Michael Forney 88699c024f iommu/amd: Fix typo in macro parameter name
IVRS_GET_SBDF_ID is only called with fn as the fourth parameter,
so this had no effect, but fixing the name will avoid bugs if that
ever changes.

Signed-off-by: Michael Forney <mforney@mforney.org>
Reviewed-by: Vasant Hegde <vasant.hegde@amd.com>
Link: https://lore.kernel.org/r/381fbc430c0ccdd78b3b696cfc0c32b233526ca5.1669159392.git.mforney@mforney.org
Signed-off-by: Joerg Roedel <jroedel@suse.de>
2022-12-05 11:48:24 +01:00

3691 lines
91 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
* Author: Joerg Roedel <jroedel@suse.de>
* Leo Duran <leo.duran@amd.com>
*/
#define pr_fmt(fmt) "AMD-Vi: " fmt
#define dev_fmt(fmt) pr_fmt(fmt)
#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/list.h>
#include <linux/bitmap.h>
#include <linux/slab.h>
#include <linux/syscore_ops.h>
#include <linux/interrupt.h>
#include <linux/msi.h>
#include <linux/irq.h>
#include <linux/amd-iommu.h>
#include <linux/export.h>
#include <linux/kmemleak.h>
#include <linux/cc_platform.h>
#include <linux/iopoll.h>
#include <asm/pci-direct.h>
#include <asm/iommu.h>
#include <asm/apic.h>
#include <asm/gart.h>
#include <asm/x86_init.h>
#include <asm/io_apic.h>
#include <asm/irq_remapping.h>
#include <asm/set_memory.h>
#include <linux/crash_dump.h>
#include "amd_iommu.h"
#include "../irq_remapping.h"
/*
* definitions for the ACPI scanning code
*/
#define IVRS_HEADER_LENGTH 48
#define ACPI_IVHD_TYPE_MAX_SUPPORTED 0x40
#define ACPI_IVMD_TYPE_ALL 0x20
#define ACPI_IVMD_TYPE 0x21
#define ACPI_IVMD_TYPE_RANGE 0x22
#define IVHD_DEV_ALL 0x01
#define IVHD_DEV_SELECT 0x02
#define IVHD_DEV_SELECT_RANGE_START 0x03
#define IVHD_DEV_RANGE_END 0x04
#define IVHD_DEV_ALIAS 0x42
#define IVHD_DEV_ALIAS_RANGE 0x43
#define IVHD_DEV_EXT_SELECT 0x46
#define IVHD_DEV_EXT_SELECT_RANGE 0x47
#define IVHD_DEV_SPECIAL 0x48
#define IVHD_DEV_ACPI_HID 0xf0
#define UID_NOT_PRESENT 0
#define UID_IS_INTEGER 1
#define UID_IS_CHARACTER 2
#define IVHD_SPECIAL_IOAPIC 1
#define IVHD_SPECIAL_HPET 2
#define IVHD_FLAG_HT_TUN_EN_MASK 0x01
#define IVHD_FLAG_PASSPW_EN_MASK 0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
#define IVHD_FLAG_ISOC_EN_MASK 0x08
#define IVMD_FLAG_EXCL_RANGE 0x08
#define IVMD_FLAG_IW 0x04
#define IVMD_FLAG_IR 0x02
#define IVMD_FLAG_UNITY_MAP 0x01
#define ACPI_DEVFLAG_INITPASS 0x01
#define ACPI_DEVFLAG_EXTINT 0x02
#define ACPI_DEVFLAG_NMI 0x04
#define ACPI_DEVFLAG_SYSMGT1 0x10
#define ACPI_DEVFLAG_SYSMGT2 0x20
#define ACPI_DEVFLAG_LINT0 0x40
#define ACPI_DEVFLAG_LINT1 0x80
#define ACPI_DEVFLAG_ATSDIS 0x10000000
#define LOOP_TIMEOUT 2000000
#define IVRS_GET_SBDF_ID(seg, bus, dev, fn) (((seg & 0xffff) << 16) | ((bus & 0xff) << 8) \
| ((dev & 0x1f) << 3) | (fn & 0x7))
/*
* ACPI table definitions
*
* These data structures are laid over the table to parse the important values
* out of it.
*/
/*
* structure describing one IOMMU in the ACPI table. Typically followed by one
* or more ivhd_entrys.
*/
struct ivhd_header {
u8 type;
u8 flags;
u16 length;
u16 devid;
u16 cap_ptr;
u64 mmio_phys;
u16 pci_seg;
u16 info;
u32 efr_attr;
/* Following only valid on IVHD type 11h and 40h */
u64 efr_reg; /* Exact copy of MMIO_EXT_FEATURES */
u64 efr_reg2;
} __attribute__((packed));
/*
* A device entry describing which devices a specific IOMMU translates and
* which requestor ids they use.
*/
struct ivhd_entry {
u8 type;
u16 devid;
u8 flags;
struct_group(ext_hid,
u32 ext;
u32 hidh;
);
u64 cid;
u8 uidf;
u8 uidl;
u8 uid;
} __attribute__((packed));
/*
* An AMD IOMMU memory definition structure. It defines things like exclusion
* ranges for devices and regions that should be unity mapped.
*/
struct ivmd_header {
u8 type;
u8 flags;
u16 length;
u16 devid;
u16 aux;
u16 pci_seg;
u8 resv[6];
u64 range_start;
u64 range_length;
} __attribute__((packed));
bool amd_iommu_dump;
bool amd_iommu_irq_remap __read_mostly;
enum io_pgtable_fmt amd_iommu_pgtable = AMD_IOMMU_V1;
int amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_VAPIC;
static int amd_iommu_xt_mode = IRQ_REMAP_XAPIC_MODE;
static bool amd_iommu_detected;
static bool amd_iommu_disabled __initdata;
static bool amd_iommu_force_enable __initdata;
static int amd_iommu_target_ivhd_type;
/* Global EFR and EFR2 registers */
u64 amd_iommu_efr;
u64 amd_iommu_efr2;
/* SNP is enabled on the system? */
bool amd_iommu_snp_en;
EXPORT_SYMBOL(amd_iommu_snp_en);
LIST_HEAD(amd_iommu_pci_seg_list); /* list of all PCI segments */
LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
system */
/* Array to assign indices to IOMMUs*/
struct amd_iommu *amd_iommus[MAX_IOMMUS];
/* Number of IOMMUs present in the system */
static int amd_iommus_present;
/* IOMMUs have a non-present cache? */
bool amd_iommu_np_cache __read_mostly;
bool amd_iommu_iotlb_sup __read_mostly = true;
u32 amd_iommu_max_pasid __read_mostly = ~0;
bool amd_iommu_v2_present __read_mostly;
static bool amd_iommu_pc_present __read_mostly;
bool amdr_ivrs_remap_support __read_mostly;
bool amd_iommu_force_isolation __read_mostly;
/*
* AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
* to know which ones are already in use.
*/
unsigned long *amd_iommu_pd_alloc_bitmap;
enum iommu_init_state {
IOMMU_START_STATE,
IOMMU_IVRS_DETECTED,
IOMMU_ACPI_FINISHED,
IOMMU_ENABLED,
IOMMU_PCI_INIT,
IOMMU_INTERRUPTS_EN,
IOMMU_INITIALIZED,
IOMMU_NOT_FOUND,
IOMMU_INIT_ERROR,
IOMMU_CMDLINE_DISABLED,
};
/* Early ioapic and hpet maps from kernel command line */
#define EARLY_MAP_SIZE 4
static struct devid_map __initdata early_ioapic_map[EARLY_MAP_SIZE];
static struct devid_map __initdata early_hpet_map[EARLY_MAP_SIZE];
static struct acpihid_map_entry __initdata early_acpihid_map[EARLY_MAP_SIZE];
static int __initdata early_ioapic_map_size;
static int __initdata early_hpet_map_size;
static int __initdata early_acpihid_map_size;
static bool __initdata cmdline_maps;
static enum iommu_init_state init_state = IOMMU_START_STATE;
static int amd_iommu_enable_interrupts(void);
static int __init iommu_go_to_state(enum iommu_init_state state);
static void init_device_table_dma(struct amd_iommu_pci_seg *pci_seg);
static bool amd_iommu_pre_enabled = true;
static u32 amd_iommu_ivinfo __initdata;
bool translation_pre_enabled(struct amd_iommu *iommu)
{
return (iommu->flags & AMD_IOMMU_FLAG_TRANS_PRE_ENABLED);
}
static void clear_translation_pre_enabled(struct amd_iommu *iommu)
{
iommu->flags &= ~AMD_IOMMU_FLAG_TRANS_PRE_ENABLED;
}
static void init_translation_status(struct amd_iommu *iommu)
{
u64 ctrl;
ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
if (ctrl & (1<<CONTROL_IOMMU_EN))
iommu->flags |= AMD_IOMMU_FLAG_TRANS_PRE_ENABLED;
}
static inline unsigned long tbl_size(int entry_size, int last_bdf)
{
unsigned shift = PAGE_SHIFT +
get_order((last_bdf + 1) * entry_size);
return 1UL << shift;
}
int amd_iommu_get_num_iommus(void)
{
return amd_iommus_present;
}
/*
* Iterate through all the IOMMUs to get common EFR
* masks among all IOMMUs and warn if found inconsistency.
