 | |
|  *
 | |
|  * This is a "fallible" version of 'matches_name()' function which does not
 | |
|  * panic if the direntry/xentry referred by @zbr does not exist on the media.
 | |
|  *
 | |
|  * This function checks if xentry/direntry referred by zbranch @zbr matches name
 | |
|  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
 | |
|  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
 | |
|  * if xentry/direntry referred by @zbr does not exist on the media. A negative
 | |
|  * error code is returned in case of failure.
 | |
|  */
 | |
| static int fallible_matches_name(struct ubifs_info *c,
 | |
| 				 struct ubifs_zbranch *zbr,
 | |
| 				 const struct qstr *nm)
 | |
| {
 | |
| 	struct ubifs_dent_node *dent;
 | |
| 	int nlen, err;
 | |
| 
 | |
| 	/* If possible, match against the dent in the leaf node cache */
 | |
| 	if (!zbr->leaf) {
 | |
| 		dent = kmalloc(zbr->len, GFP_NOFS);
 | |
| 		if (!dent)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		err = fallible_read_node(c, &zbr->key, zbr, dent);
 | |
| 		if (err < 0)
 | |
| 			goto out_free;
 | |
| 		if (err == 0) {
 | |
| 			/* The node was not present */
 | |
| 			err = NOT_ON_MEDIA;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 		ubifs_assert(err == 1);
 | |
| 
 | |
| 		err = lnc_add_directly(c, zbr, dent);
 | |
| 		if (err)
 | |
| 			goto out_free;
 | |
| 	} else
 | |
| 		dent = zbr->leaf;
 | |
| 
 | |
| 	nlen = le16_to_cpu(dent->nlen);
 | |
| 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 | |
| 	if (err == 0) {
 | |
| 		if (nlen == nm->len)
 | |
| 			return NAME_MATCHES;
 | |
| 		else if (nlen < nm->len)
 | |
| 			return NAME_LESS;
 | |
| 		else
 | |
| 			return NAME_GREATER;
 | |
| 	} else if (err < 0)
 | |
| 		return NAME_LESS;
 | |
| 	else
 | |
| 		return NAME_GREATER;
 | |
| 
 | |
| out_free:
 | |
| 	kfree(dent);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fallible_resolve_collision - resolve a collision even if nodes are missing.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: key
 | |
|  * @zn: znode is returned here
 | |
|  * @n: branch number is passed and returned here
 | |
|  * @nm: name of directory entry
 | |
|  * @adding: indicates caller is adding a key to the TNC
 | |
|  *
 | |
|  * This is a "fallible" version of the 'resolve_collision()' function which
 | |
|  * does not panic if one of the nodes referred to by TNC does not exist on the
 | |
|  * media. This may happen when replaying the journal if a deleted node was
 | |
|  * Garbage-collected and the commit was not done. A branch that refers to a node
 | |
|  * that is not present is called a dangling branch. The following are the return
 | |
|  * codes for this function:
 | |
|  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
 | |
|  *    branch;
 | |
|  *  o if we are @adding and @nm was not found, %0 is returned;
 | |
|  *  o if we are not @adding and @nm was not found, but a dangling branch was
 | |
|  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
 | |
|  *  o a negative error code is returned in case of failure.
 | |
|  */
 | |
| static int fallible_resolve_collision(struct ubifs_info *c,
 | |
| 				      const union ubifs_key *key,
 | |
| 				      struct ubifs_znode **zn, int *n,
 | |
| 				      const struct qstr *nm, int adding)
 | |
| {
 | |
| 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
 | |
| 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
 | |
| 
 | |
| 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
 | |
| 	if (unlikely(cmp < 0))
 | |
| 		return cmp;
 | |
| 	if (cmp == NAME_MATCHES)
 | |
| 		return 1;
 | |
| 	if (cmp == NOT_ON_MEDIA) {
 | |
| 		o_znode = znode;
 | |
| 		o_n = nn;
 | |
| 		/*
 | |
| 		 * We are unlucky and hit a dangling branch straight away.
 | |
| 		 * Now we do not really know where to go to find the needed
 | |
| 		 * branch - to the left or to the right. Well, let's try left.
 | |
| 		 */
 | |
| 		unsure = 1;
 | |
| 	} else if (!adding)
 | |
| 		unsure = 1; /* Remove a dangling branch wherever it is */
 | |
| 
 | |
| 	if (cmp == NAME_GREATER || unsure) {
 | |
| 		/* Look left */
 | |
| 		while (1) {
 | |
| 			err = tnc_prev(c, zn, n);
 | |
| 			if (err == -ENOENT) {
 | |
| 				ubifs_assert(*n == 0);
 | |
| 				*n = -1;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (err < 0)
 | |
| 				return err;
 | |
| 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 | |
| 				/* See comments in 'resolve_collision()' */
 | |
| 				if (*n == (*zn)->child_cnt - 1) {
 | |
| 					err = tnc_next(c, zn, n);
 | |
| 					if (err) {
 | |
| 						/* Should be impossible */
 | |
| 						ubifs_assert(0);
 | |
| 						if (err == -ENOENT)
 | |
| 							err = -EINVAL;
 | |
| 						return err;
 | |
| 					}
 | |
| 					ubifs_assert(*n == 0);
 | |
| 					*n = -1;
 | |
| 				}
 | |
| 				break;
 | |
| 			}
 | |
| 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
 | |
| 			if (err < 0)
 | |
| 				return err;
 | |
| 			if (err == NAME_MATCHES)
 | |
| 				return 1;
 | |
| 			if (err == NOT_ON_MEDIA) {
 | |
| 				o_znode = *zn;
 | |
| 				o_n = *n;
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (!adding)
 | |
| 				continue;
 | |
| 			if (err == NAME_LESS)
 | |
| 				break;
 | |
| 			else
 | |
| 				unsure = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (cmp == NAME_LESS || unsure) {
 | |
| 		/* Look right */
 | |
| 		*zn = znode;
 | |
| 		*n = nn;
 | |
| 		while (1) {
 | |
| 			err = tnc_next(c, &znode, &nn);
 | |
| 			if (err == -ENOENT)
 | |
| 				break;
 | |
| 			if (err < 0)
 | |
| 				return err;
 | |
| 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
 | |
| 				break;
 | |
| 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
 | |
| 			if (err < 0)
 | |
| 				return err;
 | |
| 			if (err == NAME_GREATER)
 | |
| 				break;
 | |
| 			*zn = znode;
 | |
| 			*n = nn;
 | |
| 			if (err == NAME_MATCHES)
 | |
| 				return 1;
 | |
| 			if (err == NOT_ON_MEDIA) {
 | |
| 				o_znode = znode;
 | |
| 				o_n = nn;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Never match a dangling branch when adding */
 | |
| 	if (adding || !o_znode)
 | |
| 		return 0;
 | |
| 
 | |
| 	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
 | |
| 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
 | |
| 		o_znode->zbranch[o_n].len);
 | |
| 	*zn = o_znode;
 | |
| 	*n = o_n;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * matches_position - determine if a zbranch matches a given position.
 | |
|  * @zbr: zbranch of dent
 | |
|  * @lnum: LEB number of dent to match
 | |
|  * @offs: offset of dent to match
 | |
|  *
 | |
|  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
 | |
|  */
 | |
| static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
 | |
| {
 | |
| 	if (zbr->lnum == lnum && zbr->offs == offs)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * resolve_collision_directly - resolve a collision directly.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: key of directory entry
 | |
|  * @zn: znode is passed and returned here
 | |
|  * @n: zbranch number is passed and returned here
 | |
|  * @lnum: LEB number of dent node to match
 | |
|  * @offs: offset of dent node to match
 | |
|  *
 | |
|  * This function is used for "hashed" keys to make sure the found directory or
 | |
|  * extended attribute entry node is what was looked for. It is used when the
 | |
|  * flash address of the right node is known (@lnum:@offs) which makes it much
 | |
|  * easier to resolve collisions (no need to read entries and match full
 | |
|  * names). This function returns %1 and sets @zn and @n if the collision is
 | |
|  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
 | |
|  * previous directory entry. Otherwise a negative error code is returned.
 | |
|  */
 | |
| static int resolve_collision_directly(struct ubifs_info *c,
 | |
| 				      const union ubifs_key *key,
 | |
| 				      struct ubifs_znode **zn, int *n,
 | |
| 				      int lnum, int offs)
 | |
| {
 | |
| 	struct ubifs_znode *znode;
 | |
| 	int nn, err;
 | |
| 
 | |
| 	znode = *zn;
 | |
| 	nn = *n;
 | |
| 	if (matches_position(&znode->zbranch[nn], lnum, offs))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Look left */
 | |
| 	while (1) {
 | |
| 		err = tnc_prev(c, &znode, &nn);
 | |
| 		if (err == -ENOENT)
 | |
| 			break;
 | |
| 		if (err < 0)
 | |
| 			return err;
 | |
| 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
 | |
| 			break;
 | |
| 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
 | |
| 			*zn = znode;
 | |
| 			*n = nn;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Look right */
 | |
| 	znode = *zn;
 | |
| 	nn = *n;
 | |
| 	while (1) {
 | |
| 		err = tnc_next(c, &znode, &nn);
 | |
| 		if (err == -ENOENT)
 | |
| 			return 0;
 | |
| 		if (err < 0)
 | |
| 			return err;
 | |
| 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
 | |
| 			return 0;
 | |
| 		*zn = znode;
 | |
| 		*n = nn;
 | |
| 		if (matches_position(&znode->zbranch[nn], lnum, offs))
 | |
| 			return 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dirty_cow_bottom_up - dirty a znode and its ancestors.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @znode: znode to dirty
 | |
|  *
 | |
|  * If we do not have a unique key that resides in a znode, then we cannot
 | |
|  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
 | |
|  * This function records the path back to the last dirty ancestor, and then
 | |
|  * dirties the znodes on that path.
