1b7fe468b0
If the guest issues an INT command targetting a VLPI, let's call into the irq_set_irqchip_state() helper to make it pending on the physical side. This works just as well if userspace decides to inject an interrupt using the normal userspace API... Acked-by: Christoffer Dall <cdall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2508 lines
63 KiB
C
2508 lines
63 KiB
C
/*
|
|
* GICv3 ITS emulation
|
|
*
|
|
* Copyright (C) 2015,2016 ARM Ltd.
|
|
* Author: Andre Przywara <andre.przywara@arm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/list.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/list_sort.h>
|
|
|
|
#include <linux/irqchip/arm-gic-v3.h>
|
|
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
|
|
#include "vgic.h"
|
|
#include "vgic-mmio.h"
|
|
|
|
static int vgic_its_save_tables_v0(struct vgic_its *its);
|
|
static int vgic_its_restore_tables_v0(struct vgic_its *its);
|
|
static int vgic_its_commit_v0(struct vgic_its *its);
|
|
static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
|
|
struct kvm_vcpu *filter_vcpu);
|
|
|
|
/*
|
|
* Creates a new (reference to a) struct vgic_irq for a given LPI.
|
|
* If this LPI is already mapped on another ITS, we increase its refcount
|
|
* and return a pointer to the existing structure.
|
|
* If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
|
|
* This function returns a pointer to the _unlocked_ structure.
|
|
*/
|
|
static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
|
|
int ret;
|
|
|
|
/* In this case there is no put, since we keep the reference. */
|
|
if (irq)
|
|
return irq;
|
|
|
|
irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
|
|
if (!irq)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
INIT_LIST_HEAD(&irq->lpi_list);
|
|
INIT_LIST_HEAD(&irq->ap_list);
|
|
spin_lock_init(&irq->irq_lock);
|
|
|
|
irq->config = VGIC_CONFIG_EDGE;
|
|
kref_init(&irq->refcount);
|
|
irq->intid = intid;
|
|
irq->target_vcpu = vcpu;
|
|
|
|
spin_lock(&dist->lpi_list_lock);
|
|
|
|
/*
|
|
* There could be a race with another vgic_add_lpi(), so we need to
|
|
* check that we don't add a second list entry with the same LPI.
|
|
*/
|
|
list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
|
|
if (oldirq->intid != intid)
|
|
continue;
|
|
|
|
/* Someone was faster with adding this LPI, lets use that. */
|
|
kfree(irq);
|
|
irq = oldirq;
|
|
|
|
/*
|
|
* This increases the refcount, the caller is expected to
|
|
* call vgic_put_irq() on the returned pointer once it's
|
|
* finished with the IRQ.
|
|
*/
|
|
vgic_get_irq_kref(irq);
|
|
|
|
goto out_unlock;
|
|
}
|
|
|
|
list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
|
|
dist->lpi_list_count++;
|
|
|
|
out_unlock:
|
|
spin_unlock(&dist->lpi_list_lock);
|
|
|
|
/*
|
|
* We "cache" the configuration table entries in our struct vgic_irq's.
|
|
* However we only have those structs for mapped IRQs, so we read in
|
|
* the respective config data from memory here upon mapping the LPI.
|
|
*/
|
|
ret = update_lpi_config(kvm, irq, NULL);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
return irq;
|
|
}
|
|
|
|
struct its_device {
|
|
struct list_head dev_list;
|
|
|
|
/* the head for the list of ITTEs */
|
|
struct list_head itt_head;
|
|
u32 num_eventid_bits;
|
|
gpa_t itt_addr;
|
|
u32 device_id;
|
|
};
|
|
|
|
#define COLLECTION_NOT_MAPPED ((u32)~0)
|
|
|
|
struct its_collection {
|
|
struct list_head coll_list;
|
|
|
|
u32 collection_id;
|
|
u32 target_addr;
|
|
};
|
|
|
|
#define its_is_collection_mapped(coll) ((coll) && \
|
|
((coll)->target_addr != COLLECTION_NOT_MAPPED))
|
|
|
|
struct its_ite {
|
|
struct list_head ite_list;
|
|
|
|
struct vgic_irq *irq;
|
|
struct its_collection *collection;
|
|
u32 event_id;
|
|
};
|
|
|
|
/**
|
|
* struct vgic_its_abi - ITS abi ops and settings
|
|
* @cte_esz: collection table entry size
|
|
* @dte_esz: device table entry size
|
|
* @ite_esz: interrupt translation table entry size
|
|
* @save tables: save the ITS tables into guest RAM
|
|
* @restore_tables: restore the ITS internal structs from tables
|
|
* stored in guest RAM
|
|
* @commit: initialize the registers which expose the ABI settings,
|
|
* especially the entry sizes
|
|
*/
|
|
struct vgic_its_abi {
|
|
int cte_esz;
|
|
int dte_esz;
|
|
int ite_esz;
|
|
int (*save_tables)(struct vgic_its *its);
|
|
int (*restore_tables)(struct vgic_its *its);
|
|
int (*commit)(struct vgic_its *its);
|
|
};
|
|
|
|
static const struct vgic_its_abi its_table_abi_versions[] = {
|
|
[0] = {.cte_esz = 8, .dte_esz = 8, .ite_esz = 8,
|
|
.save_tables = vgic_its_save_tables_v0,
|
|
.restore_tables = vgic_its_restore_tables_v0,
|
|
.commit = vgic_its_commit_v0,
|
|
},
|
|
};
|
|
|
|
#define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
|
|
|
|
inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
|
|
{
|
|
return &its_table_abi_versions[its->abi_rev];
|
|
}
|
|
|
|
int vgic_its_set_abi(struct vgic_its *its, int rev)
|
|
{
|
|
const struct vgic_its_abi *abi;
|
|
|
|
its->abi_rev = rev;
|
|
abi = vgic_its_get_abi(its);
|
|
return abi->commit(its);
|
|
}
|
|
|
|
/*
|
|
* Find and returns a device in the device table for an ITS.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
|
|
{
|
|
struct its_device *device;
|
|
|
|
list_for_each_entry(device, &its->device_list, dev_list)
|
|
if (device_id == device->device_id)
|
|
return device;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Find and returns an interrupt translation table entry (ITTE) for a given
|
|
* Device ID/Event ID pair on an ITS.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
|
|
u32 event_id)
|
|
{
|
|
struct its_device *device;
|
|
struct its_ite *ite;
|
|
|
|
device = find_its_device(its, device_id);
|
|
if (device == NULL)
|
|
return NULL;
|
|
|
|
list_for_each_entry(ite, &device->itt_head, ite_list)
|
|
if (ite->event_id == event_id)
|
|
return ite;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* To be used as an iterator this macro misses the enclosing parentheses */
|
|
#define for_each_lpi_its(dev, ite, its) \
|
|
list_for_each_entry(dev, &(its)->device_list, dev_list) \
|
|
list_for_each_entry(ite, &(dev)->itt_head, ite_list)
|
|
|
|
/*
|
|
* We only implement 48 bits of PA at the moment, although the ITS
|
|
* supports more. Let's be restrictive here.
|
|
*/
|
|
#define BASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
|
|
#define CBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
|
|
|
|
#define GIC_LPI_OFFSET 8192
|
|
|
|
#define VITS_TYPER_IDBITS 16
|
|
#define VITS_TYPER_DEVBITS 16
|
|
#define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
|
|
#define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
|
|
|
|
/*
|
|
* Finds and returns a collection in the ITS collection table.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
|
|
{
|
|
struct its_collection *collection;
|
|
|
|
list_for_each_entry(collection, &its->collection_list, coll_list) {
|
|
if (coll_id == collection->collection_id)
|
|
return collection;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
|
|
#define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
|
|
|
|
/*
|
|
* Reads the configuration data for a given LPI from guest memory and
|
|
* updates the fields in struct vgic_irq.
|
|
* If filter_vcpu is not NULL, applies only if the IRQ is targeting this
|
|
* VCPU. Unconditionally applies if filter_vcpu is NULL.
|
|
*/
|
|
static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
|
|
struct kvm_vcpu *filter_vcpu)
|
|
{
|
|
u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
|
|
u8 prop;
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
|
|
&prop, 1);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
spin_lock_irqsave(&irq->irq_lock, flags);
|
|
|
|
if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
|
|
irq->priority = LPI_PROP_PRIORITY(prop);
|
|
irq->enabled = LPI_PROP_ENABLE_BIT(prop);
|
|
|
|
vgic_queue_irq_unlock(kvm, irq, flags);
|
|
} else {
|
|
spin_unlock_irqrestore(&irq->irq_lock, flags);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Create a snapshot of the current LPIs targeting @vcpu, so that we can
|
|
* enumerate those LPIs without holding any lock.
|
|
* Returns their number and puts the kmalloc'ed array into intid_ptr.