*/
static void get_global_efr(void)
{
struct amd_iommu *iommu;
for_each_iommu(iommu) {
u64 tmp = iommu->features;
u64 tmp2 = iommu->features2;
if (list_is_first(&iommu->list, &amd_iommu_list)) {
amd_iommu_efr = tmp;
amd_iommu_efr2 = tmp2;
continue;
}
if (amd_iommu_efr == tmp &&
amd_iommu_efr2 == tmp2)
continue;
pr_err(FW_BUG
"Found inconsistent EFR/EFR2 %#llx,%#llx (global %#llx,%#llx) on iommu%d (%04x:%02x:%02x.%01x).\n",
tmp, tmp2, amd_iommu_efr, amd_iommu_efr2,
iommu->index, iommu->pci_seg->id,
PCI_BUS_NUM(iommu->devid), PCI_SLOT(iommu->devid),
PCI_FUNC(iommu->devid));
amd_iommu_efr &= tmp;
amd_iommu_efr2 &= tmp2;
}
pr_info("Using global IVHD EFR:%#llx, EFR2:%#llx\n", amd_iommu_efr, amd_iommu_efr2);
}
static bool check_feature_on_all_iommus(u64 mask)
{
return !!(amd_iommu_efr & mask);
}
/*
* For IVHD type 0x11/0x40, EFR is also available via IVHD.
* Default to IVHD EFR since it is available sooner
* (i.e. before PCI init).
*/
static void __init early_iommu_features_init(struct amd_iommu *iommu,
struct ivhd_header *h)
{
if (amd_iommu_ivinfo & IOMMU_IVINFO_EFRSUP) {
iommu->features = h->efr_reg;
iommu->features2 = h->efr_reg2;
}
if (amd_iommu_ivinfo & IOMMU_IVINFO_DMA_REMAP)
amdr_ivrs_remap_support = true;
}
/* Access to l1 and l2 indexed register spaces */
static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
{
u32 val;
pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
pci_read_config_dword(iommu->dev, 0xfc, &val);
return val;
}
static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
{
pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
pci_write_config_dword(iommu->dev, 0xfc, val);
pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
}
static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
{
u32 val;
pci_write_config_dword(iommu->dev, 0xf0, address);
pci_read_config_dword(iommu->dev, 0xf4, &val);
return val;
}
static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
{
pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
pci_write_config_dword(iommu->dev, 0xf4, val);
}
/****************************************************************************
*
* AMD IOMMU MMIO register space handling functions
*
* These functions are used to program the IOMMU device registers in
* MMIO space required for that driver.
*
****************************************************************************/
/*
* This function set the exclusion range in the IOMMU. DMA accesses to the
* exclusion range are passed through untranslated
*/
static void iommu_set_exclusion_range(struct amd_iommu *iommu)
{
u64 start = iommu->exclusion_start & PAGE_MASK;
u64 limit = (start + iommu->exclusion_length - 1) & PAGE_MASK;
u64 entry;
if (!iommu->exclusion_start)
return;
entry = start | MMIO_EXCL_ENABLE_MASK;
memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
&entry, sizeof(entry));
entry = limit;
memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
&entry, sizeof(entry));
}
static void iommu_set_cwwb_range(struct amd_iommu *iommu)
{
u64 start = iommu_virt_to_phys((void *)iommu->cmd_sem);
u64 entry = start & PM_ADDR_MASK;
if (!check_feature_on_all_iommus(FEATURE_SNP))
return;
/* Note:
* Re-purpose Exclusion base/limit registers for Completion wait
* write-back base/limit.
*/
memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
&entry, sizeof(entry));
/* Note:
* Default to 4 Kbytes, which can be specified by setting base
* address equal to the limit address.
*/
memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
&entry, sizeof(entry));
}
/* Programs the physical address of the device table into the IOMMU hardware */
static void iommu_set_device_table(struct amd_iommu *iommu)
{
u64 entry;
u32 dev_table_size = iommu->pci_seg->dev_table_size;
void *dev_table = (void *)get_dev_table(iommu);
BUG_ON(iommu->mmio_base == NULL);
entry = iommu_virt_to_phys(dev_table);
entry |= (dev_table_size >> 12) - 1;
memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
&entry, sizeof(entry));
}
/* Generic functions to enable/disable certain features of the IOMMU. */
static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
{
u64 ctrl;
ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
ctrl |= (1ULL << bit);
writeq(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}
static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
{
u64 ctrl;
ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
ctrl &= ~(1ULL << bit);
writeq(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}
static void iommu_set_inv_tlb_timeout(struct amd_iommu *iommu, int timeout)
{
u64 ctrl;
ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
ctrl &= ~CTRL_INV_TO_MASK;
ctrl |= (timeout << CONTROL_INV_TIMEOUT) & CTRL_INV_TO_MASK;
writeq(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}
/* Function to enable the hardware */
static void iommu_enable(struct amd_iommu *iommu)
{
iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}
static void iommu_disable(struct amd_iommu *iommu)
{
if (!iommu->mmio_base)
return;
/* Disable command buffer */
iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
/* Disable event logging and event interrupts */
iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
/* Disable IOMMU GA_LOG */
iommu_feature_disable(iommu, CONTROL_GALOG_EN);
iommu_feature_disable(iommu, CONTROL_GAINT_EN);
/* Disable IOMMU hardware itself */
iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
}
/*
* mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
* the system has one.
*/
static u8 __iomem * __init iommu_map_mmio_space(u64 address, u64 end)
{
if (!request_mem_region(address, end, "amd_iommu")) {
pr_err("Can not reserve memory region %llx-%llx for mmio\n",
address, end);
pr_err("This is a BIOS bug. Please contact your hardware vendor\n");
return NULL;
}
return (u8 __iomem *)ioremap(address, end);
}
static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
if (iommu->mmio_base)
iounmap(iommu->mmio_base);
release_mem_region(iommu->mmio_phys, iommu->mmio_phys_end);
}
static inline u32 get_ivhd_header_size(struct ivhd_header *h)
{
u32 size = 0;
switch (h->type) {
case 0x10:
size = 24;
break;
case 0x11:
case 0x40:
size = 40;
break;
}
return size;
}
/****************************************************************************
*
* The functions below belong to the first pass of AMD IOMMU ACPI table
* parsing. In this pass we try to find out the highest device id this
* code has to handle. Upon this information the size of the shared data
* structures is determined later.
*
****************************************************************************/
/*
* This function calculates the length of a given IVHD entry
*/
static inline int ivhd_entry_length(u8 *ivhd)
{
u32 type = ((struct ivhd_entry *)ivhd)->type;
if (type < 0x80) {
return 0x04 << (*ivhd >> 6);
} else if (type == IVHD_DEV_ACPI_HID) {
/* For ACPI_HID, offset 21 is uid len */
return *((u8 *)ivhd + 21) + 22;
}
return 0;
}
/*
* After reading the highest device id from the IOMMU PCI capability header
* this function looks if there is a higher device id defined in the ACPI table
*/
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
u8 *p = (void *)h, *end = (void *)h;
struct ivhd_entry *dev;
int last_devid = -EINVAL;
u32 ivhd_size = get_ivhd_header_size(h);
if (!ivhd_size) {
pr_err("Unsupported IVHD type %#x\n", h->type);
return -EINVAL;
}
p += ivhd_size;
end += h->length;
while (p < end) {
dev = (struct ivhd_entry *)p;
switch (dev->type) {
case IVHD_DEV_ALL:
/* Use maximum BDF value for DEV_ALL */
return 0xffff;
case IVHD_DEV_SELECT:
case IVHD_DEV_RANGE_END:
case IVHD_DEV_ALIAS:
case IVHD_DEV_EXT_SELECT:
/* all the above subfield types refer to device ids */
if (dev->devid > last_devid)
last_devid = dev->devid;
break;
default:
break;
}
p += ivhd_entry_length(p);
}
WARN_ON(p != end);
return last_devid;
}
static int __init check_ivrs_checksum(struct acpi_table_header *table)
{
int i;
u8 checksum = 0, *p = (u8 *)table;
for (i = 0; i < table->length; ++i)
checksum += p[i];
if (checksum != 0) {
/* ACPI table corrupt */
pr_err(FW_BUG "IVRS invalid checksum\n");
return -ENODEV;
}
return 0;
}
/*
* Iterate over all IVHD entries in the ACPI table and find the highest device
* id which we need to handle. This is the first of three functions which parse
* the ACPI table. So we check the checksum here.