 | |
|  */
 | |
| static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
 | |
| 					       struct ubifs_znode *znode)
 | |
| {
 | |
| 	struct ubifs_znode *zp;
 | |
| 	int *path = c->bottom_up_buf, p = 0;
 | |
| 
 | |
| 	ubifs_assert(c->zroot.znode);
 | |
| 	ubifs_assert(znode);
 | |
| 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
 | |
| 		kfree(c->bottom_up_buf);
 | |
| 		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
 | |
| 					   GFP_NOFS);
 | |
| 		if (!c->bottom_up_buf)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		path = c->bottom_up_buf;
 | |
| 	}
 | |
| 	if (c->zroot.znode->level) {
 | |
| 		/* Go up until parent is dirty */
 | |
| 		while (1) {
 | |
| 			int n;
 | |
| 
 | |
| 			zp = znode->parent;
 | |
| 			if (!zp)
 | |
| 				break;
 | |
| 			n = znode->iip;
 | |
| 			ubifs_assert(p < c->zroot.znode->level);
 | |
| 			path[p++] = n;
 | |
| 			if (!zp->cnext && ubifs_zn_dirty(znode))
 | |
| 				break;
 | |
| 			znode = zp;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Come back down, dirtying as we go */
 | |
| 	while (1) {
 | |
| 		struct ubifs_zbranch *zbr;
 | |
| 
 | |
| 		zp = znode->parent;
 | |
| 		if (zp) {
 | |
| 			ubifs_assert(path[p - 1] >= 0);
 | |
| 			ubifs_assert(path[p - 1] < zp->child_cnt);
 | |
| 			zbr = &zp->zbranch[path[--p]];
 | |
| 			znode = dirty_cow_znode(c, zbr);
 | |
| 		} else {
 | |
| 			ubifs_assert(znode == c->zroot.znode);
 | |
| 			znode = dirty_cow_znode(c, &c->zroot);
 | |
| 		}
 | |
| 		if (IS_ERR(znode) || !p)
 | |
| 			break;
 | |
| 		ubifs_assert(path[p - 1] >= 0);
 | |
| 		ubifs_assert(path[p - 1] < znode->child_cnt);
 | |
| 		znode = znode->zbranch[path[p - 1]].znode;
 | |
| 	}
 | |
| 
 | |
| 	return znode;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_lookup_level0 - search for zero-level znode.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key:  key to lookup
 | |
|  * @zn: znode is returned here
 | |
|  * @n: znode branch slot number is returned here
 | |
|  *
 | |
|  * This function looks up the TNC tree and search for zero-level znode which
 | |
|  * refers key @key. The found zero-level znode is returned in @zn. There are 3
 | |
|  * cases:
 | |
|  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
 | |
|  *     is returned and slot number of the matched branch is stored in @n;
 | |
|  *   o not exact match, which means that zero-level znode does not contain
 | |
|  *     @key, then %0 is returned and slot number of the closest branch is stored
 | |
|  *     in @n;
 | |
|  *   o @key is so small that it is even less than the lowest key of the
 | |
|  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
 | |
|  *
 | |
|  * Note, when the TNC tree is traversed, some znodes may be absent, then this
 | |
|  * function reads corresponding indexing nodes and inserts them to TNC. In
 | |
|  * case of failure, a negative error code is returned.
 | |
|  */
 | |
| int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
 | |
| 			struct ubifs_znode **zn, int *n)
 | |
| {
 | |
| 	int err, exact;
 | |
| 	struct ubifs_znode *znode;
 | |
| 	unsigned long time = get_seconds();
 | |
| 
 | |
| 	dbg_tnck(key, "search key ");
 | |
| 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
 | |
| 
 | |
| 	znode = c->zroot.znode;
 | |
| 	if (unlikely(!znode)) {
 | |
| 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
 | |
| 		if (IS_ERR(znode))
 | |
| 			return PTR_ERR(znode);
 | |
| 	}
 | |
| 
 | |
| 	znode->time = time;
 | |
| 
 | |
| 	while (1) {
 | |
| 		struct ubifs_zbranch *zbr;
 | |
| 
 | |
| 		exact = ubifs_search_zbranch(c, znode, key, n);
 | |
| 
 | |
| 		if (znode->level == 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (*n < 0)
 | |
| 			*n = 0;
 | |
| 		zbr = &znode->zbranch[*n];
 | |
| 
 | |
| 		if (zbr->znode) {
 | |
| 			znode->time = time;
 | |
| 			znode = zbr->znode;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* znode is not in TNC cache, load it from the media */
 | |
| 		znode = ubifs_load_znode(c, zbr, znode, *n);
 | |
| 		if (IS_ERR(znode))
 | |
| 			return PTR_ERR(znode);
 | |
| 	}
 | |
| 
 | |
| 	*zn = znode;
 | |
| 	if (exact || !is_hash_key(c, key) || *n != -1) {
 | |
| 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
 | |
| 		return exact;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Here is a tricky place. We have not found the key and this is a
 | |
| 	 * "hashed" key, which may collide. The rest of the code deals with
 | |
| 	 * situations like this:
 | |
| 	 *
 | |
| 	 *                  | 3 | 5 |
 | |
| 	 *                  /       \
 | |
| 	 *          | 3 | 5 |      | 6 | 7 | (x)
 | |
| 	 *
 | |
| 	 * Or more a complex example:
 | |
| 	 *
 | |
| 	 *                | 1 | 5 |
 | |
| 	 *                /       \
 | |
| 	 *       | 1 | 3 |         | 5 | 8 |
 | |
| 	 *              \           /
 | |
| 	 *          | 5 | 5 |   | 6 | 7 | (x)
 | |
| 	 *
 | |
| 	 * In the examples, if we are looking for key "5", we may reach nodes
 | |
| 	 * marked with "(x)". In this case what we have do is to look at the
 | |
| 	 * left and see if there is "5" key there. If there is, we have to
 | |
| 	 * return it.
 | |
| 	 *
 | |
| 	 * Note, this whole situation is possible because we allow to have
 | |
| 	 * elements which are equivalent to the next key in the parent in the
 | |
| 	 * children of current znode. For example, this happens if we split a
 | |
| 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
 | |
| 	 * like this:
 | |
| 	 *                      | 3 | 5 |
 | |
| 	 *                       /     \
 | |
| 	 *                | 3 | 5 |   | 5 | 6 | 7 |
 | |
| 	 *                              ^
 | |
| 	 * And this becomes what is at the first "picture" after key "5" marked
 | |
| 	 * with "^" is removed. What could be done is we could prohibit
 | |
| 	 * splitting in the middle of the colliding sequence. Also, when
 | |
| 	 * removing the leftmost key, we would have to correct the key of the
 | |
| 	 * parent node, which would introduce additional complications. Namely,
 | |
| 	 * if we changed the leftmost key of the parent znode, the garbage
 | |
| 	 * collector would be unable to find it (GC is doing this when GC'ing
 | |
| 	 * indexing LEBs). Although we already have an additional RB-tree where
 | |
| 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
 | |
| 	 * after the commit. But anyway, this does not look easy to implement
 | |
| 	 * so we did not try this.
 | |
| 	 */
 | |
| 	err = tnc_prev(c, &znode, n);
 | |
| 	if (err == -ENOENT) {
 | |
| 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
 | |
| 		*n = -1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (unlikely(err < 0))
 | |
| 		return err;
 | |
| 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
 | |
| 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
 | |
| 		*n = -1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
 | |
| 	*zn = znode;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * lookup_level0_dirty - search for zero-level znode dirtying.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key:  key to lookup
 | |
|  * @zn: znode is returned here
 | |
|  * @n: znode branch slot number is returned here
 | |
|  *
 | |
|  * This function looks up the TNC tree and search for zero-level znode which
 | |
|  * refers key @key. The found zero-level znode is returned in @zn. There are 3
 | |
|  * cases:
 | |
|  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
 | |
|  *     is returned and slot number of the matched branch is stored in @n;
 | |
|  *   o not exact match, which means that zero-level znode does not contain @key
 | |
|  *     then %0 is returned and slot number of the closed branch is stored in
 | |
|  *     @n;
 | |
|  *   o @key is so small that it is even less than the lowest key of the
 | |
|  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
 | |
|  *
 | |
|  * Additionally all znodes in the path from the root to the located zero-level
 | |
|  * znode are marked as dirty.
 | |
|  *
 | |
|  * Note, when the TNC tree is traversed, some znodes may be absent, then this
 | |
|  * function reads corresponding indexing nodes and inserts them to TNC. In
 | |
|  * case of failure, a negative error code is returned.
 | |
|  */
 | |
| static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
 | |
| 			       struct ubifs_znode **zn, int *n)
 | |
| {
 | |
| 	int err, exact;
 | |
| 	struct ubifs_znode *znode;
 | |
| 	unsigned long time = get_seconds();
 | |
| 
 | |
| 	dbg_tnck(key, "search and dirty key ");
 | |
| 
 | |
| 	znode = c->zroot.znode;
 | |
| 	if (unlikely(!znode)) {
 | |
| 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
 | |
| 		if (IS_ERR(znode))
 | |
| 			return PTR_ERR(znode);
 | |
| 	}
 | |
| 
 | |
| 	znode = dirty_cow_znode(c, &c->zroot);
 | |
| 	if (IS_ERR(znode))
 | |
| 		return PTR_ERR(znode);
 | |
| 
 | |
| 	znode->time = time;
 | |
| 
 | |
| 	while (1) {
 | |
| 		struct ubifs_zbranch *zbr;
 | |
| 
 | |
| 		exact = ubifs_search_zbranch(c, znode, key, n);
 | |
| 
 | |
| 		if (znode->level == 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (*n < 0)
 | |
| 			*n = 0;
 | |
| 		zbr = &znode->zbranch[*n];
 | |
| 
 | |
| 		if (zbr->znode) {
 | |
| 			znode->time = time;
 | |
| 			znode = dirty_cow_znode(c, zbr);
 | |
| 			if (IS_ERR(znode))
 | |
| 				return PTR_ERR(znode);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* znode is not in TNC cache, load it from the media */
 | |
| 		znode = ubifs_load_znode(c, zbr, znode, *n);
 | |
| 		if (IS_ERR(znode))
 | |
| 			return PTR_ERR(znode);
 | |
| 		znode = dirty_cow_znode(c, zbr);
 | |
| 		if (IS_ERR(znode))
 | |
| 			return PTR_ERR(znode);
 | |
| 	}
 | |
| 
 | |
| 	*zn = znode;
 | |
| 	if (exact || !is_hash_key(c, key) || *n != -1) {
 | |
| 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
 | |
| 		return exact;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
 | |
| 	 * code.
 | |
| 	 */
 | |
| 	err = tnc_prev(c, &znode, n);
 | |
| 	if (err == -ENOENT) {
 | |
| 		*n = -1;
 | |
| 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (unlikely(err < 0))
 | |
| 		return err;
 | |
| 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
 | |
| 		*n = -1;
 | |
| 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
 | |
| 		znode = dirty_cow_bottom_up(c, znode);
 | |
| 		if (IS_ERR(znode))
 | |
| 			return PTR_ERR(znode);
 | |
| 	}
 | |
| 
 | |
| 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
 | |
| 	*zn = znode;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * maybe_leb_gced - determine if a LEB may have been garbage collected.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @lnum: LEB number
 | |
|  * @gc_seq1: garbage collection sequence number
 | |
|  *
 | |
|  * This function determines if @lnum may have been garbage collected since
 | |
|  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
 | |
|  * %0 is returned.