|
|
*/
|
|
static int vgic_copy_lpi_list(struct kvm_vcpu *vcpu, u32 **intid_ptr)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
struct vgic_irq *irq;
|
|
u32 *intids;
|
|
int irq_count = dist->lpi_list_count, i = 0;
|
|
|
|
/*
|
|
* We use the current value of the list length, which may change
|
|
* after the kmalloc. We don't care, because the guest shouldn't
|
|
* change anything while the command handling is still running,
|
|
* and in the worst case we would miss a new IRQ, which one wouldn't
|
|
* expect to be covered by this command anyway.
|
|
*/
|
|
intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
|
|
if (!intids)
|
|
return -ENOMEM;
|
|
|
|
spin_lock(&dist->lpi_list_lock);
|
|
list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
|
|
/* We don't need to "get" the IRQ, as we hold the list lock. */
|
|
if (irq->target_vcpu != vcpu)
|
|
continue;
|
|
intids[i++] = irq->intid;
|
|
}
|
|
spin_unlock(&dist->lpi_list_lock);
|
|
|
|
*intid_ptr = intids;
|
|
return i;
|
|
}
|
|
|
|
static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
|
|
{
|
|
spin_lock(&irq->irq_lock);
|
|
irq->target_vcpu = vcpu;
|
|
spin_unlock(&irq->irq_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
|
|
* is targeting) to the VGIC's view, which deals with target VCPUs.
|
|
* Needs to be called whenever either the collection for a LPIs has
|
|
* changed or the collection itself got retargeted.
|
|
*/
|
|
static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
if (!its_is_collection_mapped(ite->collection))
|
|
return;
|
|
|
|
vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
|
|
update_affinity(ite->irq, vcpu);
|
|
}
|
|
|
|
/*
|
|
* Updates the target VCPU for every LPI targeting this collection.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
|
|
struct its_collection *coll)
|
|
{
|
|
struct its_device *device;
|
|
struct its_ite *ite;
|
|
|
|
for_each_lpi_its(device, ite, its) {
|
|
if (!ite->collection || coll != ite->collection)
|
|
continue;
|
|
|
|
update_affinity_ite(kvm, ite);
|
|
}
|
|
}
|
|
|
|
static u32 max_lpis_propbaser(u64 propbaser)
|
|
{
|
|
int nr_idbits = (propbaser & 0x1f) + 1;
|
|
|
|
return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
|
|
}
|
|
|
|
/*
|
|
* Sync the pending table pending bit of LPIs targeting @vcpu
|
|
* with our own data structures. This relies on the LPI being
|
|
* mapped before.
|
|
*/
|
|
static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
|
|
{
|
|
gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
|
|
struct vgic_irq *irq;
|
|
int last_byte_offset = -1;
|
|
int ret = 0;
|
|
u32 *intids;
|
|
int nr_irqs, i;
|
|
unsigned long flags;
|
|
|
|
nr_irqs = vgic_copy_lpi_list(vcpu, &intids);
|
|
if (nr_irqs < 0)
|
|
return nr_irqs;
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
int byte_offset, bit_nr;
|
|
u8 pendmask;
|
|
|
|
byte_offset = intids[i] / BITS_PER_BYTE;
|
|
bit_nr = intids[i] % BITS_PER_BYTE;
|
|
|
|
/*
|
|
* For contiguously allocated LPIs chances are we just read
|
|
* this very same byte in the last iteration. Reuse that.
|
|
*/
|
|
if (byte_offset != last_byte_offset) {
|
|
ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
|
|
&pendmask, 1);
|
|
if (ret) {
|
|
kfree(intids);
|
|
return ret;
|
|
}
|
|
last_byte_offset = byte_offset;
|
|
}
|
|
|
|
irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
|
|
spin_lock_irqsave(&irq->irq_lock, flags);
|
|
irq->pending_latch = pendmask & (1U << bit_nr);
|
|
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
|
|
kfree(intids);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
|
|
u64 reg = GITS_TYPER_PLPIS;
|
|
|
|
/*
|
|
* We use linear CPU numbers for redistributor addressing,
|
|
* so GITS_TYPER.PTA is 0.
|
|
* Also we force all PROPBASER registers to be the same, so
|
|
* CommonLPIAff is 0 as well.
|
|
* To avoid memory waste in the guest, we keep the number of IDBits and
|
|
* DevBits low - as least for the time being.
|
|
*/
|
|
reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
|
|
reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
|
|
reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
|
|
|
|
return extract_bytes(reg, addr & 7, len);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
u32 val;
|
|
|
|
val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
|
|
val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
|
|
return val;
|
|
}
|
|
|
|
static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
u32 rev = GITS_IIDR_REV(val);
|
|
|
|
if (rev >= NR_ITS_ABIS)
|
|
return -EINVAL;
|
|
return vgic_its_set_abi(its, rev);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
switch (addr & 0xffff) {
|
|
case GITS_PIDR0:
|
|
return 0x92; /* part number, bits[7:0] */
|
|
case GITS_PIDR1:
|
|
return 0xb4; /* part number, bits[11:8] */
|
|
case GITS_PIDR2:
|
|
return GIC_PIDR2_ARCH_GICv3 | 0x0b;
|
|
case GITS_PIDR4:
|
|
return 0x40; /* This is a 64K software visible page */
|
|
/* The following are the ID registers for (any) GIC. */
|
|
case GITS_CIDR0:
|
|
return 0x0d;
|
|
case GITS_CIDR1:
|
|
return 0xf0;
|
|
case GITS_CIDR2:
|
|
return 0x05;
|
|
case GITS_CIDR3:
|
|
return 0xb1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
|
|
u32 devid, u32 eventid, struct vgic_irq **irq)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
struct its_ite *ite;
|
|
|
|
if (!its->enabled)
|
|
return -EBUSY;
|
|
|
|
ite = find_ite(its, devid, eventid);
|
|
if (!ite || !its_is_collection_mapped(ite->collection))
|
|
return E_ITS_INT_UNMAPPED_INTERRUPT;
|
|
|
|
vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
|
|
if (!vcpu)
|
|
return E_ITS_INT_UNMAPPED_INTERRUPT;
|
|
|
|
if (!vcpu->arch.vgic_cpu.lpis_enabled)
|
|
return -EBUSY;
|
|
|
|
*irq = ite->irq;
|
|
return 0;
|
|
}
|
|
|
|
struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
|
|
{
|
|
u64 address;
|
|
struct kvm_io_device *kvm_io_dev;
|
|
struct vgic_io_device *iodev;
|
|
|
|
if (!vgic_has_its(kvm))
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
if (!(msi->flags & KVM_MSI_VALID_DEVID))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
address = (u64)msi->address_hi << 32 | msi->address_lo;
|
|
|
|
kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
|
|
if (!kvm_io_dev)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (kvm_io_dev->ops != &kvm_io_gic_ops)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
|
|
if (iodev->iodev_type != IODEV_ITS)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
return iodev->its;
|
|
}
|
|
|
|
/*
|
|
* Find the target VCPU and the LPI number for a given devid/eventid pair
|
|
* and make this IRQ pending, possibly injecting it.
|
|
* Must be called with the its_lock mutex held.
|
|
* Returns 0 on success, a positive error value for any ITS mapping
|
|
* related errors and negative error values for generic errors.
|
|
*/
|
|
static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
|
|
u32 devid, u32 eventid)
|
|
{
|
|
struct vgic_irq *irq = NULL;
|
|
unsigned long flags;
|
|
int err;
|
|
|
|
err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
|
|
if (err)
|
|
return err;
|
|
|
|
if (irq->hw)
|
|
return irq_set_irqchip_state(irq->host_irq,
|
|
IRQCHIP_STATE_PENDING, true);
|
|
|
|
spin_lock_irqsave(&irq->irq_lock, flags);
|
|
irq->pending_latch = true;
|
|
vgic_queue_irq_unlock(kvm, irq, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Queries the KVM IO bus framework to get the ITS pointer from the given
|
|
* doorbell address.
|
|
* We then call vgic_its_trigger_msi() with the decoded data.
|
|
* According to the KVM_SIGNAL_MSI API description returns 1 on success.
|
|
*/
|
|
int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
|
|
{
|
|
struct vgic_its *its;
|
|
int ret;
|
|
|
|
its = vgic_msi_to_its(kvm, msi);
|
|
if (IS_ERR(its))
|
|
return PTR_ERR(its);
|
|
|
|
mutex_lock(&its->its_lock);
|
|
ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
|
|
mutex_unlock(&its->its_lock);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/*
|
|
* KVM_SIGNAL_MSI demands a return value > 0 for success and 0
|
|
* if the guest has blocked the MSI. So we map any LPI mapping
|
|
* related error to that.