*/
static int __init find_last_devid_acpi(struct acpi_table_header *table, u16 pci_seg)
{
u8 *p = (u8 *)table, *end = (u8 *)table;
struct ivhd_header *h;
int last_devid, last_bdf = 0;
p += IVRS_HEADER_LENGTH;
end += table->length;
while (p < end) {
h = (struct ivhd_header *)p;
if (h->pci_seg == pci_seg &&
h->type == amd_iommu_target_ivhd_type) {
last_devid = find_last_devid_from_ivhd(h);
if (last_devid < 0)
return -EINVAL;
if (last_devid > last_bdf)
last_bdf = last_devid;
}
p += h->length;
}
WARN_ON(p != end);
return last_bdf;
}
/****************************************************************************
*
* The following functions belong to the code path which parses the ACPI table
* the second time. In this ACPI parsing iteration we allocate IOMMU specific
* data structures, initialize the per PCI segment device/alias/rlookup table
* and also basically initialize the hardware.
*
****************************************************************************/
/* Allocate per PCI segment device table */
static inline int __init alloc_dev_table(struct amd_iommu_pci_seg *pci_seg)
{
pci_seg->dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO | GFP_DMA32,
get_order(pci_seg->dev_table_size));
if (!pci_seg->dev_table)
return -ENOMEM;
return 0;
}
static inline void free_dev_table(struct amd_iommu_pci_seg *pci_seg)
{
free_pages((unsigned long)pci_seg->dev_table,
get_order(pci_seg->dev_table_size));
pci_seg->dev_table = NULL;
}
/* Allocate per PCI segment IOMMU rlookup table. */
static inline int __init alloc_rlookup_table(struct amd_iommu_pci_seg *pci_seg)
{
pci_seg->rlookup_table = (void *)__get_free_pages(
GFP_KERNEL | __GFP_ZERO,
get_order(pci_seg->rlookup_table_size));
if (pci_seg->rlookup_table == NULL)
return -ENOMEM;
return 0;
}
static inline void free_rlookup_table(struct amd_iommu_pci_seg *pci_seg)
{
free_pages((unsigned long)pci_seg->rlookup_table,
get_order(pci_seg->rlookup_table_size));
pci_seg->rlookup_table = NULL;
}
static inline int __init alloc_irq_lookup_table(struct amd_iommu_pci_seg *pci_seg)
{
pci_seg->irq_lookup_table = (void *)__get_free_pages(
GFP_KERNEL | __GFP_ZERO,
get_order(pci_seg->rlookup_table_size));
kmemleak_alloc(pci_seg->irq_lookup_table,
pci_seg->rlookup_table_size, 1, GFP_KERNEL);
if (pci_seg->irq_lookup_table == NULL)
return -ENOMEM;
return 0;
}
static inline void free_irq_lookup_table(struct amd_iommu_pci_seg *pci_seg)
{
kmemleak_free(pci_seg->irq_lookup_table);
free_pages((unsigned long)pci_seg->irq_lookup_table,
get_order(pci_seg->rlookup_table_size));
pci_seg->irq_lookup_table = NULL;
}
static int __init alloc_alias_table(struct amd_iommu_pci_seg *pci_seg)
{
int i;
pci_seg->alias_table = (void *)__get_free_pages(GFP_KERNEL,
get_order(pci_seg->alias_table_size));
if (!pci_seg->alias_table)
return -ENOMEM;
/*
* let all alias entries point to itself
*/
for (i = 0; i <= pci_seg->last_bdf; ++i)
pci_seg->alias_table[i] = i;
return 0;
}
static void __init free_alias_table(struct amd_iommu_pci_seg *pci_seg)
{
free_pages((unsigned long)pci_seg->alias_table,
get_order(pci_seg->alias_table_size));
pci_seg->alias_table = NULL;
}
/*
* Allocates the command buffer. This buffer is per AMD IOMMU. We can
* write commands to that buffer later and the IOMMU will execute them
* asynchronously
*/
static int __init alloc_command_buffer(struct amd_iommu *iommu)
{
iommu->cmd_buf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(CMD_BUFFER_SIZE));
return iommu->cmd_buf ? 0 : -ENOMEM;
}
/*
* This function restarts event logging in case the IOMMU experienced
* an event log buffer overflow.
*/
void amd_iommu_restart_event_logging(struct amd_iommu *iommu)
{
iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
}
/*
* This function resets the command buffer if the IOMMU stopped fetching
* commands from it.
*/
static void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
{
iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
iommu->cmd_buf_head = 0;
iommu->cmd_buf_tail = 0;
iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
}
/*
* This function writes the command buffer address to the hardware and
* enables it.
*/
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
{
u64 entry;
BUG_ON(iommu->cmd_buf == NULL);
entry = iommu_virt_to_phys(iommu->cmd_buf);
entry |= MMIO_CMD_SIZE_512;
memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
&entry, sizeof(entry));
amd_iommu_reset_cmd_buffer(iommu);
}
/*
* This function disables the command buffer
*/
static void iommu_disable_command_buffer(struct amd_iommu *iommu)
{
iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
}
static void __init free_command_buffer(struct amd_iommu *iommu)
{
free_pages((unsigned long)iommu->cmd_buf, get_order(CMD_BUFFER_SIZE));
}
static void *__init iommu_alloc_4k_pages(struct amd_iommu *iommu,
gfp_t gfp, size_t size)
{
int order = get_order(size);
void *buf = (void *)__get_free_pages(gfp, order);
if (buf &&
check_feature_on_all_iommus(FEATURE_SNP) &&
set_memory_4k((unsigned long)buf, (1 << order))) {
free_pages((unsigned long)buf, order);
buf = NULL;
}
return buf;
}
/* allocates the memory where the IOMMU will log its events to */
static int __init alloc_event_buffer(struct amd_iommu *iommu)
{
iommu->evt_buf = iommu_alloc_4k_pages(iommu, GFP_KERNEL | __GFP_ZERO,
EVT_BUFFER_SIZE);
return iommu->evt_buf ? 0 : -ENOMEM;
}
static void iommu_enable_event_buffer(struct amd_iommu *iommu)
{
u64 entry;
BUG_ON(iommu->evt_buf == NULL);
entry = iommu_virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
&entry, sizeof(entry));
/* set head and tail to zero manually */
writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
}
/*
* This function disables the event log buffer
*/
static void iommu_disable_event_buffer(struct amd_iommu *iommu)
{
iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
}
static void __init free_event_buffer(struct amd_iommu *iommu)
{
free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}
/* allocates the memory where the IOMMU will log its events to */
static int __init alloc_ppr_log(struct amd_iommu *iommu)
{
iommu->ppr_log = iommu_alloc_4k_pages(iommu, GFP_KERNEL | __GFP_ZERO,
PPR_LOG_SIZE);
return iommu->ppr_log ? 0 : -ENOMEM;
}
static void iommu_enable_ppr_log(struct amd_iommu *iommu)
{
u64 entry;
if (iommu->ppr_log == NULL)
return;
entry = iommu_virt_to_phys(iommu->ppr_log) | PPR_LOG_SIZE_512;
memcpy_toio(iommu->mmio_base + MMIO_PPR_LOG_OFFSET,
&entry, sizeof(entry));
/* set head and tail to zero manually */
writel(0x00, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
writel(0x00, iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
iommu_feature_enable(iommu, CONTROL_PPRLOG_EN);
iommu_feature_enable(iommu, CONTROL_PPR_EN);
}
static void __init free_ppr_log(struct amd_iommu *iommu)
{
free_pages((unsigned long)iommu->ppr_log, get_order(PPR_LOG_SIZE));
}
static void free_ga_log(struct amd_iommu *iommu)
{
#ifdef CONFIG_IRQ_REMAP
free_pages((unsigned long)iommu->ga_log, get_order(GA_LOG_SIZE));
free_pages((unsigned long)iommu->ga_log_tail, get_order(8));
#endif
}
#ifdef CONFIG_IRQ_REMAP
static int iommu_ga_log_enable(struct amd_iommu *iommu)
{
u32 status, i;
u64 entry;
if (!iommu->ga_log)
return -EINVAL;
entry = iommu_virt_to_phys(iommu->ga_log) | GA_LOG_SIZE_512;
memcpy_toio(iommu->mmio_base + MMIO_GA_LOG_BASE_OFFSET,
&entry, sizeof(entry));
entry = (iommu_virt_to_phys(iommu->ga_log_tail) &
(BIT_ULL(52)-1)) & ~7ULL;
memcpy_toio(iommu->mmio_base + MMIO_GA_LOG_TAIL_OFFSET,
&entry, sizeof(entry));
writel(0x00, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
writel(0x00, iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
iommu_feature_enable(iommu, CONTROL_GAINT_EN);
iommu_feature_enable(iommu, CONTROL_GALOG_EN);
for (i = 0; i < LOOP_TIMEOUT; ++i) {
status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
if (status & (MMIO_STATUS_GALOG_RUN_MASK))
break;
udelay(10);
}
if (WARN_ON(i >= LOOP_TIMEOUT))
return -EINVAL;
return 0;
}
static int iommu_init_ga_log(struct amd_iommu *iommu)
{
if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))
return 0;
iommu->ga_log = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(GA_LOG_SIZE));
if (!iommu->ga_log)
goto err_out;
iommu->ga_log_tail = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(8));
if (!iommu->ga_log_tail)
goto err_out;
return 0;
err_out:
free_ga_log(iommu);
return -EINVAL;
}
#endif /* CONFIG_IRQ_REMAP */
static int __init alloc_cwwb_sem(struct amd_iommu *iommu)
{
iommu->cmd_sem = iommu_alloc_4k_pages(iommu, GFP_KERNEL | __GFP_ZERO, 1);
return iommu->cmd_sem ? 0 : -ENOMEM;
}
static void __init free_cwwb_sem(struct amd_iommu *iommu)
{
if (iommu->cmd_sem)
free_page((unsigned long)iommu->cmd_sem);
}
static void iommu_enable_xt(struct amd_iommu *iommu)
{
#ifdef CONFIG_IRQ_REMAP
/*
* XT mode (32-bit APIC destination ID) requires
* GA mode (128-bit IRTE support) as a prerequisite.