 | |
|  */
 | |
| static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
 | |
| {
 | |
| 	int gc_seq2, gced_lnum;
 | |
| 
 | |
| 	gced_lnum = c->gced_lnum;
 | |
| 	smp_rmb();
 | |
| 	gc_seq2 = c->gc_seq;
 | |
| 	/* Same seq means no GC */
 | |
| 	if (gc_seq1 == gc_seq2)
 | |
| 		return 0;
 | |
| 	/* Different by more than 1 means we don't know */
 | |
| 	if (gc_seq1 + 1 != gc_seq2)
 | |
| 		return 1;
 | |
| 	/*
 | |
| 	 * We have seen the sequence number has increased by 1. Now we need to
 | |
| 	 * be sure we read the right LEB number, so read it again.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	if (gced_lnum != c->gced_lnum)
 | |
| 		return 1;
 | |
| 	/* Finally we can check lnum */
 | |
| 	if (gced_lnum == lnum)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_tnc_locate - look up a file-system node and return it and its location.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: node key to lookup
 | |
|  * @node: the node is returned here
 | |
|  * @lnum: LEB number is returned here
 | |
|  * @offs: offset is returned here
 | |
|  *
 | |
|  * This function looks up and reads node with key @key. The caller has to make
 | |
|  * sure the @node buffer is large enough to fit the node. Returns zero in case
 | |
|  * of success, %-ENOENT if the node was not found, and a negative error code in
 | |
|  * case of failure. The node location can be returned in @lnum and @offs.
 | |
|  */
 | |
| int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
 | |
| 		     void *node, int *lnum, int *offs)
 | |
| {
 | |
| 	int found, n, err, safely = 0, gc_seq1;
 | |
| 	struct ubifs_znode *znode;
 | |
| 	struct ubifs_zbranch zbr, *zt;
 | |
| 
 | |
| again:
 | |
| 	mutex_lock(&c->tnc_mutex);
 | |
| 	found = ubifs_lookup_level0(c, key, &znode, &n);
 | |
| 	if (!found) {
 | |
| 		err = -ENOENT;
 | |
| 		goto out;
 | |
| 	} else if (found < 0) {
 | |
| 		err = found;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	zt = &znode->zbranch[n];
 | |
| 	if (lnum) {
 | |
| 		*lnum = zt->lnum;
 | |
| 		*offs = zt->offs;
 | |
| 	}
 | |
| 	if (is_hash_key(c, key)) {
 | |
| 		/*
 | |
| 		 * In this case the leaf node cache gets used, so we pass the
 | |
| 		 * address of the zbranch and keep the mutex locked
 | |
| 		 */
 | |
| 		err = tnc_read_node_nm(c, zt, node);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (safely) {
 | |
| 		err = ubifs_tnc_read_node(c, zt, node);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/* Drop the TNC mutex prematurely and race with garbage collection */
 | |
| 	zbr = znode->zbranch[n];
 | |
| 	gc_seq1 = c->gc_seq;
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 
 | |
| 	if (ubifs_get_wbuf(c, zbr.lnum)) {
 | |
| 		/* We do not GC journal heads */
 | |
| 		err = ubifs_tnc_read_node(c, &zbr, node);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = fallible_read_node(c, key, &zbr, node);
 | |
| 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
 | |
| 		/*
 | |
| 		 * The node may have been GC'ed out from under us so try again
 | |
| 		 * while keeping the TNC mutex locked.
 | |
| 		 */
 | |
| 		safely = 1;
 | |
| 		goto again;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @bu: bulk-read parameters and results
 | |
|  *
 | |
|  * Lookup consecutive data node keys for the same inode that reside
 | |
|  * consecutively in the same LEB. This function returns zero in case of success
 | |
|  * and a negative error code in case of failure.
 | |
|  *
 | |
|  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
 | |
|  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
 | |
|  * maximum possible amount of nodes for bulk-read.
 | |
|  */
 | |
| int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
 | |
| {
 | |
| 	int n, err = 0, lnum = -1, uninitialized_var(offs);
 | |
| 	int uninitialized_var(len);
 | |
| 	unsigned int block = key_block(c, &bu->key);
 | |
| 	struct ubifs_znode *znode;
 | |
| 
 | |
| 	bu->cnt = 0;
 | |
| 	bu->blk_cnt = 0;
 | |
| 	bu->eof = 0;
 | |
| 
 | |
| 	mutex_lock(&c->tnc_mutex);
 | |
| 	/* Find first key */
 | |
| 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
 | |
| 	if (err < 0)
 | |
| 		goto out;
 | |
| 	if (err) {
 | |
| 		/* Key found */
 | |
| 		len = znode->zbranch[n].len;
 | |
| 		/* The buffer must be big enough for at least 1 node */
 | |
| 		if (len > bu->buf_len) {
 | |
| 			err = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		/* Add this key */
 | |
| 		bu->zbranch[bu->cnt++] = znode->zbranch[n];
 | |
| 		bu->blk_cnt += 1;
 | |
| 		lnum = znode->zbranch[n].lnum;
 | |
| 		offs = ALIGN(znode->zbranch[n].offs + len, 8);
 | |
| 	}
 | |
| 	while (1) {
 | |
| 		struct ubifs_zbranch *zbr;
 | |
| 		union ubifs_key *key;
 | |
| 		unsigned int next_block;
 | |
| 
 | |
| 		/* Find next key */
 | |
| 		err = tnc_next(c, &znode, &n);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 		zbr = &znode->zbranch[n];
 | |
| 		key = &zbr->key;
 | |
| 		/* See if there is another data key for this file */
 | |
| 		if (key_inum(c, key) != key_inum(c, &bu->key) ||
 | |
| 		    key_type(c, key) != UBIFS_DATA_KEY) {
 | |
| 			err = -ENOENT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (lnum < 0) {
 | |
| 			/* First key found */
 | |
| 			lnum = zbr->lnum;
 | |
| 			offs = ALIGN(zbr->offs + zbr->len, 8);
 | |
| 			len = zbr->len;
 | |
| 			if (len > bu->buf_len) {
 | |
| 				err = -EINVAL;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * The data nodes must be in consecutive positions in
 | |
| 			 * the same LEB.
 | |
| 			 */
 | |
| 			if (zbr->lnum != lnum || zbr->offs != offs)
 | |
| 				goto out;
 | |
| 			offs += ALIGN(zbr->len, 8);
 | |
| 			len = ALIGN(len, 8) + zbr->len;
 | |
| 			/* Must not exceed buffer length */
 | |
| 			if (len > bu->buf_len)
 | |
| 				goto out;
 | |
| 		}
 | |
| 		/* Allow for holes */
 | |
| 		next_block = key_block(c, key);
 | |
| 		bu->blk_cnt += (next_block - block - 1);
 | |
| 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
 | |
| 			goto out;
 | |
| 		block = next_block;
 | |
| 		/* Add this key */
 | |
| 		bu->zbranch[bu->cnt++] = *zbr;
 | |
| 		bu->blk_cnt += 1;
 | |
| 		/* See if we have room for more */
 | |
| 		if (bu->cnt >= UBIFS_MAX_BULK_READ)
 | |
| 			goto out;
 | |
| 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
 | |
| 			goto out;
 | |
| 	}
 | |
| out:
 | |
| 	if (err == -ENOENT) {
 | |
| 		bu->eof = 1;
 | |
| 		err = 0;
 | |
| 	}
 | |
| 	bu->gc_seq = c->gc_seq;
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	/*
 | |
| 	 * An enormous hole could cause bulk-read to encompass too many
 | |
| 	 * page cache pages, so limit the number here.
 | |
| 	 */
 | |
| 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
 | |
| 		bu->blk_cnt = UBIFS_MAX_BULK_READ;
 | |
| 	/*
 | |
| 	 * Ensure that bulk-read covers a whole number of page cache
 | |
| 	 * pages.
 | |
| 	 */
 | |
| 	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
 | |
| 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
 | |
| 		return 0;
 | |
| 	if (bu->eof) {
 | |
| 		/* At the end of file we can round up */
 | |
| 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* Exclude data nodes that do not make up a whole page cache page */
 | |
| 	block = key_block(c, &bu->key) + bu->blk_cnt;
 | |
| 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
 | |
| 	while (bu->cnt) {
 | |
| 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
 | |
| 			break;
 | |
| 		bu->cnt -= 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * read_wbuf - bulk-read from a LEB with a wbuf.
 | |
|  * @wbuf: wbuf that may overlap the read
 | |
|  * @buf: buffer into which to read
 | |
|  * @len: read length
 | |
|  * @lnum: LEB number from which to read
 | |
|  * @offs: offset from which to read
 | |
|  *
 | |
|  * This functions returns %0 on success or a negative error code on failure.
 | |
|  */
 | |
| static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
 | |
| 		     int offs)
 | |
| {
 | |
| 	const struct ubifs_info *c = wbuf->c;
 | |
| 	int rlen, overlap;
 | |
| 
 | |
| 	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
 | |
| 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 | |
| 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
 | |
| 	ubifs_assert(offs + len <= c->leb_size);
 | |
| 
 | |
| 	spin_lock(&wbuf->lock);
 | |
| 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
 | |
| 	if (!overlap) {
 | |
| 		/* We may safely unlock the write-buffer and read the data */
 | |
| 		spin_unlock(&wbuf->lock);
 | |
| 		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
 | |
| 	}
 | |
| 
 | |
| 	/* Don't read under wbuf */
 | |
| 	rlen = wbuf->offs - offs;
 | |
| 	if (rlen < 0)
 | |
| 		rlen = 0;
 | |
| 
 | |
| 	/* Copy the rest from the write-buffer */
 | |
| 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
 | |
| 	spin_unlock(&wbuf->lock);
 | |
| 
 | |
| 	if (rlen > 0)
 | |
| 		/* Read everything that goes before write-buffer */
 | |
| 		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * validate_data_node - validate data nodes for bulk-read.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @buf: buffer containing data node to validate
 | |
|  * @zbr: zbranch of data node to validate
 | |
|  *
 | |
|  * This functions returns %0 on success or a negative error code on failure.
 | |
|  */
 | |
| static int validate_data_node(struct ubifs_info *c, void *buf,
 | |
| 			      struct ubifs_zbranch *zbr)
 | |
| {
 | |
| 	union ubifs_key key1;
 | |
| 	struct ubifs_ch *ch = buf;
 | |
| 	int err, len;
 | |
| 
 | |
| 	if (ch->node_type != UBIFS_DATA_NODE) {
 | |
| 		ubifs_err("bad node type (%d but expected %d)",
 | |
| 			  ch->node_type, UBIFS_DATA_NODE);
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
 | |
| 	if (err) {
 | |
| 		ubifs_err("expected node type %d", UBIFS_DATA_NODE);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	len = le32_to_cpu(ch->len);
 | |
| 	if (len != zbr->len) {
 | |
| 		ubifs_err("bad node length %d, expected %d", len, zbr->len);
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure the key of the read node is correct */
 | |
| 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
 | |
| 	if (!keys_eq(c, &zbr->key, &key1)) {
 | |
| 		ubifs_err("bad key in node at LEB %d:%d",
 | |
| 			  zbr->lnum, zbr->offs);
 | |
| 		dbg_tnck(&zbr->key, "looked for key ");
 | |
| 		dbg_tnck(&key1, "found node's key ");
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_err:
 | |
| 	err = -EINVAL;
 | |
| out:
 | |
| 	ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
 | |
| 	ubifs_dump_node(c, buf);
 | |
| 	dump_stack();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @bu: bulk-read parameters and results
 | |
|  *
 | |
|  * This functions reads and validates the data nodes that were identified by the
 | |
|  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
 | |
|  * -EAGAIN to indicate a race with GC, or another negative error code on
 | |
|  * failure.