|
|
*/
|
|
if (ret)
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
/* Requires the its_lock to be held. */
|
|
static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
|
|
{
|
|
list_del(&ite->ite_list);
|
|
|
|
/* This put matches the get in vgic_add_lpi. */
|
|
if (ite->irq)
|
|
vgic_put_irq(kvm, ite->irq);
|
|
|
|
kfree(ite);
|
|
}
|
|
|
|
static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
|
|
{
|
|
return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
|
|
}
|
|
|
|
#define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
|
|
#define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
|
|
#define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
|
|
#define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
|
|
#define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
|
|
#define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
|
|
#define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
|
|
#define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
|
|
#define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
|
|
|
|
/*
|
|
* The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u32 device_id = its_cmd_get_deviceid(its_cmd);
|
|
u32 event_id = its_cmd_get_id(its_cmd);
|
|
struct its_ite *ite;
|
|
|
|
|
|
ite = find_ite(its, device_id, event_id);
|
|
if (ite && ite->collection) {
|
|
/*
|
|
* Though the spec talks about removing the pending state, we
|
|
* don't bother here since we clear the ITTE anyway and the
|
|
* pending state is a property of the ITTE struct.
|
|
*/
|
|
its_free_ite(kvm, ite);
|
|
return 0;
|
|
}
|
|
|
|
return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
|
|
}
|
|
|
|
/*
|
|
* The MOVI command moves an ITTE to a different collection.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u32 device_id = its_cmd_get_deviceid(its_cmd);
|
|
u32 event_id = its_cmd_get_id(its_cmd);
|
|
u32 coll_id = its_cmd_get_collection(its_cmd);
|
|
struct kvm_vcpu *vcpu;
|
|
struct its_ite *ite;
|
|
struct its_collection *collection;
|
|
|
|
ite = find_ite(its, device_id, event_id);
|
|
if (!ite)
|
|
return E_ITS_MOVI_UNMAPPED_INTERRUPT;
|
|
|
|
if (!its_is_collection_mapped(ite->collection))
|
|
return E_ITS_MOVI_UNMAPPED_COLLECTION;
|
|
|
|
collection = find_collection(its, coll_id);
|
|
if (!its_is_collection_mapped(collection))
|
|
return E_ITS_MOVI_UNMAPPED_COLLECTION;
|
|
|
|
ite->collection = collection;
|
|
vcpu = kvm_get_vcpu(kvm, collection->target_addr);
|
|
|
|
return update_affinity(ite->irq, vcpu);
|
|
}
|
|
|
|
/*
|
|
* Check whether an ID can be stored into the corresponding guest table.
|
|
* For a direct table this is pretty easy, but gets a bit nasty for
|
|
* indirect tables. We check whether the resulting guest physical address
|
|
* is actually valid (covered by a memslot and guest accessible).
|
|
* For this we have to read the respective first level entry.
|
|
*/
|
|
static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
|
|
gpa_t *eaddr)
|
|
{
|
|
int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
|
|
u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
|
|
int esz = GITS_BASER_ENTRY_SIZE(baser);
|
|
int index;
|
|
gfn_t gfn;
|
|
|
|
switch (type) {
|
|
case GITS_BASER_TYPE_DEVICE:
|
|
if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
|
|
return false;
|
|
break;
|
|
case GITS_BASER_TYPE_COLLECTION:
|
|
/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
|
|
if (id >= BIT_ULL(16))
|
|
return false;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if (!(baser & GITS_BASER_INDIRECT)) {
|
|
phys_addr_t addr;
|
|
|
|
if (id >= (l1_tbl_size / esz))
|
|
return false;
|
|
|
|
addr = BASER_ADDRESS(baser) + id * esz;
|
|
gfn = addr >> PAGE_SHIFT;
|
|
|
|
if (eaddr)
|
|
*eaddr = addr;
|
|
return kvm_is_visible_gfn(its->dev->kvm, gfn);
|
|
}
|
|
|
|
/* calculate and check the index into the 1st level */
|
|
index = id / (SZ_64K / esz);
|
|
if (index >= (l1_tbl_size / sizeof(u64)))
|
|
return false;
|
|
|
|
/* Each 1st level entry is represented by a 64-bit value. */
|
|
if (kvm_read_guest(its->dev->kvm,
|
|
BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
|
|
&indirect_ptr, sizeof(indirect_ptr)))
|
|
return false;
|
|
|
|
indirect_ptr = le64_to_cpu(indirect_ptr);
|
|
|
|
/* check the valid bit of the first level entry */
|
|
if (!(indirect_ptr & BIT_ULL(63)))
|
|
return false;
|
|
|
|
/*
|
|
* Mask the guest physical address and calculate the frame number.
|
|
* Any address beyond our supported 48 bits of PA will be caught
|
|
* by the actual check in the final step.
|
|
*/
|
|
indirect_ptr &= GENMASK_ULL(51, 16);
|
|
|
|
/* Find the address of the actual entry */
|
|
index = id % (SZ_64K / esz);
|
|
indirect_ptr += index * esz;
|
|
gfn = indirect_ptr >> PAGE_SHIFT;
|
|
|
|
if (eaddr)
|
|
*eaddr = indirect_ptr;
|
|
return kvm_is_visible_gfn(its->dev->kvm, gfn);
|
|
}
|
|
|
|
static int vgic_its_alloc_collection(struct vgic_its *its,
|
|
struct its_collection **colp,
|
|
u32 coll_id)
|
|
{
|
|
struct its_collection *collection;
|
|
|
|
if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
|
|
return E_ITS_MAPC_COLLECTION_OOR;
|
|
|
|
collection = kzalloc(sizeof(*collection), GFP_KERNEL);
|
|
|
|
collection->collection_id = coll_id;
|
|
collection->target_addr = COLLECTION_NOT_MAPPED;
|
|
|
|
list_add_tail(&collection->coll_list, &its->collection_list);
|
|
*colp = collection;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
|
|
{
|
|
struct its_collection *collection;
|
|
struct its_device *device;
|
|
struct its_ite *ite;
|
|
|
|
/*
|
|
* Clearing the mapping for that collection ID removes the
|
|
* entry from the list. If there wasn't any before, we can
|
|
* go home early.
|
|
*/
|
|
collection = find_collection(its, coll_id);
|
|
if (!collection)
|
|
return;
|
|
|
|
for_each_lpi_its(device, ite, its)
|
|
if (ite->collection &&
|
|
ite->collection->collection_id == coll_id)
|
|
ite->collection = NULL;
|
|
|
|
list_del(&collection->coll_list);
|
|
kfree(collection);
|
|
}
|
|
|
|
/* Must be called with its_lock mutex held */
|
|
static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
|
|
struct its_collection *collection,
|
|
u32 event_id)
|
|
{
|
|
struct its_ite *ite;
|
|
|
|
ite = kzalloc(sizeof(*ite), GFP_KERNEL);
|
|
if (!ite)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ite->event_id = event_id;
|
|
ite->collection = collection;
|
|
|
|
list_add_tail(&ite->ite_list, &device->itt_head);
|
|
return ite;
|
|
}
|
|
|
|
/*
|
|
* The MAPTI and MAPI commands map LPIs to ITTEs.
|
|
* Must be called with its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u32 device_id = its_cmd_get_deviceid(its_cmd);
|
|
u32 event_id = its_cmd_get_id(its_cmd);
|
|
u32 coll_id = its_cmd_get_collection(its_cmd);
|
|
struct its_ite *ite;
|
|
struct kvm_vcpu *vcpu = NULL;
|
|
struct its_device *device;
|
|
struct its_collection *collection, *new_coll = NULL;
|
|
struct vgic_irq *irq;
|
|
int lpi_nr;
|
|
|
|
device = find_its_device(its, device_id);
|
|
if (!device)
|
|
return E_ITS_MAPTI_UNMAPPED_DEVICE;
|
|
|
|
if (event_id >= BIT_ULL(device->num_eventid_bits))
|
|
return E_ITS_MAPTI_ID_OOR;
|
|
|
|
if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
|
|
lpi_nr = its_cmd_get_physical_id(its_cmd);
|
|
else
|
|
lpi_nr = event_id;
|
|
if (lpi_nr < GIC_LPI_OFFSET ||
|
|
lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
|
|
return E_ITS_MAPTI_PHYSICALID_OOR;
|
|
|
|
/* If there is an existing mapping, behavior is UNPREDICTABLE. */
|
|
if (find_ite(its, device_id, event_id))
|
|
return 0;
|
|
|
|
collection = find_collection(its, coll_id);
|
|
if (!collection) {
|
|
int ret = vgic_its_alloc_collection(its, &collection, coll_id);
|
|
if (ret)
|
|
return ret;
|
|
new_coll = collection;
|
|
}
|
|
|
|
ite = vgic_its_alloc_ite(device, collection, event_id);
|
|
if (IS_ERR(ite)) {
|
|
if (new_coll)
|
|
vgic_its_free_collection(its, coll_id);
|
|
return PTR_ERR(ite);
|
|
}
|
|
|
|
if (its_is_collection_mapped(collection))
|
|
vcpu = kvm_get_vcpu(kvm, collection->target_addr);
|
|
|
|
irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
|
|
if (IS_ERR(irq)) {
|
|
if (new_coll)
|
|
vgic_its_free_collection(its, coll_id);
|
|
its_free_ite(kvm, ite);
|
|
return PTR_ERR(irq);
|
|
}
|
|
ite->irq = irq;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Requires the its_lock to be held. */
|
|
static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
|
|
{
|
|
struct its_ite *ite, *temp;
|
|
|
|
/*
|
|
* The spec says that unmapping a device with still valid
|
|
* ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
|
|
* since we cannot leave the memory unreferenced.