*/
if (AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir) &&
amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE)
iommu_feature_enable(iommu, CONTROL_XT_EN);
#endif /* CONFIG_IRQ_REMAP */
}
static void iommu_enable_gt(struct amd_iommu *iommu)
{
if (!iommu_feature(iommu, FEATURE_GT))
return;
iommu_feature_enable(iommu, CONTROL_GT_EN);
}
/* sets a specific bit in the device table entry. */
static void __set_dev_entry_bit(struct dev_table_entry *dev_table,
u16 devid, u8 bit)
{
int i = (bit >> 6) & 0x03;
int _bit = bit & 0x3f;
dev_table[devid].data[i] |= (1UL << _bit);
}
static void set_dev_entry_bit(struct amd_iommu *iommu, u16 devid, u8 bit)
{
struct dev_table_entry *dev_table = get_dev_table(iommu);
return __set_dev_entry_bit(dev_table, devid, bit);
}
static int __get_dev_entry_bit(struct dev_table_entry *dev_table,
u16 devid, u8 bit)
{
int i = (bit >> 6) & 0x03;
int _bit = bit & 0x3f;
return (dev_table[devid].data[i] & (1UL << _bit)) >> _bit;
}
static int get_dev_entry_bit(struct amd_iommu *iommu, u16 devid, u8 bit)
{
struct dev_table_entry *dev_table = get_dev_table(iommu);
return __get_dev_entry_bit(dev_table, devid, bit);
}
static bool __copy_device_table(struct amd_iommu *iommu)
{
u64 int_ctl, int_tab_len, entry = 0;
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
struct dev_table_entry *old_devtb = NULL;
u32 lo, hi, devid, old_devtb_size;
phys_addr_t old_devtb_phys;
u16 dom_id, dte_v, irq_v;
gfp_t gfp_flag;
u64 tmp;
/* Each IOMMU use separate device table with the same size */
lo = readl(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET);
hi = readl(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET + 4);
entry = (((u64) hi) << 32) + lo;
old_devtb_size = ((entry & ~PAGE_MASK) + 1) << 12;
if (old_devtb_size != pci_seg->dev_table_size) {
pr_err("The device table size of IOMMU:%d is not expected!\n",
iommu->index);
return false;
}
/*
* When SME is enabled in the first kernel, the entry includes the
* memory encryption mask(sme_me_mask), we must remove the memory
* encryption mask to obtain the true physical address in kdump kernel.
*/
old_devtb_phys = __sme_clr(entry) & PAGE_MASK;
if (old_devtb_phys >= 0x100000000ULL) {
pr_err("The address of old device table is above 4G, not trustworthy!\n");
return false;
}
old_devtb = (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT) && is_kdump_kernel())
? (__force void *)ioremap_encrypted(old_devtb_phys,
pci_seg->dev_table_size)
: memremap(old_devtb_phys, pci_seg->dev_table_size, MEMREMAP_WB);
if (!old_devtb)
return false;
gfp_flag = GFP_KERNEL | __GFP_ZERO | GFP_DMA32;
pci_seg->old_dev_tbl_cpy = (void *)__get_free_pages(gfp_flag,
get_order(pci_seg->dev_table_size));
if (pci_seg->old_dev_tbl_cpy == NULL) {
pr_err("Failed to allocate memory for copying old device table!\n");
memunmap(old_devtb);
return false;
}
for (devid = 0; devid <= pci_seg->last_bdf; ++devid) {
pci_seg->old_dev_tbl_cpy[devid] = old_devtb[devid];
dom_id = old_devtb[devid].data[1] & DEV_DOMID_MASK;
dte_v = old_devtb[devid].data[0] & DTE_FLAG_V;
if (dte_v && dom_id) {
pci_seg->old_dev_tbl_cpy[devid].data[0] = old_devtb[devid].data[0];
pci_seg->old_dev_tbl_cpy[devid].data[1] = old_devtb[devid].data[1];
__set_bit(dom_id, amd_iommu_pd_alloc_bitmap);
/* If gcr3 table existed, mask it out */
if (old_devtb[devid].data[0] & DTE_FLAG_GV) {
tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
tmp |= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
pci_seg->old_dev_tbl_cpy[devid].data[1] &= ~tmp;
tmp = DTE_GCR3_VAL_A(~0ULL) << DTE_GCR3_SHIFT_A;
tmp |= DTE_FLAG_GV;
pci_seg->old_dev_tbl_cpy[devid].data[0] &= ~tmp;
}
}
irq_v = old_devtb[devid].data[2] & DTE_IRQ_REMAP_ENABLE;
int_ctl = old_devtb[devid].data[2] & DTE_IRQ_REMAP_INTCTL_MASK;
int_tab_len = old_devtb[devid].data[2] & DTE_INTTABLEN_MASK;
if (irq_v && (int_ctl || int_tab_len)) {
if ((int_ctl != DTE_IRQ_REMAP_INTCTL) ||
(int_tab_len != DTE_INTTABLEN)) {
pr_err("Wrong old irq remapping flag: %#x\n", devid);
memunmap(old_devtb);
return false;
}
pci_seg->old_dev_tbl_cpy[devid].data[2] = old_devtb[devid].data[2];
}
}
memunmap(old_devtb);
return true;
}
static bool copy_device_table(void)
{
struct amd_iommu *iommu;
struct amd_iommu_pci_seg *pci_seg;
if (!amd_iommu_pre_enabled)
return false;
pr_warn("Translation is already enabled - trying to copy translation structures\n");
/*
* All IOMMUs within PCI segment shares common device table.
* Hence copy device table only once per PCI segment.