 | |
|  */
 | |
| int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
 | |
| {
 | |
| 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
 | |
| 	struct ubifs_wbuf *wbuf;
 | |
| 	void *buf;
 | |
| 
 | |
| 	len = bu->zbranch[bu->cnt - 1].offs;
 | |
| 	len += bu->zbranch[bu->cnt - 1].len - offs;
 | |
| 	if (len > bu->buf_len) {
 | |
| 		ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Do the read */
 | |
| 	wbuf = ubifs_get_wbuf(c, lnum);
 | |
| 	if (wbuf)
 | |
| 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
 | |
| 	else
 | |
| 		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
 | |
| 
 | |
| 	/* Check for a race with GC */
 | |
| 	if (maybe_leb_gced(c, lnum, bu->gc_seq))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	if (err && err != -EBADMSG) {
 | |
| 		ubifs_err("failed to read from LEB %d:%d, error %d",
 | |
| 			  lnum, offs, err);
 | |
| 		dump_stack();
 | |
| 		dbg_tnck(&bu->key, "key ");
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* Validate the nodes read */
 | |
| 	buf = bu->buf;
 | |
| 	for (i = 0; i < bu->cnt; i++) {
 | |
| 		err = validate_data_node(c, buf, &bu->zbranch[i]);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		buf = buf + ALIGN(bu->zbranch[i].len, 8);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_lookup_nm- look up a "hashed" node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: node key to lookup
 | |
|  * @node: the node is returned here
 | |
|  * @nm: node name
 | |
|  *
 | |
|  * This function look up and reads a node which contains name hash in the key.
 | |
|  * Since the hash may have collisions, there may be many nodes with the same
 | |
|  * key, so we have to sequentially look to all of them until the needed one is
 | |
|  * found. This function returns zero in case of success, %-ENOENT if the node
 | |
|  * was not found, and a negative error code in case of failure.
 | |
|  */
 | |
| static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
 | |
| 			void *node, const struct qstr *nm)
 | |
| {
 | |
| 	int found, n, err;
 | |
| 	struct ubifs_znode *znode;
 | |
| 
 | |
| 	dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
 | |
| 	mutex_lock(&c->tnc_mutex);
 | |
| 	found = ubifs_lookup_level0(c, key, &znode, &n);
 | |
| 	if (!found) {
 | |
| 		err = -ENOENT;
 | |
| 		goto out_unlock;
 | |
| 	} else if (found < 0) {
 | |
| 		err = found;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	ubifs_assert(n >= 0);
 | |
| 
 | |
| 	err = resolve_collision(c, key, &znode, &n, nm);
 | |
| 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
 | |
| 	if (unlikely(err < 0))
 | |
| 		goto out_unlock;
 | |
| 	if (err == 0) {
 | |
| 		err = -ENOENT;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	err = tnc_read_node_nm(c, &znode->zbranch[n], node);
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_tnc_lookup_nm - look up a "hashed" node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: node key to lookup
 | |
|  * @node: the node is returned here
 | |
|  * @nm: node name
 | |
|  *
 | |
|  * This function look up and reads a node which contains name hash in the key.
 | |
|  * Since the hash may have collisions, there may be many nodes with the same
 | |
|  * key, so we have to sequentially look to all of them until the needed one is
 | |
|  * found. This function returns zero in case of success, %-ENOENT if the node
 | |
|  * was not found, and a negative error code in case of failure.
 | |
|  */
 | |
| int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
 | |
| 			void *node, const struct qstr *nm)
 | |
| {
 | |
| 	int err, len;
 | |
| 	const struct ubifs_dent_node *dent = node;
 | |
| 
 | |
| 	/*
 | |
| 	 * We assume that in most of the cases there are no name collisions and
 | |
| 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
 | |
| 	 */
 | |
| 	err = ubifs_tnc_lookup(c, key, node);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	len = le16_to_cpu(dent->nlen);
 | |
| 	if (nm->len == len && !memcmp(dent->name, nm->name, len))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Unluckily, there are hash collisions and we have to iterate over
 | |
| 	 * them look at each direntry with colliding name hash sequentially.
 | |
| 	 */
 | |
| 	return do_lookup_nm(c, key, node, nm);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * correct_parent_keys - correct parent znodes' keys.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @znode: znode to correct parent znodes for
 | |
|  *
 | |
|  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
 | |
|  * zbranch changes, keys of parent znodes have to be corrected. This helper
 | |
|  * function is called in such situations and corrects the keys if needed.
 | |
|  */
 | |
| static void correct_parent_keys(const struct ubifs_info *c,
 | |
| 				struct ubifs_znode *znode)
 | |
| {
 | |
| 	union ubifs_key *key, *key1;
 | |
| 
 | |
| 	ubifs_assert(znode->parent);
 | |
| 	ubifs_assert(znode->iip == 0);
 | |
| 
 | |
| 	key = &znode->zbranch[0].key;
 | |
| 	key1 = &znode->parent->zbranch[0].key;
 | |
| 
 | |
| 	while (keys_cmp(c, key, key1) < 0) {
 | |
| 		key_copy(c, key, key1);
 | |
| 		znode = znode->parent;
 | |
| 		znode->alt = 1;
 | |
| 		if (!znode->parent || znode->iip)
 | |
| 			break;
 | |
| 		key1 = &znode->parent->zbranch[0].key;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * insert_zbranch - insert a zbranch into a znode.
 | |
|  * @znode: znode into which to insert
 | |
|  * @zbr: zbranch to insert
 | |
|  * @n: slot number to insert to
 | |
|  *
 | |
|  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
 | |
|  * znode's array of zbranches and keeps zbranches consolidated, so when a new
 | |
|  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
 | |
|  * slot, zbranches starting from @n have to be moved right.
 | |
|  */
 | |
| static void insert_zbranch(struct ubifs_znode *znode,
 | |
| 			   const struct ubifs_zbranch *zbr, int n)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	ubifs_assert(ubifs_zn_dirty(znode));
 | |
| 
 | |
| 	if (znode->level) {
 | |
| 		for (i = znode->child_cnt; i > n; i--) {
 | |
| 			znode->zbranch[i] = znode->zbranch[i - 1];
 | |
| 			if (znode->zbranch[i].znode)
 | |
| 				znode->zbranch[i].znode->iip = i;
 | |
| 		}
 | |
| 		if (zbr->znode)
 | |
| 			zbr->znode->iip = n;
 | |
| 	} else
 | |
| 		for (i = znode->child_cnt; i > n; i--)
 | |
| 			znode->zbranch[i] = znode->zbranch[i - 1];
 | |
| 
 | |
| 	znode->zbranch[n] = *zbr;
 | |
| 	znode->child_cnt += 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * After inserting at slot zero, the lower bound of the key range of
 | |
| 	 * this znode may have changed. If this znode is subsequently split
 | |
| 	 * then the upper bound of the key range may change, and furthermore
 | |
| 	 * it could change to be lower than the original lower bound. If that
 | |
| 	 * happens, then it will no longer be possible to find this znode in the
 | |
| 	 * TNC using the key from the index node on flash. That is bad because
 | |
| 	 * if it is not found, we will assume it is obsolete and may overwrite
 | |
| 	 * it. Then if there is an unclean unmount, we will start using the
 | |
| 	 * old index which will be broken.
 | |
| 	 *
 | |
| 	 * So we first mark znodes that have insertions at slot zero, and then
 | |
| 	 * if they are split we add their lnum/offs to the old_idx tree.
 | |
| 	 */
 | |
| 	if (n == 0)
 | |
| 		znode->alt = 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tnc_insert - insert a node into TNC.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @znode: znode to insert into
 | |
|  * @zbr: branch to insert
 | |
|  * @n: slot number to insert new zbranch to
 | |
|  *
 | |
|  * This function inserts a new node described by @zbr into znode @znode. If
 | |
|  * znode does not have a free slot for new zbranch, it is split. Parent znodes
 | |
|  * are splat as well if needed. Returns zero in case of success or a negative
 | |
|  * error code in case of failure.
 | |
|  */
 | |
| static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
 | |
| 		      struct ubifs_zbranch *zbr, int n)
 | |
| {
 | |
| 	struct ubifs_znode *zn, *zi, *zp;
 | |
| 	int i, keep, move, appending = 0;
 | |
| 	union ubifs_key *key = &zbr->key, *key1;
 | |
| 
 | |
| 	ubifs_assert(n >= 0 && n <= c->fanout);
 | |
| 
 | |
| 	/* Implement naive insert for now */
 | |
| again:
 | |
| 	zp = znode->parent;
 | |
| 	if (znode->child_cnt < c->fanout) {
 | |
| 		ubifs_assert(n != c->fanout);
 | |
| 		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
 | |
| 
 | |
| 		insert_zbranch(znode, zbr, n);
 | |
| 
 | |
| 		/* Ensure parent's key is correct */
 | |
| 		if (n == 0 && zp && znode->iip == 0)
 | |
| 			correct_parent_keys(c, znode);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Unfortunately, @znode does not have more empty slots and we have to
 | |
| 	 * split it.
 | |
| 	 */
 | |
| 	dbg_tnck(key, "splitting level %d, key ", znode->level);
 | |
| 
 | |
| 	if (znode->alt)
 | |
| 		/*
 | |
| 		 * We can no longer be sure of finding this znode by key, so we
 | |
| 		 * record it in the old_idx tree.
 | |
| 		 */
 | |
| 		ins_clr_old_idx_znode(c, znode);
 | |
| 
 | |
| 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
 | |
| 	if (!zn)
 | |
| 		return -ENOMEM;
 | |
| 	zn->parent = zp;
 | |
| 	zn->level = znode->level;
 | |
| 
 | |
| 	/* Decide where to split */
 | |
| 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
 | |
| 		/* Try not to split consecutive data keys */
 | |
| 		if (n == c->fanout) {
 | |
| 			key1 = &znode->zbranch[n - 1].key;
 | |
| 			if (key_inum(c, key1) == key_inum(c, key) &&
 | |
| 			    key_type(c, key1) == UBIFS_DATA_KEY)
 | |
| 				appending = 1;
 | |
| 		} else
 | |
| 			goto check_split;
 | |
| 	} else if (appending && n != c->fanout) {
 | |
| 		/* Try not to split consecutive data keys */
 | |
| 		appending = 0;
 | |
| check_split:
 | |
| 		if (n >= (c->fanout + 1) / 2) {
 | |
| 			key1 = &znode->zbranch[0].key;
 | |
| 			if (key_inum(c, key1) == key_inum(c, key) &&
 | |
| 			    key_type(c, key1) == UBIFS_DATA_KEY) {
 | |
| 				key1 = &znode->zbranch[n].key;
 | |
| 				if (key_inum(c, key1) != key_inum(c, key) ||
 | |
| 				    key_type(c, key1) != UBIFS_DATA_KEY) {
 | |
| 					keep = n;
 | |
| 					move = c->fanout - keep;
 | |
| 					zi = znode;
 | |
| 					goto do_split;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (appending) {
 | |
| 		keep = c->fanout;
 | |
| 		move = 0;
 | |
| 	} else {
 | |
| 		keep = (c->fanout + 1) / 2;
 | |
| 		move = c->fanout - keep;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Although we don't at present, we could look at the neighbors and see
 | |
| 	 * if we can move some zbranches there.