|
|
*/
|
|
list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
|
|
its_free_ite(kvm, ite);
|
|
|
|
list_del(&device->dev_list);
|
|
kfree(device);
|
|
}
|
|
|
|
/* its lock must be held */
|
|
static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
|
|
{
|
|
struct its_device *cur, *temp;
|
|
|
|
list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
|
|
vgic_its_free_device(kvm, cur);
|
|
}
|
|
|
|
/* its lock must be held */
|
|
static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
|
|
{
|
|
struct its_collection *cur, *temp;
|
|
|
|
list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
|
|
vgic_its_free_collection(its, cur->collection_id);
|
|
}
|
|
|
|
/* Must be called with its_lock mutex held */
|
|
static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
|
|
u32 device_id, gpa_t itt_addr,
|
|
u8 num_eventid_bits)
|
|
{
|
|
struct its_device *device;
|
|
|
|
device = kzalloc(sizeof(*device), GFP_KERNEL);
|
|
if (!device)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
device->device_id = device_id;
|
|
device->itt_addr = itt_addr;
|
|
device->num_eventid_bits = num_eventid_bits;
|
|
INIT_LIST_HEAD(&device->itt_head);
|
|
|
|
list_add_tail(&device->dev_list, &its->device_list);
|
|
return device;
|
|
}
|
|
|
|
/*
|
|
* MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u32 device_id = its_cmd_get_deviceid(its_cmd);
|
|
bool valid = its_cmd_get_validbit(its_cmd);
|
|
u8 num_eventid_bits = its_cmd_get_size(its_cmd);
|
|
gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
|
|
struct its_device *device;
|
|
|
|
if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
|
|
return E_ITS_MAPD_DEVICE_OOR;
|
|
|
|
if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
|
|
return E_ITS_MAPD_ITTSIZE_OOR;
|
|
|
|
device = find_its_device(its, device_id);
|
|
|
|
/*
|
|
* The spec says that calling MAPD on an already mapped device
|
|
* invalidates all cached data for this device. We implement this
|
|
* by removing the mapping and re-establishing it.
|
|
*/
|
|
if (device)
|
|
vgic_its_free_device(kvm, device);
|
|
|
|
/*
|
|
* The spec does not say whether unmapping a not-mapped device
|
|
* is an error, so we are done in any case.
|
|
*/
|
|
if (!valid)
|
|
return 0;
|
|
|
|
device = vgic_its_alloc_device(its, device_id, itt_addr,
|
|
num_eventid_bits);
|
|
if (IS_ERR(device))
|
|
return PTR_ERR(device);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The MAPC command maps collection IDs to redistributors.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u16 coll_id;
|
|
u32 target_addr;
|
|
struct its_collection *collection;
|
|
bool valid;
|
|
|
|
valid = its_cmd_get_validbit(its_cmd);
|
|
coll_id = its_cmd_get_collection(its_cmd);
|
|
target_addr = its_cmd_get_target_addr(its_cmd);
|
|
|
|
if (target_addr >= atomic_read(&kvm->online_vcpus))
|
|
return E_ITS_MAPC_PROCNUM_OOR;
|
|
|
|
if (!valid) {
|
|
vgic_its_free_collection(its, coll_id);
|
|
} else {
|
|
collection = find_collection(its, coll_id);
|
|
|
|
if (!collection) {
|
|
int ret;
|
|
|
|
ret = vgic_its_alloc_collection(its, &collection,
|
|
coll_id);
|
|
if (ret)
|
|
return ret;
|
|
collection->target_addr = target_addr;
|
|
} else {
|
|
collection->target_addr = target_addr;
|
|
update_affinity_collection(kvm, its, collection);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The CLEAR command removes the pending state for a particular LPI.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u32 device_id = its_cmd_get_deviceid(its_cmd);
|
|
u32 event_id = its_cmd_get_id(its_cmd);
|
|
struct its_ite *ite;
|
|
|
|
|
|
ite = find_ite(its, device_id, event_id);
|
|
if (!ite)
|
|
return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
|
|
|
|
ite->irq->pending_latch = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The INV command syncs the configuration bits from the memory table.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u32 device_id = its_cmd_get_deviceid(its_cmd);
|
|
u32 event_id = its_cmd_get_id(its_cmd);
|
|
struct its_ite *ite;
|
|
|
|
|
|
ite = find_ite(its, device_id, event_id);
|
|
if (!ite)
|
|
return E_ITS_INV_UNMAPPED_INTERRUPT;
|
|
|
|
return update_lpi_config(kvm, ite->irq, NULL);
|
|
}
|
|
|
|
/*
|
|
* The INVALL command requests flushing of all IRQ data in this collection.
|
|
* Find the VCPU mapped to that collection, then iterate over the VM's list
|
|
* of mapped LPIs and update the configuration for each IRQ which targets
|
|
* the specified vcpu. The configuration will be read from the in-memory
|
|
* configuration table.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u32 coll_id = its_cmd_get_collection(its_cmd);
|
|
struct its_collection *collection;
|
|
struct kvm_vcpu *vcpu;
|
|
struct vgic_irq *irq;
|
|
u32 *intids;
|
|
int irq_count, i;
|
|
|
|
collection = find_collection(its, coll_id);
|
|
if (!its_is_collection_mapped(collection))
|
|
return E_ITS_INVALL_UNMAPPED_COLLECTION;
|
|
|
|
vcpu = kvm_get_vcpu(kvm, collection->target_addr);
|
|
|
|
irq_count = vgic_copy_lpi_list(vcpu, &intids);
|
|
if (irq_count < 0)
|
|
return irq_count;
|
|
|
|
for (i = 0; i < irq_count; i++) {
|
|
irq = vgic_get_irq(kvm, NULL, intids[i]);
|
|
if (!irq)
|
|
continue;
|
|
update_lpi_config(kvm, irq, vcpu);
|
|
vgic_put_irq(kvm, irq);
|
|
}
|
|
|
|
kfree(intids);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The MOVALL command moves the pending state of all IRQs targeting one
|
|
* redistributor to another. We don't hold the pending state in the VCPUs,
|
|
* but in the IRQs instead, so there is really not much to do for us here.
|
|
* However the spec says that no IRQ must target the old redistributor
|
|
* afterwards, so we make sure that no LPI is using the associated target_vcpu.
|
|
* This command affects all LPIs in the system that target that redistributor.
|
|
*/
|
|
static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
u32 target1_addr = its_cmd_get_target_addr(its_cmd);
|
|
u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
|
|
struct kvm_vcpu *vcpu1, *vcpu2;
|
|
struct vgic_irq *irq;
|
|
|
|
if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
|
|
target2_addr >= atomic_read(&kvm->online_vcpus))
|
|
return E_ITS_MOVALL_PROCNUM_OOR;
|
|
|
|
if (target1_addr == target2_addr)
|
|
return 0;
|
|
|
|
vcpu1 = kvm_get_vcpu(kvm, target1_addr);
|
|
vcpu2 = kvm_get_vcpu(kvm, target2_addr);
|
|
|
|
spin_lock(&dist->lpi_list_lock);
|
|
|
|
list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
|
|
spin_lock(&irq->irq_lock);
|
|
|
|
if (irq->target_vcpu == vcpu1)
|
|
irq->target_vcpu = vcpu2;
|
|
|
|
spin_unlock(&irq->irq_lock);
|
|
}
|
|
|
|
spin_unlock(&dist->lpi_list_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The INT command injects the LPI associated with that DevID/EvID pair.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u32 msi_data = its_cmd_get_id(its_cmd);
|
|
u64 msi_devid = its_cmd_get_deviceid(its_cmd);
|
|
|
|
return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
|
|
}
|
|
|
|
/*
|
|
* This function is called with the its_cmd lock held, but the ITS data
|
|
* structure lock dropped.