*/
for_each_pci_segment(pci_seg) {
for_each_iommu(iommu) {
if (pci_seg->id != iommu->pci_seg->id)
continue;
if (!__copy_device_table(iommu))
return false;
break;
}
}
return true;
}
void amd_iommu_apply_erratum_63(struct amd_iommu *iommu, u16 devid)
{
int sysmgt;
sysmgt = get_dev_entry_bit(iommu, devid, DEV_ENTRY_SYSMGT1) |
(get_dev_entry_bit(iommu, devid, DEV_ENTRY_SYSMGT2) << 1);
if (sysmgt == 0x01)
set_dev_entry_bit(iommu, devid, DEV_ENTRY_IW);
}
/*
* This function takes the device specific flags read from the ACPI
* table and sets up the device table entry with that information
*/
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
u16 devid, u32 flags, u32 ext_flags)
{
if (flags & ACPI_DEVFLAG_INITPASS)
set_dev_entry_bit(iommu, devid, DEV_ENTRY_INIT_PASS);
if (flags & ACPI_DEVFLAG_EXTINT)
set_dev_entry_bit(iommu, devid, DEV_ENTRY_EINT_PASS);
if (flags & ACPI_DEVFLAG_NMI)
set_dev_entry_bit(iommu, devid, DEV_ENTRY_NMI_PASS);
if (flags & ACPI_DEVFLAG_SYSMGT1)
set_dev_entry_bit(iommu, devid, DEV_ENTRY_SYSMGT1);
if (flags & ACPI_DEVFLAG_SYSMGT2)
set_dev_entry_bit(iommu, devid, DEV_ENTRY_SYSMGT2);
if (flags & ACPI_DEVFLAG_LINT0)
set_dev_entry_bit(iommu, devid, DEV_ENTRY_LINT0_PASS);
if (flags & ACPI_DEVFLAG_LINT1)
set_dev_entry_bit(iommu, devid, DEV_ENTRY_LINT1_PASS);
amd_iommu_apply_erratum_63(iommu, devid);
amd_iommu_set_rlookup_table(iommu, devid);
}
int __init add_special_device(u8 type, u8 id, u32 *devid, bool cmd_line)
{
struct devid_map *entry;
struct list_head *list;
if (type == IVHD_SPECIAL_IOAPIC)
list = &ioapic_map;
else if (type == IVHD_SPECIAL_HPET)
list = &hpet_map;
else
return -EINVAL;
list_for_each_entry(entry, list, list) {
if (!(entry->id == id && entry->cmd_line))
continue;
pr_info("Command-line override present for %s id %d - ignoring\n",
type == IVHD_SPECIAL_IOAPIC ? "IOAPIC" : "HPET", id);
*devid = entry->devid;
return 0;
}
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->id = id;
entry->devid = *devid;
entry->cmd_line = cmd_line;
list_add_tail(&entry->list, list);
return 0;
}
static int __init add_acpi_hid_device(u8 *hid, u8 *uid, u32 *devid,
bool cmd_line)
{
struct acpihid_map_entry *entry;
struct list_head *list = &acpihid_map;
list_for_each_entry(entry, list, list) {
if (strcmp(entry->hid, hid) ||
(*uid && *entry->uid && strcmp(entry->uid, uid)) ||
!entry->cmd_line)
continue;
pr_info("Command-line override for hid:%s uid:%s\n",
hid, uid);
*devid = entry->devid;
return 0;
}
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
memcpy(entry->uid, uid, strlen(uid));
memcpy(entry->hid, hid, strlen(hid));
entry->devid = *devid;
entry->cmd_line = cmd_line;
entry->root_devid = (entry->devid & (~0x7));
pr_info("%s, add hid:%s, uid:%s, rdevid:%d\n",
entry->cmd_line ? "cmd" : "ivrs",
entry->hid, entry->uid, entry->root_devid);
list_add_tail(&entry->list, list);
return 0;
}
static int __init add_early_maps(void)
{
int i, ret;
for (i = 0; i < early_ioapic_map_size; ++i) {
ret = add_special_device(IVHD_SPECIAL_IOAPIC,
early_ioapic_map[i].id,
&early_ioapic_map[i].devid,
early_ioapic_map[i].cmd_line);
if (ret)
return ret;
}
for (i = 0; i < early_hpet_map_size; ++i) {
ret = add_special_device(IVHD_SPECIAL_HPET,
early_hpet_map[i].id,
&early_hpet_map[i].devid,
early_hpet_map[i].cmd_line);
if (ret)
return ret;
}
for (i = 0; i < early_acpihid_map_size; ++i) {
ret = add_acpi_hid_device(early_acpihid_map[i].hid,
early_acpihid_map[i].uid,
&early_acpihid_map[i].devid,
early_acpihid_map[i].cmd_line);
if (ret)
return ret;
}
return 0;
}
/*
* Takes a pointer to an AMD IOMMU entry in the ACPI table and
* initializes the hardware and our data structures with it.
*/
static int __init init_iommu_from_acpi(struct amd_iommu *iommu,
struct ivhd_header *h)
{
u8 *p = (u8 *)h;
u8 *end = p, flags = 0;
u16 devid = 0, devid_start = 0, devid_to = 0, seg_id;
u32 dev_i, ext_flags = 0;
bool alias = false;
struct ivhd_entry *e;
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
u32 ivhd_size;
int ret;
ret = add_early_maps();
if (ret)
return ret;
amd_iommu_apply_ivrs_quirks();
/*
* First save the recommended feature enable bits from ACPI
*/
iommu->acpi_flags = h->flags;
/*
* Done. Now parse the device entries
*/
ivhd_size = get_ivhd_header_size(h);
if (!ivhd_size) {
pr_err("Unsupported IVHD type %#x\n", h->type);
return -EINVAL;
}
p += ivhd_size;
end += h->length;
while (p < end) {
e = (struct ivhd_entry *)p;
seg_id = pci_seg->id;
switch (e->type) {
case IVHD_DEV_ALL:
DUMP_printk(" DEV_ALL\t\t\tflags: %02x\n", e->flags);
for (dev_i = 0; dev_i <= pci_seg->last_bdf; ++dev_i)
set_dev_entry_from_acpi(iommu, dev_i, e->flags, 0);
break;
case IVHD_DEV_SELECT:
DUMP_printk(" DEV_SELECT\t\t\t devid: %04x:%02x:%02x.%x "
"flags: %02x\n",
seg_id, PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags);
devid = e->devid;
set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
break;
case IVHD_DEV_SELECT_RANGE_START:
DUMP_printk(" DEV_SELECT_RANGE_START\t "
"devid: %04x:%02x:%02x.%x flags: %02x\n",
seg_id, PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags);
devid_start = e->devid;
flags = e->flags;
ext_flags = 0;
alias = false;
break;
case IVHD_DEV_ALIAS:
DUMP_printk(" DEV_ALIAS\t\t\t devid: %04x:%02x:%02x.%x "
"flags: %02x devid_to: %02x:%02x.%x\n",
seg_id, PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags,
PCI_BUS_NUM(e->ext >> 8),
PCI_SLOT(e->ext >> 8),
PCI_FUNC(e->ext >> 8));
devid = e->devid;
devid_to = e->ext >> 8;
set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
pci_seg->alias_table[devid] = devid_to;
break;
case IVHD_DEV_ALIAS_RANGE:
DUMP_printk(" DEV_ALIAS_RANGE\t\t "
"devid: %04x:%02x:%02x.%x flags: %02x "
"devid_to: %04x:%02x:%02x.%x\n",
seg_id, PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags,
seg_id, PCI_BUS_NUM(e->ext >> 8),
PCI_SLOT(e->ext >> 8),
PCI_FUNC(e->ext >> 8));
devid_start = e->devid;
flags = e->flags;
devid_to = e->ext >> 8;
ext_flags = 0;
alias = true;
break;
case IVHD_DEV_EXT_SELECT:
DUMP_printk(" DEV_EXT_SELECT\t\t devid: %04x:%02x:%02x.%x "
"flags: %02x ext: %08x\n",
seg_id, PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags, e->ext);
devid = e->devid;
set_dev_entry_from_acpi(iommu, devid, e->flags,
e->ext);
break;
case IVHD_DEV_EXT_SELECT_RANGE:
DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
"%04x:%02x:%02x.%x flags: %02x ext: %08x\n",
seg_id, PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags, e->ext);
devid_start = e->devid;
flags = e->flags;
ext_flags = e->ext;
alias = false;
break;
case IVHD_DEV_RANGE_END:
DUMP_printk(" DEV_RANGE_END\t\t devid: %04x:%02x:%02x.%x\n",
seg_id, PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid));
devid = e->devid;
for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
if (alias) {
pci_seg->alias_table[dev_i] = devid_to;
set_dev_entry_from_acpi(iommu,
devid_to, flags, ext_flags);
}
set_dev_entry_from_acpi(iommu, dev_i,
flags, ext_flags);
}
break;
case IVHD_DEV_SPECIAL: {
u8 handle, type;
const char *var;
u32 devid;
int ret;
handle = e->ext & 0xff;
devid = PCI_SEG_DEVID_TO_SBDF(seg_id, (e->ext >> 8));
type = (e->ext >> 24) & 0xff;
if (type == IVHD_SPECIAL_IOAPIC)
var = "IOAPIC";
else if (type == IVHD_SPECIAL_HPET)
var = "HPET";
else
var = "UNKNOWN";
DUMP_printk(" DEV_SPECIAL(%s[%d])\t\tdevid: %04x:%02x:%02x.%x\n",
var, (int)handle,
seg_id, PCI_BUS_NUM(devid),
PCI_SLOT(devid),
PCI_FUNC(devid));
ret = add_special_device(type, handle, &devid, false);
if (ret)
return ret;
/*
* add_special_device might update the devid in case a
* command-line override is present. So call
* set_dev_entry_from_acpi after add_special_device.
*/
set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
break;
}
case IVHD_DEV_ACPI_HID: {
u32 devid;
u8 hid[ACPIHID_HID_LEN];
u8 uid[ACPIHID_UID_LEN];
int ret;
if (h->type != 0x40) {
pr_err(FW_BUG "Invalid IVHD device type %#x\n",
e->type);
break;
}
BUILD_BUG_ON(sizeof(e->ext_hid) != ACPIHID_HID_LEN - 1);
memcpy(hid, &e->ext_hid, ACPIHID_HID_LEN - 1);
hid[ACPIHID_HID_LEN - 1] = '\0';
if (!(*hid)) {
pr_err(FW_BUG "Invalid HID.\n");
break;
}
uid[0] = '\0';
switch (e->uidf) {
case UID_NOT_PRESENT:
if (e->uidl != 0)
pr_warn(FW_BUG "Invalid UID length.\n");
break;
case UID_IS_INTEGER:
sprintf(uid, "%d", e->uid);
break;
case UID_IS_CHARACTER:
memcpy(uid, &e->uid, e->uidl);
uid[e->uidl] = '\0';
break;
default:
break;
}
devid = PCI_SEG_DEVID_TO_SBDF(seg_id, e->devid);
DUMP_printk(" DEV_ACPI_HID(%s[%s])\t\tdevid: %04x:%02x:%02x.%x\n",
hid, uid, seg_id,
PCI_BUS_NUM(devid),
PCI_SLOT(devid),
PCI_FUNC(devid));
flags = e->flags;
ret = add_acpi_hid_device(hid, uid, &devid, false);
if (ret)
return ret;
/*
* add_special_device might update the devid in case a
* command-line override is present. So call
* set_dev_entry_from_acpi after add_special_device.