 | |
| 	 */
 | |
| 
 | |
| 	if (n < keep) {
 | |
| 		/* Insert into existing znode */
 | |
| 		zi = znode;
 | |
| 		move += 1;
 | |
| 		keep -= 1;
 | |
| 	} else {
 | |
| 		/* Insert into new znode */
 | |
| 		zi = zn;
 | |
| 		n -= keep;
 | |
| 		/* Re-parent */
 | |
| 		if (zn->level != 0)
 | |
| 			zbr->znode->parent = zn;
 | |
| 	}
 | |
| 
 | |
| do_split:
 | |
| 
 | |
| 	__set_bit(DIRTY_ZNODE, &zn->flags);
 | |
| 	atomic_long_inc(&c->dirty_zn_cnt);
 | |
| 
 | |
| 	zn->child_cnt = move;
 | |
| 	znode->child_cnt = keep;
 | |
| 
 | |
| 	dbg_tnc("moving %d, keeping %d", move, keep);
 | |
| 
 | |
| 	/* Move zbranch */
 | |
| 	for (i = 0; i < move; i++) {
 | |
| 		zn->zbranch[i] = znode->zbranch[keep + i];
 | |
| 		/* Re-parent */
 | |
| 		if (zn->level != 0)
 | |
| 			if (zn->zbranch[i].znode) {
 | |
| 				zn->zbranch[i].znode->parent = zn;
 | |
| 				zn->zbranch[i].znode->iip = i;
 | |
| 			}
 | |
| 	}
 | |
| 
 | |
| 	/* Insert new key and branch */
 | |
| 	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
 | |
| 
 | |
| 	insert_zbranch(zi, zbr, n);
 | |
| 
 | |
| 	/* Insert new znode (produced by spitting) into the parent */
 | |
| 	if (zp) {
 | |
| 		if (n == 0 && zi == znode && znode->iip == 0)
 | |
| 			correct_parent_keys(c, znode);
 | |
| 
 | |
| 		/* Locate insertion point */
 | |
| 		n = znode->iip + 1;
 | |
| 
 | |
| 		/* Tail recursion */
 | |
| 		zbr->key = zn->zbranch[0].key;
 | |
| 		zbr->znode = zn;
 | |
| 		zbr->lnum = 0;
 | |
| 		zbr->offs = 0;
 | |
| 		zbr->len = 0;
 | |
| 		znode = zp;
 | |
| 
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	/* We have to split root znode */
 | |
| 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
 | |
| 
 | |
| 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
 | |
| 	if (!zi)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	zi->child_cnt = 2;
 | |
| 	zi->level = znode->level + 1;
 | |
| 
 | |
| 	__set_bit(DIRTY_ZNODE, &zi->flags);
 | |
| 	atomic_long_inc(&c->dirty_zn_cnt);
 | |
| 
 | |
| 	zi->zbranch[0].key = znode->zbranch[0].key;
 | |
| 	zi->zbranch[0].znode = znode;
 | |
| 	zi->zbranch[0].lnum = c->zroot.lnum;
 | |
| 	zi->zbranch[0].offs = c->zroot.offs;
 | |
| 	zi->zbranch[0].len = c->zroot.len;
 | |
| 	zi->zbranch[1].key = zn->zbranch[0].key;
 | |
| 	zi->zbranch[1].znode = zn;
 | |
| 
 | |
| 	c->zroot.lnum = 0;
 | |
| 	c->zroot.offs = 0;
 | |
| 	c->zroot.len = 0;
 | |
| 	c->zroot.znode = zi;
 | |
| 
 | |
| 	zn->parent = zi;
 | |
| 	zn->iip = 1;
 | |
| 	znode->parent = zi;
 | |
| 	znode->iip = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_tnc_add - add a node to TNC.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: key to add
 | |
|  * @lnum: LEB number of node
 | |
|  * @offs: node offset
 | |
|  * @len: node length
 | |
|  *
 | |
|  * This function adds a node with key @key to TNC. The node may be new or it may
 | |
|  * obsolete some existing one. Returns %0 on success or negative error code on
 | |
|  * failure.
 | |
|  */
 | |
| int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
 | |
| 		  int offs, int len)
 | |
| {
 | |
| 	int found, n, err = 0;
 | |
| 	struct ubifs_znode *znode;
 | |
| 
 | |
| 	mutex_lock(&c->tnc_mutex);
 | |
| 	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
 | |
| 	found = lookup_level0_dirty(c, key, &znode, &n);
 | |
| 	if (!found) {
 | |
| 		struct ubifs_zbranch zbr;
 | |
| 
 | |
| 		zbr.znode = NULL;
 | |
| 		zbr.lnum = lnum;
 | |
| 		zbr.offs = offs;
 | |
| 		zbr.len = len;
 | |
| 		key_copy(c, key, &zbr.key);
 | |
| 		err = tnc_insert(c, znode, &zbr, n + 1);
 | |
| 	} else if (found == 1) {
 | |
| 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
 | |
| 
 | |
| 		lnc_free(zbr);
 | |
| 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
 | |
| 		zbr->lnum = lnum;
 | |
| 		zbr->offs = offs;
 | |
| 		zbr->len = len;
 | |
| 	} else
 | |
| 		err = found;
 | |
| 	if (!err)
 | |
| 		err = dbg_check_tnc(c, 0);
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: key to add
 | |
|  * @old_lnum: LEB number of old node
 | |
|  * @old_offs: old node offset
 | |
|  * @lnum: LEB number of node
 | |
|  * @offs: node offset
 | |
|  * @len: node length
 | |
|  *
 | |
|  * This function replaces a node with key @key in the TNC only if the old node
 | |
|  * is found.  This function is called by garbage collection when node are moved.
 | |
|  * Returns %0 on success or negative error code on failure.
 | |
|  */
 | |
| int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
 | |
| 		      int old_lnum, int old_offs, int lnum, int offs, int len)
 | |
| {
 | |
| 	int found, n, err = 0;
 | |
| 	struct ubifs_znode *znode;
 | |
| 
 | |
| 	mutex_lock(&c->tnc_mutex);
 | |
| 	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
 | |
| 		 old_offs, lnum, offs, len);
 | |
| 	found = lookup_level0_dirty(c, key, &znode, &n);
 | |
| 	if (found < 0) {
 | |
| 		err = found;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (found == 1) {
 | |
| 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
 | |
| 
 | |
| 		found = 0;
 | |
| 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
 | |
| 			lnc_free(zbr);
 | |
| 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
 | |
| 			if (err)
 | |
| 				goto out_unlock;
 | |
| 			zbr->lnum = lnum;
 | |
| 			zbr->offs = offs;
 | |
| 			zbr->len = len;
 | |
| 			found = 1;
 | |
| 		} else if (is_hash_key(c, key)) {
 | |
| 			found = resolve_collision_directly(c, key, &znode, &n,
 | |
| 							   old_lnum, old_offs);
 | |
| 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
 | |
| 				found, znode, n, old_lnum, old_offs);
 | |
| 			if (found < 0) {
 | |
| 				err = found;
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 
 | |
| 			if (found) {
 | |
| 				/* Ensure the znode is dirtied */
 | |
| 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
 | |
| 					znode = dirty_cow_bottom_up(c, znode);
 | |
| 					if (IS_ERR(znode)) {
 | |
| 						err = PTR_ERR(znode);
 | |
| 						goto out_unlock;
 | |
| 					}
 | |
| 				}
 | |
| 				zbr = &znode->zbranch[n];
 | |
| 				lnc_free(zbr);
 | |
| 				err = ubifs_add_dirt(c, zbr->lnum,
 | |
| 						     zbr->len);
 | |
| 				if (err)
 | |
| 					goto out_unlock;
 | |
| 				zbr->lnum = lnum;
 | |
| 				zbr->offs = offs;
 | |
| 				zbr->len = len;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!found)
 | |
| 		err = ubifs_add_dirt(c, lnum, len);
 | |
| 
 | |
| 	if (!err)
 | |
| 		err = dbg_check_tnc(c, 0);
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: key to add
 | |
|  * @lnum: LEB number of node
 | |
|  * @offs: node offset
 | |
|  * @len: node length
 | |
|  * @nm: node name
 | |
|  *
 | |
|  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
 | |
|  * may have collisions, like directory entry keys.
 | |
|  */
 | |
| int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
 | |
| 		     int lnum, int offs, int len, const struct qstr *nm)
 | |
| {
 | |
| 	int found, n, err = 0;
 | |
| 	struct ubifs_znode *znode;
 | |
| 
 | |
| 	mutex_lock(&c->tnc_mutex);
 | |
| 	dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
 | |
| 		 lnum, offs, nm->len, nm->name);
 | |
| 	found = lookup_level0_dirty(c, key, &znode, &n);
 | |
| 	if (found < 0) {
 | |
| 		err = found;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (found == 1) {
 | |
| 		if (c->replaying)
 | |
| 			found = fallible_resolve_collision(c, key, &znode, &n,
 | |
| 							   nm, 1);
 | |
| 		else
 | |
| 			found = resolve_collision(c, key, &znode, &n, nm);
 | |
| 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
 | |
| 		if (found < 0) {
 | |
| 			err = found;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		/* Ensure the znode is dirtied */
 | |
| 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
 | |
| 			znode = dirty_cow_bottom_up(c, znode);
 | |
| 			if (IS_ERR(znode)) {
 | |
| 				err = PTR_ERR(znode);
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (found == 1) {
 | |
| 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
 | |
| 
 | |
| 			lnc_free(zbr);
 | |
| 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
 | |
| 			zbr->lnum = lnum;
 | |
| 			zbr->offs = offs;
 | |
| 			zbr->len = len;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!found) {
 | |
| 		struct ubifs_zbranch zbr;
 | |
| 
 | |
| 		zbr.znode = NULL;
 | |
| 		zbr.lnum = lnum;
 | |
| 		zbr.offs = offs;
 | |
| 		zbr.len = len;
 | |
| 		key_copy(c, key, &zbr.key);
 | |
| 		err = tnc_insert(c, znode, &zbr, n + 1);
 | |
| 		if (err)
 | |
| 			goto out_unlock;
 | |
| 		if (c->replaying) {
 | |
| 			/*
 | |
| 			 * We did not find it in the index so there may be a
 | |
| 			 * dangling branch still in the index. So we remove it
 | |
| 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
 | |
| 			 * an unmatchable name.