|
|
*/
|
|
static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
int ret = -ENODEV;
|
|
|
|
mutex_lock(&its->its_lock);
|
|
switch (its_cmd_get_command(its_cmd)) {
|
|
case GITS_CMD_MAPD:
|
|
ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_MAPC:
|
|
ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_MAPI:
|
|
ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_MAPTI:
|
|
ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_MOVI:
|
|
ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_DISCARD:
|
|
ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_CLEAR:
|
|
ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_MOVALL:
|
|
ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_INT:
|
|
ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_INV:
|
|
ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_INVALL:
|
|
ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_SYNC:
|
|
/* we ignore this command: we are in sync all of the time */
|
|
ret = 0;
|
|
break;
|
|
}
|
|
mutex_unlock(&its->its_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u64 vgic_sanitise_its_baser(u64 reg)
|
|
{
|
|
reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
|
|
GITS_BASER_SHAREABILITY_SHIFT,
|
|
vgic_sanitise_shareability);
|
|
reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
|
|
GITS_BASER_INNER_CACHEABILITY_SHIFT,
|
|
vgic_sanitise_inner_cacheability);
|
|
reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
|
|
GITS_BASER_OUTER_CACHEABILITY_SHIFT,
|
|
vgic_sanitise_outer_cacheability);
|
|
|
|
/* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
|
|
reg &= ~GENMASK_ULL(15, 12);
|
|
|
|
/* We support only one (ITS) page size: 64K */
|
|
reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
|
|
|
|
return reg;
|
|
}
|
|
|
|
static u64 vgic_sanitise_its_cbaser(u64 reg)
|
|
{
|
|
reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
|
|
GITS_CBASER_SHAREABILITY_SHIFT,
|
|
vgic_sanitise_shareability);
|
|
reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
|
|
GITS_CBASER_INNER_CACHEABILITY_SHIFT,
|
|
vgic_sanitise_inner_cacheability);
|
|
reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
|
|
GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
|
|
vgic_sanitise_outer_cacheability);
|
|
|
|
/*
|
|
* Sanitise the physical address to be 64k aligned.
|
|
* Also limit the physical addresses to 48 bits.
|
|
*/
|
|
reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
|
|
|
|
return reg;
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
return extract_bytes(its->cbaser, addr & 7, len);
|
|
}
|
|
|
|
static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
/* When GITS_CTLR.Enable is 1, this register is RO. */
|
|
if (its->enabled)
|
|
return;
|
|
|
|
mutex_lock(&its->cmd_lock);
|
|
its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
|
|
its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
|
|
its->creadr = 0;
|
|
/*
|
|
* CWRITER is architecturally UNKNOWN on reset, but we need to reset
|
|
* it to CREADR to make sure we start with an empty command buffer.
|
|
*/
|
|
its->cwriter = its->creadr;
|
|
mutex_unlock(&its->cmd_lock);
|
|
}
|
|
|
|
#define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
|
|
#define ITS_CMD_SIZE 32
|
|
#define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
|
|
|
|
/* Must be called with the cmd_lock held. */
|
|
static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
|
|
{
|
|
gpa_t cbaser;
|
|
u64 cmd_buf[4];
|
|
|
|
/* Commands are only processed when the ITS is enabled. */
|
|
if (!its->enabled)
|
|
return;
|
|
|
|
cbaser = CBASER_ADDRESS(its->cbaser);
|
|
|
|
while (its->cwriter != its->creadr) {
|
|
int ret = kvm_read_guest(kvm, cbaser + its->creadr,
|
|
cmd_buf, ITS_CMD_SIZE);
|
|
/*
|
|
* If kvm_read_guest() fails, this could be due to the guest
|
|
* programming a bogus value in CBASER or something else going
|
|
* wrong from which we cannot easily recover.
|
|
* According to section 6.3.2 in the GICv3 spec we can just
|
|
* ignore that command then.
|
|
*/
|
|
if (!ret)
|
|
vgic_its_handle_command(kvm, its, cmd_buf);
|
|
|
|
its->creadr += ITS_CMD_SIZE;
|
|
if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
|
|
its->creadr = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* By writing to CWRITER the guest announces new commands to be processed.
|
|
* To avoid any races in the first place, we take the its_cmd lock, which
|
|
* protects our ring buffer variables, so that there is only one user
|
|
* per ITS handling commands at a given time.
|
|
*/
|
|
static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
u64 reg;
|
|
|
|
if (!its)
|
|
return;
|
|
|
|
mutex_lock(&its->cmd_lock);
|
|
|
|
reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
|
|
reg = ITS_CMD_OFFSET(reg);
|
|
if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
|
|
mutex_unlock(&its->cmd_lock);
|
|
return;
|
|
}
|
|
its->cwriter = reg;
|
|
|
|
vgic_its_process_commands(kvm, its);
|
|
|
|
mutex_unlock(&its->cmd_lock);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
return extract_bytes(its->cwriter, addr & 0x7, len);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
return extract_bytes(its->creadr, addr & 0x7, len);
|
|
}
|
|
|
|
static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
u32 cmd_offset;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&its->cmd_lock);
|
|
|
|
if (its->enabled) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
cmd_offset = ITS_CMD_OFFSET(val);
|
|
if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
its->creadr = cmd_offset;
|
|
out:
|
|
mutex_unlock(&its->cmd_lock);
|
|
return ret;
|
|
}
|
|
|
|
#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
|
|
static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
u64 reg;
|
|
|
|
switch (BASER_INDEX(addr)) {
|
|
case 0:
|
|
reg = its->baser_device_table;
|
|
break;
|
|
case 1:
|
|
reg = its->baser_coll_table;
|
|
break;
|
|
default:
|
|
reg = 0;
|
|
break;
|
|
}
|
|
|
|
return extract_bytes(reg, addr & 7, len);
|
|
}
|
|
|
|
#define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
|
|
static void vgic_mmio_write_its_baser(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
|
|
u64 entry_size, table_type;
|
|
u64 reg, *regptr, clearbits = 0;
|
|
|
|
/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
|
|
if (its->enabled)
|
|
return;
|
|
|
|
switch (BASER_INDEX(addr)) {
|
|
case 0:
|
|
regptr = &its->baser_device_table;
|
|
entry_size = abi->dte_esz;
|
|
table_type = GITS_BASER_TYPE_DEVICE;
|
|
break;
|
|
case 1:
|
|
regptr = &its->baser_coll_table;
|
|
entry_size = abi->cte_esz;
|
|
table_type = GITS_BASER_TYPE_COLLECTION;
|
|
clearbits = GITS_BASER_INDIRECT;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
reg = update_64bit_reg(*regptr, addr & 7, len, val);
|
|
reg &= ~GITS_BASER_RO_MASK;
|
|
reg &= ~clearbits;
|
|
|
|
reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
|
|
reg |= table_type << GITS_BASER_TYPE_SHIFT;
|
|
reg = vgic_sanitise_its_baser(reg);
|
|
|
|
*regptr = reg;
|
|
|
|
if (!(reg & GITS_BASER_VALID)) {
|
|
/* Take the its_lock to prevent a race with a save/restore */
|
|
mutex_lock(&its->its_lock);
|
|
switch (table_type) {
|
|
case GITS_BASER_TYPE_DEVICE:
|
|
vgic_its_free_device_list(kvm, its);
|
|
break;
|
|
case GITS_BASER_TYPE_COLLECTION:
|
|
vgic_its_free_collection_list(kvm, its);
|
|
break;
|
|
}
|
|
mutex_unlock(&its->its_lock);
|
|
}
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
u32 reg = 0;
|
|
|
|
mutex_lock(&its->cmd_lock);
|
|
if (its->creadr == its->cwriter)
|
|
reg |= GITS_CTLR_QUIESCENT;
|
|
if (its->enabled)
|
|
reg |= GITS_CTLR_ENABLE;
|
|
mutex_unlock(&its->cmd_lock);
|
|
|
|
return reg;
|
|
}
|
|
|
|
static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
mutex_lock(&its->cmd_lock);
|
|
|
|
its->enabled = !!(val & GITS_CTLR_ENABLE);
|
|
|
|
/*
|
|
* Try to process any pending commands. This function bails out early
|
|
* if the ITS is disabled or no commands have been queued.