*/
set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
break;
}
default:
break;
}
p += ivhd_entry_length(p);
}
return 0;
}
/* Allocate PCI segment data structure */
static struct amd_iommu_pci_seg *__init alloc_pci_segment(u16 id,
struct acpi_table_header *ivrs_base)
{
struct amd_iommu_pci_seg *pci_seg;
int last_bdf;
/*
* First parse ACPI tables to find the largest Bus/Dev/Func we need to
* handle in this PCI segment. Upon this information the shared data
* structures for the PCI segments in the system will be allocated.
*/
last_bdf = find_last_devid_acpi(ivrs_base, id);
if (last_bdf < 0)
return NULL;
pci_seg = kzalloc(sizeof(struct amd_iommu_pci_seg), GFP_KERNEL);
if (pci_seg == NULL)
return NULL;
pci_seg->last_bdf = last_bdf;
DUMP_printk("PCI segment : 0x%0x, last bdf : 0x%04x\n", id, last_bdf);
pci_seg->dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE, last_bdf);
pci_seg->alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE, last_bdf);
pci_seg->rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE, last_bdf);
pci_seg->id = id;
init_llist_head(&pci_seg->dev_data_list);
INIT_LIST_HEAD(&pci_seg->unity_map);
list_add_tail(&pci_seg->list, &amd_iommu_pci_seg_list);
if (alloc_dev_table(pci_seg))
return NULL;
if (alloc_alias_table(pci_seg))
return NULL;
if (alloc_rlookup_table(pci_seg))
return NULL;
return pci_seg;
}
static struct amd_iommu_pci_seg *__init get_pci_segment(u16 id,
struct acpi_table_header *ivrs_base)
{
struct amd_iommu_pci_seg *pci_seg;
for_each_pci_segment(pci_seg) {
if (pci_seg->id == id)
return pci_seg;
}
return alloc_pci_segment(id, ivrs_base);
}
static void __init free_pci_segments(void)
{
struct amd_iommu_pci_seg *pci_seg, *next;
for_each_pci_segment_safe(pci_seg, next) {
list_del(&pci_seg->list);
free_irq_lookup_table(pci_seg);
free_rlookup_table(pci_seg);
free_alias_table(pci_seg);
free_dev_table(pci_seg);
kfree(pci_seg);
}
}
static void __init free_iommu_one(struct amd_iommu *iommu)
{
free_cwwb_sem(iommu);
free_command_buffer(iommu);
free_event_buffer(iommu);
free_ppr_log(iommu);
free_ga_log(iommu);
iommu_unmap_mmio_space(iommu);
}
static void __init free_iommu_all(void)
{
struct amd_iommu *iommu, *next;
for_each_iommu_safe(iommu, next) {
list_del(&iommu->list);
free_iommu_one(iommu);
kfree(iommu);
}
}
/*
* Family15h Model 10h-1fh erratum 746 (IOMMU Logging May Stall Translations)
* Workaround:
* BIOS should disable L2B micellaneous clock gating by setting
* L2_L2B_CK_GATE_CONTROL[CKGateL2BMiscDisable](D0F2xF4_x90[2]) = 1b
*/
static void amd_iommu_erratum_746_workaround(struct amd_iommu *iommu)
{
u32 value;
if ((boot_cpu_data.x86 != 0x15) ||
(boot_cpu_data.x86_model < 0x10) ||
(boot_cpu_data.x86_model > 0x1f))
return;
pci_write_config_dword(iommu->dev, 0xf0, 0x90);
pci_read_config_dword(iommu->dev, 0xf4, &value);
if (value & BIT(2))
return;
/* Select NB indirect register 0x90 and enable writing */
pci_write_config_dword(iommu->dev, 0xf0, 0x90 | (1 << 8));
pci_write_config_dword(iommu->dev, 0xf4, value | 0x4);
pci_info(iommu->dev, "Applying erratum 746 workaround\n");
/* Clear the enable writing bit */
pci_write_config_dword(iommu->dev, 0xf0, 0x90);
}
/*
* Family15h Model 30h-3fh (IOMMU Mishandles ATS Write Permission)
* Workaround:
* BIOS should enable ATS write permission check by setting
* L2_DEBUG_3[AtsIgnoreIWDis](D0F2xF4_x47[0]) = 1b
*/
static void amd_iommu_ats_write_check_workaround(struct amd_iommu *iommu)
{
u32 value;
if ((boot_cpu_data.x86 != 0x15) ||
(boot_cpu_data.x86_model < 0x30) ||
(boot_cpu_data.x86_model > 0x3f))
return;
/* Test L2_DEBUG_3[AtsIgnoreIWDis] == 1 */
value = iommu_read_l2(iommu, 0x47);
if (value & BIT(0))
return;
/* Set L2_DEBUG_3[AtsIgnoreIWDis] = 1 */
iommu_write_l2(iommu, 0x47, value | BIT(0));
pci_info(iommu->dev, "Applying ATS write check workaround\n");
}
/*
* This function glues the initialization function for one IOMMU
* together and also allocates the command buffer and programs the
* hardware. It does NOT enable the IOMMU. This is done afterwards.
*/
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h,
struct acpi_table_header *ivrs_base)
{
struct amd_iommu_pci_seg *pci_seg;
pci_seg = get_pci_segment(h->pci_seg, ivrs_base);
if (pci_seg == NULL)
return -ENOMEM;
iommu->pci_seg = pci_seg;
raw_spin_lock_init(&iommu->lock);
iommu->cmd_sem_val = 0;
/* Add IOMMU to internal data structures */
list_add_tail(&iommu->list, &amd_iommu_list);
iommu->index = amd_iommus_present++;
if (unlikely(iommu->index >= MAX_IOMMUS)) {
WARN(1, "System has more IOMMUs than supported by this driver\n");
return -ENOSYS;
}
/* Index is fine - add IOMMU to the array */
amd_iommus[iommu->index] = iommu;
/*
* Copy data from ACPI table entry to the iommu struct
*/
iommu->devid = h->devid;
iommu->cap_ptr = h->cap_ptr;
iommu->mmio_phys = h->mmio_phys;
switch (h->type) {
case 0x10:
/* Check if IVHD EFR contains proper max banks/counters */
if ((h->efr_attr != 0) &&
((h->efr_attr & (0xF << 13)) != 0) &&
((h->efr_attr & (0x3F << 17)) != 0))
iommu->mmio_phys_end = MMIO_REG_END_OFFSET;
else
iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET;
/*
* Note: GA (128-bit IRTE) mode requires cmpxchg16b supports.
* GAM also requires GA mode. Therefore, we need to
* check cmpxchg16b support before enabling it.
*/
if (!boot_cpu_has(X86_FEATURE_CX16) ||
((h->efr_attr & (0x1 << IOMMU_FEAT_GASUP_SHIFT)) == 0))
amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY;
break;
case 0x11:
case 0x40:
if (h->efr_reg & (1 << 9))
iommu->mmio_phys_end = MMIO_REG_END_OFFSET;
else
iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET;
/*
* Note: GA (128-bit IRTE) mode requires cmpxchg16b supports.
* XT, GAM also requires GA mode. Therefore, we need to
* check cmpxchg16b support before enabling them.
*/
if (!boot_cpu_has(X86_FEATURE_CX16) ||
((h->efr_reg & (0x1 << IOMMU_EFR_GASUP_SHIFT)) == 0)) {
amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY;
break;
}
if (h->efr_reg & BIT(IOMMU_EFR_XTSUP_SHIFT))
amd_iommu_xt_mode = IRQ_REMAP_X2APIC_MODE;
early_iommu_features_init(iommu, h);
break;
default:
return -EINVAL;
}
iommu->mmio_base = iommu_map_mmio_space(iommu->mmio_phys,
iommu->mmio_phys_end);
if (!iommu->mmio_base)
return -ENOMEM;
return init_iommu_from_acpi(iommu, h);
}
static int __init init_iommu_one_late(struct amd_iommu *iommu)
{
int ret;
if (alloc_cwwb_sem(iommu))
return -ENOMEM;
if (alloc_command_buffer(iommu))
return -ENOMEM;
if (alloc_event_buffer(iommu))
return -ENOMEM;
iommu->int_enabled = false;
init_translation_status(iommu);
if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
iommu_disable(iommu);
clear_translation_pre_enabled(iommu);
pr_warn("Translation was enabled for IOMMU:%d but we are not in kdump mode\n",
iommu->index);
}
if (amd_iommu_pre_enabled)
amd_iommu_pre_enabled = translation_pre_enabled(iommu);
if (amd_iommu_irq_remap) {
ret = amd_iommu_create_irq_domain(iommu);
if (ret)
return ret;
}
/*
* Make sure IOMMU is not considered to translate itself. The IVRS
* table tells us so, but this is a lie!