 | |
| 			 */
 | |
| 			struct qstr noname = { .name = "" };
 | |
| 
 | |
| 			err = dbg_check_tnc(c, 0);
 | |
| 			mutex_unlock(&c->tnc_mutex);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			return ubifs_tnc_remove_nm(c, key, &noname);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	if (!err)
 | |
| 		err = dbg_check_tnc(c, 0);
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tnc_delete - delete a znode form TNC.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @znode: znode to delete from
 | |
|  * @n: zbranch slot number to delete
 | |
|  *
 | |
|  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
 | |
|  * case of success and a negative error code in case of failure.
 | |
|  */
 | |
| static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
 | |
| {
 | |
| 	struct ubifs_zbranch *zbr;
 | |
| 	struct ubifs_znode *zp;
 | |
| 	int i, err;
 | |
| 
 | |
| 	/* Delete without merge for now */
 | |
| 	ubifs_assert(znode->level == 0);
 | |
| 	ubifs_assert(n >= 0 && n < c->fanout);
 | |
| 	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
 | |
| 
 | |
| 	zbr = &znode->zbranch[n];
 | |
| 	lnc_free(zbr);
 | |
| 
 | |
| 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
 | |
| 	if (err) {
 | |
| 		ubifs_dump_znode(c, znode);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* We do not "gap" zbranch slots */
 | |
| 	for (i = n; i < znode->child_cnt - 1; i++)
 | |
| 		znode->zbranch[i] = znode->zbranch[i + 1];
 | |
| 	znode->child_cnt -= 1;
 | |
| 
 | |
| 	if (znode->child_cnt > 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * This was the last zbranch, we have to delete this znode from the
 | |
| 	 * parent.
 | |
| 	 */
 | |
| 
 | |
| 	do {
 | |
| 		ubifs_assert(!ubifs_zn_obsolete(znode));
 | |
| 		ubifs_assert(ubifs_zn_dirty(znode));
 | |
| 
 | |
| 		zp = znode->parent;
 | |
| 		n = znode->iip;
 | |
| 
 | |
| 		atomic_long_dec(&c->dirty_zn_cnt);
 | |
| 
 | |
| 		err = insert_old_idx_znode(c, znode);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		if (znode->cnext) {
 | |
| 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
 | |
| 			atomic_long_inc(&c->clean_zn_cnt);
 | |
| 			atomic_long_inc(&ubifs_clean_zn_cnt);
 | |
| 		} else
 | |
| 			kfree(znode);
 | |
| 		znode = zp;
 | |
| 	} while (znode->child_cnt == 1); /* while removing last child */
 | |
| 
 | |
| 	/* Remove from znode, entry n - 1 */
 | |
| 	znode->child_cnt -= 1;
 | |
| 	ubifs_assert(znode->level != 0);
 | |
| 	for (i = n; i < znode->child_cnt; i++) {
 | |
| 		znode->zbranch[i] = znode->zbranch[i + 1];
 | |
| 		if (znode->zbranch[i].znode)
 | |
| 			znode->zbranch[i].znode->iip = i;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is the root and it has only 1 child then
 | |
| 	 * collapse the tree.
 | |
| 	 */
 | |
| 	if (!znode->parent) {
 | |
| 		while (znode->child_cnt == 1 && znode->level != 0) {
 | |
| 			zp = znode;
 | |
| 			zbr = &znode->zbranch[0];
 | |
| 			znode = get_znode(c, znode, 0);
 | |
| 			if (IS_ERR(znode))
 | |
| 				return PTR_ERR(znode);
 | |
| 			znode = dirty_cow_znode(c, zbr);
 | |
| 			if (IS_ERR(znode))
 | |
| 				return PTR_ERR(znode);
 | |
| 			znode->parent = NULL;
 | |
| 			znode->iip = 0;
 | |
| 			if (c->zroot.len) {
 | |
| 				err = insert_old_idx(c, c->zroot.lnum,
 | |
| 						     c->zroot.offs);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 			}
 | |
| 			c->zroot.lnum = zbr->lnum;
 | |
| 			c->zroot.offs = zbr->offs;
 | |
| 			c->zroot.len = zbr->len;
 | |
| 			c->zroot.znode = znode;
 | |
| 			ubifs_assert(!ubifs_zn_obsolete(zp));
 | |
| 			ubifs_assert(ubifs_zn_dirty(zp));
 | |
| 			atomic_long_dec(&c->dirty_zn_cnt);
 | |
| 
 | |
| 			if (zp->cnext) {
 | |
| 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
 | |
| 				atomic_long_inc(&c->clean_zn_cnt);
 | |
| 				atomic_long_inc(&ubifs_clean_zn_cnt);
 | |
| 			} else
 | |
| 				kfree(zp);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_tnc_remove - remove an index entry of a node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: key of node
 | |
|  *
 | |
|  * Returns %0 on success or negative error code on failure.
 | |
|  */
 | |
| int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
 | |
| {
 | |
| 	int found, n, err = 0;
 | |
| 	struct ubifs_znode *znode;
 | |
| 
 | |
| 	mutex_lock(&c->tnc_mutex);
 | |
| 	dbg_tnck(key, "key ");
 | |
| 	found = lookup_level0_dirty(c, key, &znode, &n);
 | |
| 	if (found < 0) {
 | |
| 		err = found;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	if (found == 1)
 | |
| 		err = tnc_delete(c, znode, n);
 | |
| 	if (!err)
 | |
| 		err = dbg_check_tnc(c, 0);
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: key of node
 | |
|  * @nm: directory entry name
 | |
|  *
 | |
|  * Returns %0 on success or negative error code on failure.
 | |
|  */
 | |
| int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
 | |
| 			const struct qstr *nm)
 | |
| {
 | |
| 	int n, err;
 | |
| 	struct ubifs_znode *znode;
 | |
| 
 | |
| 	mutex_lock(&c->tnc_mutex);
 | |
| 	dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
 | |
| 	err = lookup_level0_dirty(c, key, &znode, &n);
 | |
| 	if (err < 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (err) {
 | |
| 		if (c->replaying)
 | |
| 			err = fallible_resolve_collision(c, key, &znode, &n,
 | |
| 							 nm, 0);
 | |
| 		else
 | |
| 			err = resolve_collision(c, key, &znode, &n, nm);
 | |
| 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
 | |
| 		if (err < 0)
 | |
| 			goto out_unlock;
 | |
| 		if (err) {
 | |
| 			/* Ensure the znode is dirtied */
 | |
| 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
 | |
| 				znode = dirty_cow_bottom_up(c, znode);
 | |
| 				if (IS_ERR(znode)) {
 | |
| 					err = PTR_ERR(znode);
 | |
| 					goto out_unlock;
 | |
| 				}
 | |
| 			}
 | |
| 			err = tnc_delete(c, znode, n);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	if (!err)
 | |
| 		err = dbg_check_tnc(c, 0);
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * key_in_range - determine if a key falls within a range of keys.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: key to check
 | |
|  * @from_key: lowest key in range
 | |
|  * @to_key: highest key in range
 | |
|  *
 | |
|  * This function returns %1 if the key is in range and %0 otherwise.
 | |
|  */
 | |
| static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
 | |
| 			union ubifs_key *from_key, union ubifs_key *to_key)
 | |
| {
 | |
| 	if (keys_cmp(c, key, from_key) < 0)
 | |
| 		return 0;
 | |
| 	if (keys_cmp(c, key, to_key) > 0)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_tnc_remove_range - remove index entries in range.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @from_key: lowest key to remove
 | |
|  * @to_key: highest key to remove
 | |
|  *
 | |
|  * This function removes index entries starting at @from_key and ending at
 | |
|  * @to_key.  This function returns zero in case of success and a negative error
 | |
|  * code in case of failure.
 | |
|  */
 | |
| int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
 | |
| 			   union ubifs_key *to_key)
 | |
| {
 | |
| 	int i, n, k, err = 0;
 | |
| 	struct ubifs_znode *znode;
 | |
| 	union ubifs_key *key;
 | |
| 
 | |
| 	mutex_lock(&c->tnc_mutex);
 | |
| 	while (1) {
 | |
| 		/* Find first level 0 znode that contains keys to remove */
 | |
| 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
 | |
| 		if (err < 0)
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		if (err)
 | |
| 			key = from_key;
 | |
| 		else {
 | |
| 			err = tnc_next(c, &znode, &n);
 | |
| 			if (err == -ENOENT) {
 | |
| 				err = 0;
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 			if (err < 0)
 | |
| 				goto out_unlock;
 | |
| 			key = &znode->zbranch[n].key;
 | |
| 			if (!key_in_range(c, key, from_key, to_key)) {
 | |
| 				err = 0;
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Ensure the znode is dirtied */
 | |
| 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
 | |
| 			znode = dirty_cow_bottom_up(c, znode);
 | |
| 			if (IS_ERR(znode)) {
 | |
| 				err = PTR_ERR(znode);
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Remove all keys in range except the first */
 | |
| 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
 | |
| 			key = &znode->zbranch[i].key;
 | |
| 			if (!key_in_range(c, key, from_key, to_key))
 | |
| 				break;
 | |
| 			lnc_free(&znode->zbranch[i]);
 | |
| 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
 | |
| 					     znode->zbranch[i].len);
 | |
| 			if (err) {
 | |
| 				ubifs_dump_znode(c, znode);
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 			dbg_tnck(key, "removing key ");
 | |
| 		}
 | |
| 		if (k) {
 | |
| 			for (i = n + 1 + k; i < znode->child_cnt; i++)
 | |
| 				znode->zbranch[i - k] = znode->zbranch[i];
 | |
| 			znode->child_cnt -= k;
 | |
| 		}
 | |
| 
 | |
| 		/* Now delete the first */
 | |
| 		err = tnc_delete(c, znode, n);
 | |
| 		if (err)
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	if (!err)
 | |
| 		err = dbg_check_tnc(c, 0);
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_tnc_remove_ino - remove an inode from TNC.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @inum: inode number to remove
 | |
|  *
 | |
|  * This function remove inode @inum and all the extended attributes associated
 | |
|  * with the anode from TNC and returns zero in case of success or a negative
 | |
|  * error code in case of failure.
 | |
|  */
 | |
| int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
 | |
| {
 | |
| 	union ubifs_key key1, key2;
 | |
| 	struct ubifs_dent_node *xent, *pxent = NULL;
 | |
| 	struct qstr nm = { .name = NULL };
 | |
| 
 | |
| 	dbg_tnc("ino %lu", (unsigned long)inum);
 | |
| 
 | |
| 	/*
 | |
| 	 * Walk all extended attribute entries and remove them together with
 | |
| 	 * corresponding extended attribute inodes.