|
|
*/
|
|
vgic_its_process_commands(kvm, its);
|
|
|
|
mutex_unlock(&its->cmd_lock);
|
|
}
|
|
|
|
#define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
|
|
{ \
|
|
.reg_offset = off, \
|
|
.len = length, \
|
|
.access_flags = acc, \
|
|
.its_read = rd, \
|
|
.its_write = wr, \
|
|
}
|
|
|
|
#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
|
|
{ \
|
|
.reg_offset = off, \
|
|
.len = length, \
|
|
.access_flags = acc, \
|
|
.its_read = rd, \
|
|
.its_write = wr, \
|
|
.uaccess_its_write = uwr, \
|
|
}
|
|
|
|
static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
|
|
gpa_t addr, unsigned int len, unsigned long val)
|
|
{
|
|
/* Ignore */
|
|
}
|
|
|
|
static struct vgic_register_region its_registers[] = {
|
|
REGISTER_ITS_DESC(GITS_CTLR,
|
|
vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
|
|
vgic_mmio_read_its_iidr, its_mmio_write_wi,
|
|
vgic_mmio_uaccess_write_its_iidr, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_ITS_DESC(GITS_TYPER,
|
|
vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_ITS_DESC(GITS_CBASER,
|
|
vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_ITS_DESC(GITS_CWRITER,
|
|
vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
|
|
vgic_mmio_read_its_creadr, its_mmio_write_wi,
|
|
vgic_mmio_uaccess_write_its_creadr, 8,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_ITS_DESC(GITS_BASER,
|
|
vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_ITS_DESC(GITS_IDREGS_BASE,
|
|
vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
|
|
VGIC_ACCESS_32bit),
|
|
};
|
|
|
|
/* This is called on setting the LPI enable bit in the redistributor. */
|
|
void vgic_enable_lpis(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
|
|
its_sync_lpi_pending_table(vcpu);
|
|
}
|
|
|
|
static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
|
|
u64 addr)
|
|
{
|
|
struct vgic_io_device *iodev = &its->iodev;
|
|
int ret;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
its->vgic_its_base = addr;
|
|
iodev->regions = its_registers;
|
|
iodev->nr_regions = ARRAY_SIZE(its_registers);
|
|
kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
|
|
|
|
iodev->base_addr = its->vgic_its_base;
|
|
iodev->iodev_type = IODEV_ITS;
|
|
iodev->its = its;
|
|
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
|
|
KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
|
|
out:
|
|
mutex_unlock(&kvm->slots_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define INITIAL_BASER_VALUE \
|
|
(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
|
|
GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
|
|
GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
|
|
GITS_BASER_PAGE_SIZE_64K)
|
|
|
|
#define INITIAL_PROPBASER_VALUE \
|
|
(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
|
|
GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
|
|
GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
|
|
|
|
static int vgic_its_create(struct kvm_device *dev, u32 type)
|
|
{
|
|
struct vgic_its *its;
|
|
|
|
if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
|
|
return -ENODEV;
|
|
|
|
its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
|
|
if (!its)
|
|
return -ENOMEM;
|
|
|
|
if (vgic_initialized(dev->kvm)) {
|
|
int ret = vgic_v4_init(dev->kvm);
|
|
if (ret) {
|
|
kfree(its);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
mutex_init(&its->its_lock);
|
|
mutex_init(&its->cmd_lock);
|
|
|
|
its->vgic_its_base = VGIC_ADDR_UNDEF;
|
|
|
|
INIT_LIST_HEAD(&its->device_list);
|
|
INIT_LIST_HEAD(&its->collection_list);
|
|
|
|
dev->kvm->arch.vgic.msis_require_devid = true;
|
|
dev->kvm->arch.vgic.has_its = true;
|
|
its->enabled = false;
|
|
its->dev = dev;
|
|
|
|
its->baser_device_table = INITIAL_BASER_VALUE |
|
|
((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
|
|
its->baser_coll_table = INITIAL_BASER_VALUE |
|
|
((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
|
|
dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
|
|
|
|
dev->private = its;
|
|
|
|
return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
|
|
}
|
|
|
|
static void vgic_its_destroy(struct kvm_device *kvm_dev)
|
|
{
|
|
struct kvm *kvm = kvm_dev->kvm;
|
|
struct vgic_its *its = kvm_dev->private;
|
|
|
|
mutex_lock(&its->its_lock);
|
|
|
|
vgic_its_free_device_list(kvm, its);
|
|
vgic_its_free_collection_list(kvm, its);
|
|
|
|
mutex_unlock(&its->its_lock);
|
|
kfree(its);
|
|
}
|
|
|
|
int vgic_its_has_attr_regs(struct kvm_device *dev,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
const struct vgic_register_region *region;
|
|
gpa_t offset = attr->attr;
|
|
int align;
|
|
|
|
align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
|
|
|
|
if (offset & align)
|
|
return -EINVAL;
|
|
|
|
region = vgic_find_mmio_region(its_registers,
|
|
ARRAY_SIZE(its_registers),
|
|
offset);
|
|
if (!region)
|
|
return -ENXIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vgic_its_attr_regs_access(struct kvm_device *dev,
|
|
struct kvm_device_attr *attr,
|
|
u64 *reg, bool is_write)
|
|
{
|
|
const struct vgic_register_region *region;
|
|
struct vgic_its *its;
|
|
gpa_t addr, offset;
|
|
unsigned int len;
|
|
int align, ret = 0;
|
|
|
|
its = dev->private;
|
|
offset = attr->attr;
|
|
|
|
/*
|
|
* Although the spec supports upper/lower 32-bit accesses to
|
|
* 64-bit ITS registers, the userspace ABI requires 64-bit
|
|
* accesses to all 64-bit wide registers. We therefore only
|
|
* support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
|
|
* registers
|
|
*/
|
|
if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
|
|
align = 0x3;
|
|
else
|
|
align = 0x7;
|
|
|
|
if (offset & align)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&dev->kvm->lock);
|
|
|
|
if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
region = vgic_find_mmio_region(its_registers,
|
|
ARRAY_SIZE(its_registers),
|
|
offset);
|
|
if (!region) {
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
if (!lock_all_vcpus(dev->kvm)) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
addr = its->vgic_its_base + offset;
|
|
|
|
len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
|
|
|
|
if (is_write) {
|
|
if (region->uaccess_its_write)
|
|
ret = region->uaccess_its_write(dev->kvm, its, addr,
|
|
len, *reg);
|
|
else
|
|
region->its_write(dev->kvm, its, addr, len, *reg);
|
|
} else {
|
|
*reg = region->its_read(dev->kvm, its, addr, len);
|
|
}
|
|
unlock_all_vcpus(dev->kvm);
|
|
out:
|
|
mutex_unlock(&dev->kvm->lock);
|
|
return ret;
|
|
}
|
|
|
|
static u32 compute_next_devid_offset(struct list_head *h,
|
|
struct its_device *dev)
|
|
{
|
|
struct its_device *next;
|
|
u32 next_offset;
|
|
|
|
if (list_is_last(&dev->dev_list, h))
|
|
return 0;
|
|
next = list_next_entry(dev, dev_list);
|
|
next_offset = next->device_id - dev->device_id;
|
|
|
|
return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
|
|
}
|
|
|
|
static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
|
|
{
|
|
struct its_ite *next;
|
|
u32 next_offset;
|
|
|
|
if (list_is_last(&ite->ite_list, h))
|
|
return 0;
|
|
next = list_next_entry(ite, ite_list);
|
|
next_offset = next->event_id - ite->event_id;
|
|
|
|
return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
|
|
}
|
|
|
|
/**
|
|
* entry_fn_t - Callback called on a table entry restore path
|
|
* @its: its handle
|
|
* @id: id of the entry
|
|
* @entry: pointer to the entry
|
|
* @opaque: pointer to an opaque data
|
|
*
|
|
* Return: < 0 on error, 0 if last element was identified, id offset to next
|
|
* element otherwise
|
|
*/
|
|
typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
|
|
void *opaque);
|
|
|
|
/**
|
|
* scan_its_table - Scan a contiguous table in guest RAM and applies a function
|
|
* to each entry
|
|
*
|
|
* @its: its handle
|
|
* @base: base gpa of the table
|
|
* @size: size of the table in bytes
|
|
* @esz: entry size in bytes
|
|
* @start_id: the ID of the first entry in the table
|
|
* (non zero for 2d level tables)
|
|
* @fn: function to apply on each entry
|
|
*
|
|
* Return: < 0 on error, 0 if last element was identified, 1 otherwise
|
|
* (the last element may not be found on second level tables)
|
|
*/
|
|
static int scan_its_table(struct vgic_its *its, gpa_t base, int size, int esz,
|
|
int start_id, entry_fn_t fn, void *opaque)
|
|
{
|
|
void *entry = kzalloc(esz, GFP_KERNEL);
|
|
struct kvm *kvm = its->dev->kvm;
|
|
unsigned long len = size;
|
|
int id = start_id;
|
|
gpa_t gpa = base;
|
|
int ret;
|
|
|
|
while (len > 0) {
|
|
int next_offset;
|
|
size_t byte_offset;
|
|
|
|
ret = kvm_read_guest(kvm, gpa, entry, esz);
|
|
if (ret)
|
|
goto out;
|
|
|
|
next_offset = fn(its, id, entry, opaque);
|
|
if (next_offset <= 0) {
|
|
ret = next_offset;
|
|
goto out;
|
|
}
|
|
|
|
byte_offset = next_offset * esz;
|
|
id += next_offset;
|
|
gpa += byte_offset;
|
|
len -= byte_offset;
|
|
}
|
|
ret = 1;
|
|
|
|
out:
|
|
kfree(entry);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* vgic_its_save_ite - Save an interrupt translation entry at @gpa
|
|
*/
|
|
static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
|
|
struct its_ite *ite, gpa_t gpa, int ite_esz)
|
|
{
|
|
struct kvm *kvm = its->dev->kvm;
|
|
u32 next_offset;
|
|
u64 val;
|
|
|
|
next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
|
|
val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
|
|
((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
|
|
ite->collection->collection_id;
|
|
val = cpu_to_le64(val);
|
|
return kvm_write_guest(kvm, gpa, &val, ite_esz);
|
|
}
|
|
|
|
/**
|
|
* vgic_its_restore_ite - restore an interrupt translation entry
|
|
* @event_id: id used for indexing
|
|
* @ptr: pointer to the ITE entry
|
|
* @opaque: pointer to the its_device
|
|
*/
|
|
static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
|
|
void *ptr, void *opaque)
|
|
{
|
|