*/
iommu->pci_seg->rlookup_table[iommu->devid] = NULL;
return 0;
}
/**
* get_highest_supported_ivhd_type - Look up the appropriate IVHD type
* @ivrs: Pointer to the IVRS header
*
* This function search through all IVDB of the maximum supported IVHD
*/
static u8 get_highest_supported_ivhd_type(struct acpi_table_header *ivrs)
{
u8 *base = (u8 *)ivrs;
struct ivhd_header *ivhd = (struct ivhd_header *)
(base + IVRS_HEADER_LENGTH);
u8 last_type = ivhd->type;
u16 devid = ivhd->devid;
while (((u8 *)ivhd - base < ivrs->length) &&
(ivhd->type <= ACPI_IVHD_TYPE_MAX_SUPPORTED)) {
u8 *p = (u8 *) ivhd;
if (ivhd->devid == devid)
last_type = ivhd->type;
ivhd = (struct ivhd_header *)(p + ivhd->length);
}
return last_type;
}
/*
* Iterates over all IOMMU entries in the ACPI table, allocates the
* IOMMU structure and initializes it with init_iommu_one()
*/
static int __init init_iommu_all(struct acpi_table_header *table)
{
u8 *p = (u8 *)table, *end = (u8 *)table;
struct ivhd_header *h;
struct amd_iommu *iommu;
int ret;
end += table->length;
p += IVRS_HEADER_LENGTH;
/* Phase 1: Process all IVHD blocks */
while (p < end) {
h = (struct ivhd_header *)p;
if (*p == amd_iommu_target_ivhd_type) {
DUMP_printk("device: %04x:%02x:%02x.%01x cap: %04x "
"flags: %01x info %04x\n",
h->pci_seg, PCI_BUS_NUM(h->devid),
PCI_SLOT(h->devid), PCI_FUNC(h->devid),
h->cap_ptr, h->flags, h->info);
DUMP_printk(" mmio-addr: %016llx\n",
h->mmio_phys);
iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
if (iommu == NULL)
return -ENOMEM;
ret = init_iommu_one(iommu, h, table);
if (ret)
return ret;
}
p += h->length;
}
WARN_ON(p != end);
/* Phase 2 : Early feature support check */
get_global_efr();
/* Phase 3 : Enabling IOMMU features */
for_each_iommu(iommu) {
ret = init_iommu_one_late(iommu);
if (ret)
return ret;
}
return 0;
}
static void init_iommu_perf_ctr(struct amd_iommu *iommu)
{
u64 val;
struct pci_dev *pdev = iommu->dev;
if (!iommu_feature(iommu, FEATURE_PC))
return;
amd_iommu_pc_present = true;
pci_info(pdev, "IOMMU performance counters supported\n");
val = readl(iommu->mmio_base + MMIO_CNTR_CONF_OFFSET);
iommu->max_banks = (u8) ((val >> 12) & 0x3f);
iommu->max_counters = (u8) ((val >> 7) & 0xf);
return;
}
static ssize_t amd_iommu_show_cap(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amd_iommu *iommu = dev_to_amd_iommu(dev);
return sprintf(buf, "%x\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, amd_iommu_show_cap, NULL);
static ssize_t amd_iommu_show_features(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amd_iommu *iommu = dev_to_amd_iommu(dev);
return sprintf(buf, "%llx:%llx\n", iommu->features2, iommu->features);
}
static DEVICE_ATTR(features, S_IRUGO, amd_iommu_show_features, NULL);
static struct attribute *amd_iommu_attrs[] = {
&dev_attr_cap.attr,
&dev_attr_features.attr,
NULL,
};
static struct attribute_group amd_iommu_group = {
.name = "amd-iommu",
.attrs = amd_iommu_attrs,
};
static const struct attribute_group *amd_iommu_groups[] = {
&amd_iommu_group,
NULL,
};
/*
* Note: IVHD 0x11 and 0x40 also contains exact copy
* of the IOMMU Extended Feature Register [MMIO Offset 0030h].
* Default to EFR in IVHD since it is available sooner (i.e. before PCI init).
*/
static void __init late_iommu_features_init(struct amd_iommu *iommu)
{
u64 features, features2;
if (!(iommu->cap & (1 << IOMMU_CAP_EFR)))
return;
/* read extended feature bits */
features = readq(iommu->mmio_base + MMIO_EXT_FEATURES);
features2 = readq(iommu->mmio_base + MMIO_EXT_FEATURES2);
if (!iommu->features) {
iommu->features = features;
iommu->features2 = features2;
return;
}
/*
* Sanity check and warn if EFR values from
* IVHD and MMIO conflict.
*/
if (features != iommu->features ||
features2 != iommu->features2) {
pr_warn(FW_WARN
"EFR mismatch. Use IVHD EFR (%#llx : %#llx), EFR2 (%#llx : %#llx).\n",
features, iommu->features,
features2, iommu->features2);
}
}
static int __init iommu_init_pci(struct amd_iommu *iommu)
{
int cap_ptr = iommu->cap_ptr;
int ret;
iommu->dev = pci_get_domain_bus_and_slot(iommu->pci_seg->id,
PCI_BUS_NUM(iommu->devid),
iommu->devid & 0xff);
if (!iommu->dev)
return -ENODEV;
/* Prevent binding other PCI device drivers to IOMMU devices */
iommu->dev->match_driver = false;
pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
&iommu->cap);
if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB)))
amd_iommu_iotlb_sup = false;
late_iommu_features_init(iommu);
if (iommu_feature(iommu, FEATURE_GT)) {
int glxval;
u32 max_pasid;
u64 pasmax;
pasmax = iommu->features & FEATURE_PASID_MASK;
pasmax >>= FEATURE_PASID_SHIFT;
max_pasid = (1 << (pasmax + 1)) - 1;
amd_iommu_max_pasid = min(amd_iommu_max_pasid, max_pasid);
BUG_ON(amd_iommu_max_pasid & ~PASID_MASK);
glxval = iommu->features & FEATURE_GLXVAL_MASK;
glxval >>= FEATURE_GLXVAL_SHIFT;
if (amd_iommu_max_glx_val == -1)
amd_iommu_max_glx_val = glxval;
else
amd_iommu_max_glx_val = min(amd_iommu_max_glx_val, glxval);
}
if (iommu_feature(iommu, FEATURE_GT) &&
iommu_feature(iommu, FEATURE_PPR)) {
iommu->is_iommu_v2 = true;
amd_iommu_v2_present = true;
}
if (iommu_feature(iommu, FEATURE_PPR) && alloc_ppr_log(iommu))
return -ENOMEM;
if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE)) {
pr_info("Using strict mode due to virtualization\n");
iommu_set_dma_strict();
amd_iommu_np_cache = true;
}
init_iommu_perf_ctr(iommu);
if (amd_iommu_pgtable == AMD_IOMMU_V2) {
if (!iommu_feature(iommu, FEATURE_GIOSUP) ||
!iommu_feature(iommu, FEATURE_GT)) {
pr_warn("Cannot enable v2 page table for DMA-API. Fallback to v1.\n");
amd_iommu_pgtable = AMD_IOMMU_V1;
} else if (iommu_default_passthrough()) {
pr_warn("V2 page table doesn't support passthrough mode. Fallback to v1.\n");
amd_iommu_pgtable = AMD_IOMMU_V1;
}
}
if (is_rd890_iommu(iommu->dev)) {
int i, j;
iommu->root_pdev =
pci_get_domain_bus_and_slot(iommu->pci_seg->id,
iommu->dev->bus->number,
PCI_DEVFN(0, 0));
/*
* Some rd890 systems may not be fully reconfigured by the
* BIOS, so it's necessary for us to store this information so
* it can be reprogrammed on resume
*/
pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
&iommu->stored_addr_lo);
pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
&iommu->stored_addr_hi);
/* Low bit locks writes to configuration space */
iommu->stored_addr_lo &= ~1;
for (i = 0; i < 6; i++)
for (j = 0; j < 0x12; j++)
iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);
for (i = 0; i < 0x83; i++)
iommu->stored_l2[i] = iommu_read_l2(iommu, i);
}
amd_iommu_erratum_746_workaround(iommu);
amd_iommu_ats_write_check_workaround(iommu);
ret = iommu_device_sysfs_add(&iommu->iommu, &iommu->dev->dev,
amd_iommu_groups, "ivhd%d", iommu->index);
if (ret)
return ret;
iommu_device_register(&iommu->iommu, &amd_iommu_ops, NULL);
return pci_enable_device(iommu->dev);
}
static void print_iommu_info(void)
{
static const char * const feat_str[] = {
"PreF", "PPR", "X2APIC", "NX", "GT", "[5]",
"IA", "GA", "HE", "PC"
};
struct amd_iommu *iommu;
for_each_iommu(iommu) {
struct pci_dev *pdev = iommu->dev;
int i;
pci_info(pdev, "Found IOMMU cap 0x%x\n", iommu->cap_ptr);
if (iommu->cap & (1 << IOMMU_CAP_EFR)) {
pr_info("Extended features (%#llx, %#llx):", iommu->features, iommu->features2);
for (i = 0; i < ARRAY_SIZE(feat_str); ++i) {
if (iommu_feature(iommu, (1ULL << i)))
pr_cont(" %s", feat_str[i]);
}
if (iommu->features & FEATURE_GAM_VAPIC)
pr_cont(" GA_vAPIC");
if (iommu->features & FEATURE_SNP)
pr_cont(" SNP");
pr_cont("\n");
}
}
if (irq_remapping_enabled) {
pr_info("Interrupt remapping enabled\n");
if (amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE)
pr_info("X2APIC enabled\n");
}
if (amd_iommu_pgtable == AMD_IOMMU_V2)
pr_info("V2 page table enabled\n");
}
static int __init amd_iommu_init_pci(void)
{
struct amd_iommu *iommu;
struct amd_iommu_pci_seg *pci_seg;
int ret;
for_each_iommu(iommu) {
ret = iommu_init_pci(iommu);
if (ret) {
pr_err("IOMMU%d: Failed to initialize IOMMU Hardware (error=%d)!\n",
iommu->index, ret);
goto out;
}
/* Need to setup range after PCI init */
iommu_set_cwwb_range(iommu);
}
/*
* Order is important here to make sure any unity map requirements are
* fulfilled. The unity mappings are created and written to the device
* table during the iommu_init_pci() call.