 | |
| 	 */
 | |
| 	lowest_xent_key(c, &key1, inum);
 | |
| 	while (1) {
 | |
| 		ino_t xattr_inum;
 | |
| 		int err;
 | |
| 
 | |
| 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
 | |
| 		if (IS_ERR(xent)) {
 | |
| 			err = PTR_ERR(xent);
 | |
| 			if (err == -ENOENT)
 | |
| 				break;
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		xattr_inum = le64_to_cpu(xent->inum);
 | |
| 		dbg_tnc("xent '%s', ino %lu", xent->name,
 | |
| 			(unsigned long)xattr_inum);
 | |
| 
 | |
| 		nm.name = xent->name;
 | |
| 		nm.len = le16_to_cpu(xent->nlen);
 | |
| 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
 | |
| 		if (err) {
 | |
| 			kfree(xent);
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		lowest_ino_key(c, &key1, xattr_inum);
 | |
| 		highest_ino_key(c, &key2, xattr_inum);
 | |
| 		err = ubifs_tnc_remove_range(c, &key1, &key2);
 | |
| 		if (err) {
 | |
| 			kfree(xent);
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		kfree(pxent);
 | |
| 		pxent = xent;
 | |
| 		key_read(c, &xent->key, &key1);
 | |
| 	}
 | |
| 
 | |
| 	kfree(pxent);
 | |
| 	lowest_ino_key(c, &key1, inum);
 | |
| 	highest_ino_key(c, &key2, inum);
 | |
| 
 | |
| 	return ubifs_tnc_remove_range(c, &key1, &key2);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: key of last entry
 | |
|  * @nm: name of last entry found or %NULL
 | |
|  *
 | |
|  * This function finds and reads the next directory or extended attribute entry
 | |
|  * after the given key (@key) if there is one. @nm is used to resolve
 | |
|  * collisions.
 | |
|  *
 | |
|  * If the name of the current entry is not known and only the key is known,
 | |
|  * @nm->name has to be %NULL. In this case the semantics of this function is a
 | |
|  * little bit different and it returns the entry corresponding to this key, not
 | |
|  * the next one. If the key was not found, the closest "right" entry is
 | |
|  * returned.
 | |
|  *
 | |
|  * If the fist entry has to be found, @key has to contain the lowest possible
 | |
|  * key value for this inode and @name has to be %NULL.
 | |
|  *
 | |
|  * This function returns the found directory or extended attribute entry node
 | |
|  * in case of success, %-ENOENT is returned if no entry was found, and a
 | |
|  * negative error code is returned in case of failure.
 | |
|  */
 | |
| struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
 | |
| 					   union ubifs_key *key,
 | |
| 					   const struct qstr *nm)
 | |
| {
 | |
| 	int n, err, type = key_type(c, key);
 | |
| 	struct ubifs_znode *znode;
 | |
| 	struct ubifs_dent_node *dent;
 | |
| 	struct ubifs_zbranch *zbr;
 | |
| 	union ubifs_key *dkey;
 | |
| 
 | |
| 	dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
 | |
| 	ubifs_assert(is_hash_key(c, key));
 | |
| 
 | |
| 	mutex_lock(&c->tnc_mutex);
 | |
| 	err = ubifs_lookup_level0(c, key, &znode, &n);
 | |
| 	if (unlikely(err < 0))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (nm->name) {
 | |
| 		if (err) {
 | |
| 			/* Handle collisions */
 | |
| 			err = resolve_collision(c, key, &znode, &n, nm);
 | |
| 			dbg_tnc("rc returned %d, znode %p, n %d",
 | |
| 				err, znode, n);
 | |
| 			if (unlikely(err < 0))
 | |
| 				goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		/* Now find next entry */
 | |
| 		err = tnc_next(c, &znode, &n);
 | |
| 		if (unlikely(err))
 | |
| 			goto out_unlock;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The full name of the entry was not given, in which case the
 | |
| 		 * behavior of this function is a little different and it
 | |
| 		 * returns current entry, not the next one.
 | |
| 		 */
 | |
| 		if (!err) {
 | |
| 			/*
 | |
| 			 * However, the given key does not exist in the TNC
 | |
| 			 * tree and @znode/@n variables contain the closest
 | |
| 			 * "preceding" element. Switch to the next one.
 | |
| 			 */
 | |
| 			err = tnc_next(c, &znode, &n);
 | |
| 			if (err)
 | |
| 				goto out_unlock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	zbr = &znode->zbranch[n];
 | |
| 	dent = kmalloc(zbr->len, GFP_NOFS);
 | |
| 	if (unlikely(!dent)) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The above 'tnc_next()' call could lead us to the next inode, check
 | |
| 	 * this.
 | |
| 	 */
 | |
| 	dkey = &zbr->key;
 | |
| 	if (key_inum(c, dkey) != key_inum(c, key) ||
 | |
| 	    key_type(c, dkey) != type) {
 | |
| 		err = -ENOENT;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	err = tnc_read_node_nm(c, zbr, dent);
 | |
| 	if (unlikely(err))
 | |
| 		goto out_free;
 | |
| 
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 	return dent;
 | |
| 
 | |
| out_free:
 | |
| 	kfree(dent);
 | |
| out_unlock:
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * Destroy left-over obsolete znodes from a failed commit.
 | |
|  */
 | |
| static void tnc_destroy_cnext(struct ubifs_info *c)
 | |
| {
 | |
| 	struct ubifs_znode *cnext;
 | |
| 
 | |
| 	if (!c->cnext)
 | |
| 		return;
 | |
| 	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
 | |
| 	cnext = c->cnext;
 | |
| 	do {
 | |
| 		struct ubifs_znode *znode = cnext;
 | |
| 
 | |
| 		cnext = cnext->cnext;
 | |
| 		if (ubifs_zn_obsolete(znode))
 | |
| 			kfree(znode);
 | |
| 	} while (cnext && cnext != c->cnext);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_tnc_close - close TNC subsystem and free all related resources.
 | |
|  * @c: UBIFS file-system description object
 | |
|  */
 | |
| void ubifs_tnc_close(struct ubifs_info *c)
 | |
| {
 | |
| 	tnc_destroy_cnext(c);
 | |
| 	if (c->zroot.znode) {
 | |
| 		long n;
 | |
| 
 | |
| 		ubifs_destroy_tnc_subtree(c->zroot.znode);
 | |
| 		n = atomic_long_read(&c->clean_zn_cnt);
 | |
| 		atomic_long_sub(n, &ubifs_clean_zn_cnt);
 | |
| 	}
 | |
| 	kfree(c->gap_lebs);
 | |
| 	kfree(c->ilebs);
 | |
| 	destroy_old_idx(c);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * left_znode - get the znode to the left.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @znode: znode
 | |
|  *
 | |
|  * This function returns a pointer to the znode to the left of @znode or NULL if
 | |
|  * there is not one. A negative error code is returned on failure.
 | |
|  */
 | |
| static struct ubifs_znode *left_znode(struct ubifs_info *c,
 | |
| 				      struct ubifs_znode *znode)
 | |
| {
 | |
| 	int level = znode->level;
 | |
| 
 | |
| 	while (1) {
 | |
| 		int n = znode->iip - 1;
 | |
| 
 | |
| 		/* Go up until we can go left */
 | |
| 		znode = znode->parent;
 | |
| 		if (!znode)
 | |
| 			return NULL;
 | |
| 		if (n >= 0) {
 | |
| 			/* Now go down the rightmost branch to 'level' */
 | |
| 			znode = get_znode(c, znode, n);
 | |
| 			if (IS_ERR(znode))
 | |
| 				return znode;
 | |
| 			while (znode->level != level) {
 | |
| 				n = znode->child_cnt - 1;
 | |
| 				znode = get_znode(c, znode, n);
 | |
| 				if (IS_ERR(znode))
 | |
| 					return znode;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return znode;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * right_znode - get the znode to the right.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @znode: znode
 | |
|  *
 | |
|  * This function returns a pointer to the znode to the right of @znode or NULL
 | |
|  * if there is not one. A negative error code is returned on failure.
 | |
|  */
 | |
| static struct ubifs_znode *right_znode(struct ubifs_info *c,
 | |
| 				       struct ubifs_znode *znode)
 | |
| {
 | |
| 	int level = znode->level;
 | |
| 
 | |
| 	while (1) {
 | |
| 		int n = znode->iip + 1;
 | |
| 
 | |
| 		/* Go up until we can go right */
 | |
| 		znode = znode->parent;
 | |
| 		if (!znode)
 | |
| 			return NULL;
 | |
| 		if (n < znode->child_cnt) {
 | |
| 			/* Now go down the leftmost branch to 'level' */
 | |
| 			znode = get_znode(c, znode, n);
 | |
| 			if (IS_ERR(znode))
 | |
| 				return znode;
 | |
| 			while (znode->level != level) {
 | |
| 				znode = get_znode(c, znode, 0);
 | |
| 				if (IS_ERR(znode))
 | |
| 					return znode;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return znode;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * lookup_znode - find a particular indexing node from TNC.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: index node key to lookup
 | |
|  * @level: index node level
 | |
|  * @lnum: index node LEB number
 | |
|  * @offs: index node offset
 | |
|  *
 | |
|  * This function searches an indexing node by its first key @key and its
 | |
|  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
 | |
|  * nodes it traverses to TNC. This function is called for indexing nodes which
 | |
|  * were found on the media by scanning, for example when garbage-collecting or
 | |
|  * when doing in-the-gaps commit. This means that the indexing node which is
 | |
|  * looked for does not have to have exactly the same leftmost key @key, because
 | |
|  * the leftmost key may have been changed, in which case TNC will contain a
 | |
|  * dirty znode which still refers the same @lnum:@offs. This function is clever
 | |
|  * enough to recognize such indexing nodes.
 | |
|  *
 | |
|  * Note, if a znode was deleted or changed too much, then this function will
 | |
|  * not find it. For situations like this UBIFS has the old index RB-tree
 | |
|  * (indexed by @lnum:@offs).
 | |
|  *
 | |
|  * This function returns a pointer to the znode found or %NULL if it is not
 | |
|  * found. A negative error code is returned on failure.
 | |
|  */
 | |
| static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
 | |
| 					union ubifs_key *key, int level,
 | |
| 					int lnum, int offs)
 | |
| {
 | |
| 	struct ubifs_znode *znode, *zn;
 | |
| 	int n, nn;
 | |
| 
 | |
| 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
 | |
| 
 | |
| 	/*
 | |
| 	 * The arguments have probably been read off flash, so don't assume
 | |
| 	 * they are valid.
 | |
| 	 */
 | |
| 	if (level < 0)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	/* Get the root znode */
 | |
| 	znode = c->zroot.znode;
 | |
| 	if (!znode) {
 | |
| 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
 | |
| 		if (IS_ERR(znode))
 | |
| 			return znode;
 | |
| 	}
 | |
| 	/* Check if it is the one we are looking for */
 | |
| 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
 | |
| 		return znode;
 | |
| 	/* Descend to the parent level i.e. (level + 1) */
 | |
| 	if (level >= znode->level)
 | |
| 		return NULL;
 | |
| 	while (1) {
 | |
| 		ubifs_search_zbranch(c, znode, key, &n);
 | |
| 		if (n < 0) {
 | |
| 			/*
 | |
| 			 * We reached a znode where the leftmost key is greater
 | |
| 			 * than the key we are searching for. This is the same
 | |
| 			 * situation as the one described in a huge comment at
 | |
| 			 * the end of the 'ubifs_lookup_level0()' function. And
 | |
| 			 * for exactly the same reasons we have to try to look
 | |
| 			 * left before giving up.