struct its_device *dev = (struct its_device *)opaque;
|
|
struct its_collection *collection;
|
|
struct kvm *kvm = its->dev->kvm;
|
|
struct kvm_vcpu *vcpu = NULL;
|
|
u64 val;
|
|
u64 *p = (u64 *)ptr;
|
|
struct vgic_irq *irq;
|
|
u32 coll_id, lpi_id;
|
|
struct its_ite *ite;
|
|
u32 offset;
|
|
|
|
val = *p;
|
|
|
|
val = le64_to_cpu(val);
|
|
|
|
coll_id = val & KVM_ITS_ITE_ICID_MASK;
|
|
lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
|
|
|
|
if (!lpi_id)
|
|
return 1; /* invalid entry, no choice but to scan next entry */
|
|
|
|
if (lpi_id < VGIC_MIN_LPI)
|
|
return -EINVAL;
|
|
|
|
offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
|
|
if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
|
|
return -EINVAL;
|
|
|
|
collection = find_collection(its, coll_id);
|
|
if (!collection)
|
|
return -EINVAL;
|
|
|
|
ite = vgic_its_alloc_ite(dev, collection, event_id);
|
|
if (IS_ERR(ite))
|
|
return PTR_ERR(ite);
|
|
|
|
if (its_is_collection_mapped(collection))
|
|
vcpu = kvm_get_vcpu(kvm, collection->target_addr);
|
|
|
|
irq = vgic_add_lpi(kvm, lpi_id, vcpu);
|
|
if (IS_ERR(irq))
|
|
return PTR_ERR(irq);
|
|
ite->irq = irq;
|
|
|
|
return offset;
|
|
}
|
|
|
|
static int vgic_its_ite_cmp(void *priv, struct list_head *a,
|
|
struct list_head *b)
|
|
{
|
|
struct its_ite *itea = container_of(a, struct its_ite, ite_list);
|
|
struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
|
|
|
|
if (itea->event_id < iteb->event_id)
|
|
return -1;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
|
|
{
|
|
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
|
|
gpa_t base = device->itt_addr;
|
|
struct its_ite *ite;
|
|
int ret;
|
|
int ite_esz = abi->ite_esz;
|
|
|
|
list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
|
|
|
|
list_for_each_entry(ite, &device->itt_head, ite_list) {
|
|
gpa_t gpa = base + ite->event_id * ite_esz;
|
|
|
|
ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
|
|
{
|
|
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
|
|
gpa_t base = dev->itt_addr;
|
|
int ret;
|
|
int ite_esz = abi->ite_esz;
|
|
size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
|
|
|
|
ret = scan_its_table(its, base, max_size, ite_esz, 0,
|
|
vgic_its_restore_ite, dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* vgic_its_save_dte - Save a device table entry at a given GPA
|
|
*
|
|
* @its: ITS handle
|
|
* @dev: ITS device
|
|
* @ptr: GPA
|
|
*/
|
|
static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
|
|
gpa_t ptr, int dte_esz)
|
|
{
|
|
struct kvm *kvm = its->dev->kvm;
|
|
u64 val, itt_addr_field;
|
|
u32 next_offset;
|
|
|
|
itt_addr_field = dev->itt_addr >> 8;
|
|
next_offset = compute_next_devid_offset(&its->device_list, dev);
|
|
val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
|
|
((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
|
|
(itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
|
|
(dev->num_eventid_bits - 1));
|
|
val = cpu_to_le64(val);
|
|
return kvm_write_guest(kvm, ptr, &val, dte_esz);
|
|
}
|
|
|
|
/**
|
|
* vgic_its_restore_dte - restore a device table entry
|
|
*
|
|
* @its: its handle
|
|
* @id: device id the DTE corresponds to
|
|
* @ptr: kernel VA where the 8 byte DTE is located
|
|
* @opaque: unused
|
|
*
|
|
* Return: < 0 on error, 0 if the dte is the last one, id offset to the
|
|
* next dte otherwise
|
|
*/
|
|
static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
|
|
void *ptr, void *opaque)
|
|
{
|
|
struct its_device *dev;
|
|
gpa_t itt_addr;
|
|
u8 num_eventid_bits;
|
|
u64 entry = *(u64 *)ptr;
|
|
bool valid;
|
|
u32 offset;
|
|
int ret;
|
|
|
|
entry = le64_to_cpu(entry);
|
|
|
|
valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
|
|
num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
|
|
itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
|
|
>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
|
|
|
|
if (!valid)
|
|
return 1;
|
|
|
|
/* dte entry is valid */
|
|
offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
|
|
|
|
dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
|
|
if (IS_ERR(dev))
|
|
return PTR_ERR(dev);
|
|
|
|
ret = vgic_its_restore_itt(its, dev);
|
|
if (ret) {
|
|
vgic_its_free_device(its->dev->kvm, dev);
|
|
return ret;
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
static int vgic_its_device_cmp(void *priv, struct list_head *a,
|
|
struct list_head *b)
|
|
{
|
|
struct its_device *deva = container_of(a, struct its_device, dev_list);
|
|
struct its_device *devb = container_of(b, struct its_device, dev_list);
|
|
|
|
if (deva->device_id < devb->device_id)
|
|
return -1;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* vgic_its_save_device_tables - Save the device table and all ITT
|
|
* into guest RAM
|
|
*
|
|
* L1/L2 handling is hidden by vgic_its_check_id() helper which directly
|
|
* returns the GPA of the device entry
|
|
*/
|
|
static int vgic_its_save_device_tables(struct vgic_its *its)
|
|
{
|
|
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
|
|
struct its_device *dev;
|
|
int dte_esz = abi->dte_esz;
|
|
u64 baser;
|
|
|
|
baser = its->baser_device_table;
|
|
|
|
list_sort(NULL, &its->device_list, vgic_its_device_cmp);
|
|
|
|
list_for_each_entry(dev, &its->device_list, dev_list) {
|
|
int ret;
|
|
gpa_t eaddr;
|
|
|
|
if (!vgic_its_check_id(its, baser,
|
|
dev->device_id, &eaddr))
|
|
return -EINVAL;
|
|
|
|
ret = vgic_its_save_itt(its, dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* handle_l1_dte - callback used for L1 device table entries (2 stage case)
|
|
*
|
|
* @its: its handle
|
|
* @id: index of the entry in the L1 table
|
|
* @addr: kernel VA
|
|
* @opaque: unused
|
|
*
|
|
* L1 table entries are scanned by steps of 1 entry
|
|
* Return < 0 if error, 0 if last dte was found when scanning the L2
|
|
* table, +1 otherwise (meaning next L1 entry must be scanned)
|
|
*/
|
|
static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
|
|
void *opaque)
|
|
{
|
|
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
|
|
int l2_start_id = id * (SZ_64K / abi->dte_esz);
|
|
u64 entry = *(u64 *)addr;
|
|
int dte_esz = abi->dte_esz;
|
|
gpa_t gpa;
|
|
int ret;
|
|
|
|
entry = le64_to_cpu(entry);
|
|
|
|
if (!(entry & KVM_ITS_L1E_VALID_MASK))
|
|
return 1;
|
|
|
|
gpa = entry & KVM_ITS_L1E_ADDR_MASK;
|
|
|
|
ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
|
|
l2_start_id, vgic_its_restore_dte, NULL);
|
|
|
|
if (ret <= 0)
|
|
return ret;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* vgic_its_restore_device_tables - Restore the device table and all ITT
|
|
* from guest RAM to internal data structs
|
|
*/
|
|
static int vgic_its_restore_device_tables(struct vgic_its *its)
|
|
{
|
|
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
|
|
u64 baser = its->baser_device_table;
|
|
int l1_esz, ret;
|
|
int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
|
|
gpa_t l1_gpa;
|
|
|
|
if (!(baser & GITS_BASER_VALID))
|
|
return 0;
|
|
|
|
l1_gpa = BASER_ADDRESS(baser);
|
|
|
|
if (baser & GITS_BASER_INDIRECT) {
|
|
l1_esz = GITS_LVL1_ENTRY_SIZE;
|
|
ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
|
|
handle_l1_dte, NULL);
|
|
} else {
|
|
l1_esz = abi->dte_esz;
|
|
ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
|
|
vgic_its_restore_dte, NULL);
|
|
}
|
|
|
|
if (ret > 0)
|
|
ret = -EINVAL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vgic_its_save_cte(struct vgic_its *its,
|
|
struct its_collection *collection,
|
|
gpa_t gpa, int esz)
|
|
{
|
|
u64 val;
|
|
|
|
val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
|
|
((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
|
|
collection->collection_id);
|
|
val = cpu_to_le64(val);
|
|
return kvm_write_guest(its->dev->kvm, gpa, &val, esz);
|
|
}
|
|
|
|
static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
|
|
{
|
|
struct its_collection *collection;
|
|
struct kvm *kvm = its->dev->kvm;
|
|
u32 target_addr, coll_id;
|
|
u64 val;
|
|
int ret;
|
|
|
|
BUG_ON(esz > sizeof(val));
|
|
ret = kvm_read_guest(kvm, gpa, &val, esz);
|
|
if (ret)
|
|
return ret;
|
|
val = le64_to_cpu(val);
|
|
if (!(val & KVM_ITS_CTE_VALID_MASK))
|
|
return 0;
|
|
|
|
target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
|
|
coll_id = val & KVM_ITS_CTE_ICID_MASK;
|
|
|
|
if (target_addr >= atomic_read(&kvm->online_vcpus))
|
|
return -EINVAL;
|
|
|
|
collection = find_collection(its, coll_id);
|
|
if (collection)
|
|
return -EEXIST;
|
|
ret = vgic_its_alloc_collection(its, &collection, coll_id);
|
|
if (ret)
|
|
return ret;
|
|
collection->target_addr = target_addr;
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* vgic_its_save_collection_table - Save the collection table into
|
|
* guest RAM
|
|
*/
|
|
static int vgic_its_save_collection_table(struct vgic_its *its)
|
|
{
|
|
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
|
|
struct its_collection *collection;
|
|
u64 val;
|
|
gpa_t gpa;
|
|
size_t max_size, filled = 0;
|
|
int ret, cte_esz = abi->cte_esz;
|
|
|
|
gpa = BASER_ADDRESS(its->baser_coll_table);
|
|
if (!gpa)
|
|
return 0;
|
|
|
|
max_size = GITS_BASER_NR_PAGES(its->baser_coll_table) * SZ_64K;
|
|
|
|
list_for_each_entry(collection, &its->collection_list, coll_list) {
|
|
ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
|
|
if (ret)
|
|
return ret;
|
|
gpa += cte_esz;
|
|
filled += cte_esz;
|
|
}
|
|
|
|
if (filled == max_size)
|
|
return 0;
|
|
|
|
/*
|
|
* table is not fully filled, add a last dummy element
|
|
* with valid bit unset
|
|
*/
|
|
val = 0;
|
|
BUG_ON(cte_esz > sizeof(val));
|
|
ret = kvm_write_guest(its->dev->kvm, gpa, &val, cte_esz);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* vgic_its_restore_collection_table - reads the collection table
|
|
* in guest memory and restores the ITS internal state. Requires the
|
|
* BASER registers to be restored before.