 | |
| 			 */
 | |
| 			znode = left_znode(c, znode);
 | |
| 			if (!znode)
 | |
| 				return NULL;
 | |
| 			if (IS_ERR(znode))
 | |
| 				return znode;
 | |
| 			ubifs_search_zbranch(c, znode, key, &n);
 | |
| 			ubifs_assert(n >= 0);
 | |
| 		}
 | |
| 		if (znode->level == level + 1)
 | |
| 			break;
 | |
| 		znode = get_znode(c, znode, n);
 | |
| 		if (IS_ERR(znode))
 | |
| 			return znode;
 | |
| 	}
 | |
| 	/* Check if the child is the one we are looking for */
 | |
| 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
 | |
| 		return get_znode(c, znode, n);
 | |
| 	/* If the key is unique, there is nowhere else to look */
 | |
| 	if (!is_hash_key(c, key))
 | |
| 		return NULL;
 | |
| 	/*
 | |
| 	 * The key is not unique and so may be also in the znodes to either
 | |
| 	 * side.
 | |
| 	 */
 | |
| 	zn = znode;
 | |
| 	nn = n;
 | |
| 	/* Look left */
 | |
| 	while (1) {
 | |
| 		/* Move one branch to the left */
 | |
| 		if (n)
 | |
| 			n -= 1;
 | |
| 		else {
 | |
| 			znode = left_znode(c, znode);
 | |
| 			if (!znode)
 | |
| 				break;
 | |
| 			if (IS_ERR(znode))
 | |
| 				return znode;
 | |
| 			n = znode->child_cnt - 1;
 | |
| 		}
 | |
| 		/* Check it */
 | |
| 		if (znode->zbranch[n].lnum == lnum &&
 | |
| 		    znode->zbranch[n].offs == offs)
 | |
| 			return get_znode(c, znode, n);
 | |
| 		/* Stop if the key is less than the one we are looking for */
 | |
| 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	/* Back to the middle */
 | |
| 	znode = zn;
 | |
| 	n = nn;
 | |
| 	/* Look right */
 | |
| 	while (1) {
 | |
| 		/* Move one branch to the right */
 | |
| 		if (++n >= znode->child_cnt) {
 | |
| 			znode = right_znode(c, znode);
 | |
| 			if (!znode)
 | |
| 				break;
 | |
| 			if (IS_ERR(znode))
 | |
| 				return znode;
 | |
| 			n = 0;
 | |
| 		}
 | |
| 		/* Check it */
 | |
| 		if (znode->zbranch[n].lnum == lnum &&
 | |
| 		    znode->zbranch[n].offs == offs)
 | |
| 			return get_znode(c, znode, n);
 | |
| 		/* Stop if the key is greater than the one we are looking for */
 | |
| 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * is_idx_node_in_tnc - determine if an index node is in the TNC.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: key of index node
 | |
|  * @level: index node level
 | |
|  * @lnum: LEB number of index node
 | |
|  * @offs: offset of index node
 | |
|  *
 | |
|  * This function returns %0 if the index node is not referred to in the TNC, %1
 | |
|  * if the index node is referred to in the TNC and the corresponding znode is
 | |
|  * dirty, %2 if an index node is referred to in the TNC and the corresponding
 | |
|  * znode is clean, and a negative error code in case of failure.
 | |
|  *
 | |
|  * Note, the @key argument has to be the key of the first child. Also note,
 | |
|  * this function relies on the fact that 0:0 is never a valid LEB number and
 | |
|  * offset for a main-area node.
 | |
|  */
 | |
| int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
 | |
| 		       int lnum, int offs)
 | |
| {
 | |
| 	struct ubifs_znode *znode;
 | |
| 
 | |
| 	znode = lookup_znode(c, key, level, lnum, offs);
 | |
| 	if (!znode)
 | |
| 		return 0;
 | |
| 	if (IS_ERR(znode))
 | |
| 		return PTR_ERR(znode);
 | |
| 
 | |
| 	return ubifs_zn_dirty(znode) ? 1 : 2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: node key
 | |
|  * @lnum: node LEB number
 | |
|  * @offs: node offset
 | |
|  *
 | |
|  * This function returns %1 if the node is referred to in the TNC, %0 if it is
 | |
|  * not, and a negative error code in case of failure.
 | |
|  *
 | |
|  * Note, this function relies on the fact that 0:0 is never a valid LEB number
 | |
|  * and offset for a main-area node.
 | |
|  */
 | |
| static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
 | |
| 			       int lnum, int offs)
 | |
| {
 | |
| 	struct ubifs_zbranch *zbr;
 | |
| 	struct ubifs_znode *znode, *zn;
 | |
| 	int n, found, err, nn;
 | |
| 	const int unique = !is_hash_key(c, key);
 | |
| 
 | |
| 	found = ubifs_lookup_level0(c, key, &znode, &n);
 | |
| 	if (found < 0)
 | |
| 		return found; /* Error code */
 | |
| 	if (!found)
 | |
| 		return 0;
 | |
| 	zbr = &znode->zbranch[n];
 | |
| 	if (lnum == zbr->lnum && offs == zbr->offs)
 | |
| 		return 1; /* Found it */
 | |
| 	if (unique)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * Because the key is not unique, we have to look left
 | |
| 	 * and right as well
 | |
| 	 */
 | |
| 	zn = znode;
 | |
| 	nn = n;
 | |
| 	/* Look left */
 | |
| 	while (1) {
 | |
| 		err = tnc_prev(c, &znode, &n);
 | |
| 		if (err == -ENOENT)
 | |
| 			break;
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		if (keys_cmp(c, key, &znode->zbranch[n].key))
 | |
| 			break;
 | |
| 		zbr = &znode->zbranch[n];
 | |
| 		if (lnum == zbr->lnum && offs == zbr->offs)
 | |
| 			return 1; /* Found it */
 | |
| 	}
 | |
| 	/* Look right */
 | |
| 	znode = zn;
 | |
| 	n = nn;
 | |
| 	while (1) {
 | |
| 		err = tnc_next(c, &znode, &n);
 | |
| 		if (err) {
 | |
| 			if (err == -ENOENT)
 | |
| 				return 0;
 | |
| 			return err;
 | |
| 		}
 | |
| 		if (keys_cmp(c, key, &znode->zbranch[n].key))
 | |
| 			break;
 | |
| 		zbr = &znode->zbranch[n];
 | |
| 		if (lnum == zbr->lnum && offs == zbr->offs)
 | |
| 			return 1; /* Found it */
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_tnc_has_node - determine whether a node is in the TNC.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: node key
 | |
|  * @level: index node level (if it is an index node)
 | |
|  * @lnum: node LEB number
 | |
|  * @offs: node offset
 | |
|  * @is_idx: non-zero if the node is an index node
 | |
|  *
 | |
|  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
 | |
|  * negative error code in case of failure. For index nodes, @key has to be the
 | |
|  * key of the first child. An index node is considered to be in the TNC only if
 | |
|  * the corresponding znode is clean or has not been loaded.
 | |
|  */
 | |
| int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
 | |
| 		       int lnum, int offs, int is_idx)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	mutex_lock(&c->tnc_mutex);
 | |
| 	if (is_idx) {
 | |
| 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
 | |
| 		if (err < 0)
 | |
| 			goto out_unlock;
 | |
| 		if (err == 1)
 | |
| 			/* The index node was found but it was dirty */
 | |
| 			err = 0;
 | |
| 		else if (err == 2)
 | |
| 			/* The index node was found and it was clean */
 | |
| 			err = 1;
 | |
| 		else
 | |
| 			BUG_ON(err != 0);
 | |
| 	} else
 | |
| 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_dirty_idx_node - dirty an index node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: index node key
 | |
|  * @level: index node level
 | |
|  * @lnum: index node LEB number
 | |
|  * @offs: index node offset
 | |
|  *
 | |
|  * This function loads and dirties an index node so that it can be garbage
 | |
|  * collected. The @key argument has to be the key of the first child. This
 | |
|  * function relies on the fact that 0:0 is never a valid LEB number and offset
 | |
|  * for a main-area node. Returns %0 on success and a negative error code on
 | |
|  * failure.
 | |
|  */
 | |
| int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
 | |
| 			 int lnum, int offs)
 | |
| {
 | |
| 	struct ubifs_znode *znode;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	mutex_lock(&c->tnc_mutex);
 | |
| 	znode = lookup_znode(c, key, level, lnum, offs);
 | |
| 	if (!znode)
 | |
| 		goto out_unlock;
 | |
| 	if (IS_ERR(znode)) {
 | |
| 		err = PTR_ERR(znode);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	znode = dirty_cow_bottom_up(c, znode);
 | |
| 	if (IS_ERR(znode)) {
 | |
| 		err = PTR_ERR(znode);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dbg_check_inode_size - check if inode size is correct.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @inum: inode number
 | |
|  * @size: inode size
 | |
|  *
 | |
|  * This function makes sure that the inode size (@size) is correct and it does
 | |
|  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
 | |
|  * if it has a data page beyond @size, and other negative error code in case of
 | |
|  * other errors.
 | |
|  */
 | |
| int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
 | |
| 			 loff_t size)
 | |
| {
 | |
| 	int err, n;
 | |
| 	union ubifs_key from_key, to_key, *key;
 | |
| 	struct ubifs_znode *znode;
 | |
| 	unsigned int block;
 | |
| 
 | |
| 	if (!S_ISREG(inode->i_mode))
 | |
| 		return 0;
 | |
| 	if (!dbg_is_chk_gen(c))
 | |
| 		return 0;
 | |
| 
 | |
| 	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
 | |
| 	data_key_init(c, &from_key, inode->i_ino, block);
 | |
| 	highest_data_key(c, &to_key, inode->i_ino);
 | |
| 
 | |
| 	mutex_lock(&c->tnc_mutex);
 | |
| 	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
 | |
| 	if (err < 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (err) {
 | |
| 		err = -EINVAL;
 | |
| 		key = &from_key;
 | |
| 		goto out_dump;
 | |
| 	}
 | |
| 
 | |
| 	err = tnc_next(c, &znode, &n);
 | |
| 	if (err == -ENOENT) {
 | |
| 		err = 0;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	if (err < 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	ubifs_assert(err == 0);
 | |
| 	key = &znode->zbranch[n].key;
 | |
| 	if (!key_in_range(c, key, &from_key, &to_key))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| out_dump:
 | |
| 	block = key_block(c, key);
 | |
| 	ubifs_err("inode %lu has size %lld, but there are data at offset %lld",
 | |
| 		  (unsigned long)inode->i_ino, size,
 | |
| 		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 	ubifs_dump_inode(c, inode);
 | |
| 	dump_stack();
 | |
| 	return -EINVAL;
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&c->tnc_mutex);
 | |
| 	return err;
 | |
| }
 |