|
|
*/
|
|
static int vgic_its_restore_collection_table(struct vgic_its *its)
|
|
{
|
|
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
|
|
int cte_esz = abi->cte_esz;
|
|
size_t max_size, read = 0;
|
|
gpa_t gpa;
|
|
int ret;
|
|
|
|
if (!(its->baser_coll_table & GITS_BASER_VALID))
|
|
return 0;
|
|
|
|
gpa = BASER_ADDRESS(its->baser_coll_table);
|
|
|
|
max_size = GITS_BASER_NR_PAGES(its->baser_coll_table) * SZ_64K;
|
|
|
|
while (read < max_size) {
|
|
ret = vgic_its_restore_cte(its, gpa, cte_esz);
|
|
if (ret <= 0)
|
|
break;
|
|
gpa += cte_esz;
|
|
read += cte_esz;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
|
|
* according to v0 ABI
|
|
*/
|
|
static int vgic_its_save_tables_v0(struct vgic_its *its)
|
|
{
|
|
int ret;
|
|
|
|
ret = vgic_its_save_device_tables(its);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return vgic_its_save_collection_table(its);
|
|
}
|
|
|
|
/**
|
|
* vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
|
|
* to internal data structs according to V0 ABI
|
|
*
|
|
*/
|
|
static int vgic_its_restore_tables_v0(struct vgic_its *its)
|
|
{
|
|
int ret;
|
|
|
|
ret = vgic_its_restore_collection_table(its);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return vgic_its_restore_device_tables(its);
|
|
}
|
|
|
|
static int vgic_its_commit_v0(struct vgic_its *its)
|
|
{
|
|
const struct vgic_its_abi *abi;
|
|
|
|
abi = vgic_its_get_abi(its);
|
|
its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
|
|
its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
|
|
|
|
its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
|
|
<< GITS_BASER_ENTRY_SIZE_SHIFT);
|
|
|
|
its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
|
|
<< GITS_BASER_ENTRY_SIZE_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
|
|
{
|
|
/* We need to keep the ABI specific field values */
|
|
its->baser_coll_table &= ~GITS_BASER_VALID;
|
|
its->baser_device_table &= ~GITS_BASER_VALID;
|
|
its->cbaser = 0;
|
|
its->creadr = 0;
|
|
its->cwriter = 0;
|
|
its->enabled = 0;
|
|
vgic_its_free_device_list(kvm, its);
|
|
vgic_its_free_collection_list(kvm, its);
|
|
}
|
|
|
|
static int vgic_its_has_attr(struct kvm_device *dev,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_ADDR:
|
|
switch (attr->attr) {
|
|
case KVM_VGIC_ITS_ADDR_TYPE:
|
|
return 0;
|
|
}
|
|
break;
|
|
case KVM_DEV_ARM_VGIC_GRP_CTRL:
|
|
switch (attr->attr) {
|
|
case KVM_DEV_ARM_VGIC_CTRL_INIT:
|
|
return 0;
|
|
case KVM_DEV_ARM_ITS_CTRL_RESET:
|
|
return 0;
|
|
case KVM_DEV_ARM_ITS_SAVE_TABLES:
|
|
return 0;
|
|
case KVM_DEV_ARM_ITS_RESTORE_TABLES:
|
|
return 0;
|
|
}
|
|
break;
|
|
case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
|
|
return vgic_its_has_attr_regs(dev, attr);
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
|
|
static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
|
|
{
|
|
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
|
|
int ret = 0;
|
|
|
|
if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
|
|
return 0;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
mutex_lock(&its->its_lock);
|
|
|
|
if (!lock_all_vcpus(kvm)) {
|
|
mutex_unlock(&its->its_lock);
|
|
mutex_unlock(&kvm->lock);
|
|
return -EBUSY;
|
|
}
|
|
|
|
switch (attr) {
|
|
case KVM_DEV_ARM_ITS_CTRL_RESET:
|
|
vgic_its_reset(kvm, its);
|
|
break;
|
|
case KVM_DEV_ARM_ITS_SAVE_TABLES:
|
|
ret = abi->save_tables(its);
|
|
break;
|
|
case KVM_DEV_ARM_ITS_RESTORE_TABLES:
|
|
ret = abi->restore_tables(its);
|
|
break;
|
|
}
|
|
|
|
unlock_all_vcpus(kvm);
|
|
mutex_unlock(&its->its_lock);
|
|
mutex_unlock(&kvm->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int vgic_its_set_attr(struct kvm_device *dev,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
struct vgic_its *its = dev->private;
|
|
int ret;
|
|
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
|
|
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
|
|
unsigned long type = (unsigned long)attr->attr;
|
|
u64 addr;
|
|
|
|
if (type != KVM_VGIC_ITS_ADDR_TYPE)
|
|
return -ENODEV;
|
|
|
|
if (copy_from_user(&addr, uaddr, sizeof(addr)))
|
|
return -EFAULT;
|
|
|
|
ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
|
|
addr, SZ_64K);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return vgic_register_its_iodev(dev->kvm, its, addr);
|
|
}
|
|
case KVM_DEV_ARM_VGIC_GRP_CTRL:
|
|
return vgic_its_ctrl(dev->kvm, its, attr->attr);
|
|
case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
|
|
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
|
|
u64 reg;
|
|
|
|
if (get_user(reg, uaddr))
|
|
return -EFAULT;
|
|
|
|
return vgic_its_attr_regs_access(dev, attr, ®, true);
|
|
}
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
|
|
static int vgic_its_get_attr(struct kvm_device *dev,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
|
|
struct vgic_its *its = dev->private;
|
|
u64 addr = its->vgic_its_base;
|
|
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
|
|
unsigned long type = (unsigned long)attr->attr;
|
|
|
|
if (type != KVM_VGIC_ITS_ADDR_TYPE)
|
|
return -ENODEV;
|
|
|
|
if (copy_to_user(uaddr, &addr, sizeof(addr)))
|
|
return -EFAULT;
|
|
break;
|
|
}
|
|
case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
|
|
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
|
|
u64 reg;
|
|
int ret;
|
|
|
|
ret = vgic_its_attr_regs_access(dev, attr, ®, false);
|
|
if (ret)
|
|
return ret;
|
|
return put_user(reg, uaddr);
|
|
}
|
|
default:
|
|
return -ENXIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct kvm_device_ops kvm_arm_vgic_its_ops = {
|
|
.name = "kvm-arm-vgic-its",
|
|
.create = vgic_its_create,
|
|
.destroy = vgic_its_destroy,
|
|
.set_attr = vgic_its_set_attr,
|
|
.get_attr = vgic_its_get_attr,
|
|
.has_attr = vgic_its_has_attr,
|
|
};
|
|
|
|
int kvm_vgic_register_its_device(void)
|
|
{
|
|
return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
|
|
KVM_DEV_TYPE_ARM_VGIC_ITS);
|
|
}
|