*
* After that we call init_device_table_dma() to make sure any
* uninitialized DTE will block DMA, and in the end we flush the caches
* of all IOMMUs to make sure the changes to the device table are
* active.
*/
for_each_pci_segment(pci_seg)
init_device_table_dma(pci_seg);
for_each_iommu(iommu)
iommu_flush_all_caches(iommu);
print_iommu_info();
out:
return ret;
}
/****************************************************************************
*
* The following functions initialize the MSI interrupts for all IOMMUs
* in the system. It's a bit challenging because there could be multiple
* IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
* pci_dev.
*
****************************************************************************/
static int iommu_setup_msi(struct amd_iommu *iommu)
{
int r;
r = pci_enable_msi(iommu->dev);
if (r)
return r;
r = request_threaded_irq(iommu->dev->irq,
amd_iommu_int_handler,
amd_iommu_int_thread,
0, "AMD-Vi",
iommu);
if (r) {
pci_disable_msi(iommu->dev);
return r;
}
return 0;
}
union intcapxt {
u64 capxt;
struct {
u64 reserved_0 : 2,
dest_mode_logical : 1,
reserved_1 : 5,
destid_0_23 : 24,
vector : 8,
reserved_2 : 16,
destid_24_31 : 8;
};
} __attribute__ ((packed));
static struct irq_chip intcapxt_controller;
static int intcapxt_irqdomain_activate(struct irq_domain *domain,
struct irq_data *irqd, bool reserve)
{
return 0;
}
static void intcapxt_irqdomain_deactivate(struct irq_domain *domain,
struct irq_data *irqd)
{
}
static int intcapxt_irqdomain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
struct irq_alloc_info *info = arg;
int i, ret;
if (!info || info->type != X86_IRQ_ALLOC_TYPE_AMDVI)
return -EINVAL;
ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
if (ret < 0)
return ret;
for (i = virq; i < virq + nr_irqs; i++) {
struct irq_data *irqd = irq_domain_get_irq_data(domain, i);
irqd->chip = &intcapxt_controller;
irqd->chip_data = info->data;
__irq_set_handler(i, handle_edge_irq, 0, "edge");
}
return ret;
}
static void intcapxt_irqdomain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
irq_domain_free_irqs_top(domain, virq, nr_irqs);
}
static void intcapxt_unmask_irq(struct irq_data *irqd)
{
struct amd_iommu *iommu = irqd->chip_data;
struct irq_cfg *cfg = irqd_cfg(irqd);
union intcapxt xt;
xt.capxt = 0ULL;
xt.dest_mode_logical = apic->dest_mode_logical;
xt.vector = cfg->vector;
xt.destid_0_23 = cfg->dest_apicid & GENMASK(23, 0);
xt.destid_24_31 = cfg->dest_apicid >> 24;
/**
* Current IOMMU implementation uses the same IRQ for all
* 3 IOMMU interrupts.
*/
writeq(xt.capxt, iommu->mmio_base + MMIO_INTCAPXT_EVT_OFFSET);
writeq(xt.capxt, iommu->mmio_base + MMIO_INTCAPXT_PPR_OFFSET);
writeq(xt.capxt, iommu->mmio_base + MMIO_INTCAPXT_GALOG_OFFSET);
}
static void intcapxt_mask_irq(struct irq_data *irqd)
{
struct amd_iommu *iommu = irqd->chip_data;
writeq(0, iommu->mmio_base + MMIO_INTCAPXT_EVT_OFFSET);
writeq(0, iommu->mmio_base + MMIO_INTCAPXT_PPR_OFFSET);
writeq(0, iommu->mmio_base + MMIO_INTCAPXT_GALOG_OFFSET);
}
static int intcapxt_set_affinity(struct irq_data *irqd,
const struct cpumask *mask, bool force)
{
struct irq_data *parent = irqd->parent_data;
int ret;
ret = parent->chip->irq_set_affinity(parent, mask, force);
if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
return ret;
return 0;
}
static int intcapxt_set_wake(struct irq_data *irqd, unsigned int on)
{
return on ? -EOPNOTSUPP : 0;
}
static struct irq_chip intcapxt_controller = {
.name = "IOMMU-MSI",
.irq_unmask = intcapxt_unmask_irq,
.irq_mask = intcapxt_mask_irq,
.irq_ack = irq_chip_ack_parent,
.irq_retrigger = irq_chip_retrigger_hierarchy,
.irq_set_affinity = intcapxt_set_affinity,
.irq_set_wake = intcapxt_set_wake,
.flags = IRQCHIP_MASK_ON_SUSPEND,
};
static const struct irq_domain_ops intcapxt_domain_ops = {
.alloc = intcapxt_irqdomain_alloc,
.free = intcapxt_irqdomain_free,
.activate = intcapxt_irqdomain_activate,
.deactivate = intcapxt_irqdomain_deactivate,
};
static struct irq_domain *iommu_irqdomain;
static struct irq_domain *iommu_get_irqdomain(void)
{
struct fwnode_handle *fn;
/* No need for locking here (yet) as the init is single-threaded */
if (iommu_irqdomain)
return iommu_irqdomain;
fn = irq_domain_alloc_named_fwnode("AMD-Vi-MSI");
if (!fn)
return NULL;
iommu_irqdomain = irq_domain_create_hierarchy(x86_vector_domain, 0, 0,
fn, &intcapxt_domain_ops,
NULL);
if (!iommu_irqdomain)
irq_domain_free_fwnode(fn);
return iommu_irqdomain;
}
static int iommu_setup_intcapxt(struct amd_iommu *iommu)
{
struct irq_domain *domain;
struct irq_alloc_info info;
int irq, ret;
domain = iommu_get_irqdomain();
if (!domain)
return -ENXIO;
init_irq_alloc_info(&info, NULL);
info.type = X86_IRQ_ALLOC_TYPE_AMDVI;
info.data = iommu;
irq = irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info);
if (irq < 0) {
irq_domain_remove(domain);
return irq;
}
ret = request_threaded_irq(irq, amd_iommu_int_handler,
amd_iommu_int_thread, 0, "AMD-Vi", iommu);
if (ret) {
irq_domain_free_irqs(irq, 1);
irq_domain_remove(domain);
return ret;
}
return 0;
}
static int iommu_init_irq(struct amd_iommu *iommu)
{
int ret;
if (iommu->int_enabled)
goto enable_faults;
if (amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE)
ret = iommu_setup_intcapxt(iommu);
else if (iommu->dev->msi_cap)
ret = iommu_setup_msi(iommu);
else
ret = -ENODEV;
if (ret)
return ret;
iommu->int_enabled = true;
enable_faults:
if (amd_iommu_xt_mode == IRQ_REMAP_X2APIC_MODE)
iommu_feature_enable(iommu, CONTROL_INTCAPXT_EN);
iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
if (iommu->ppr_log != NULL)
iommu_feature_enable(iommu, CONTROL_PPRINT_EN);
return 0;
}
/****************************************************************************
*
* The next functions belong to the third pass of parsing the ACPI
* table. In this last pass the memory mapping requirements are
* gathered (like exclusion and unity mapping ranges).
*
****************************************************************************/
static void __init free_unity_maps(void)
{
struct unity_map_entry *entry, *next;
struct amd_iommu_pci_seg *p, *pci_seg;
for_each_pci_segment_safe(pci_seg, p) {
list_for_each_entry_safe(entry, next, &pci_seg->unity_map, list) {
list_del(&entry->list);
kfree(entry);
}
}
}
/* called for unity map ACPI definition */
static int __init init_unity_map_range(struct ivmd_header *m,
struct acpi_table_header *ivrs_base)
{
struct unity_map_entry *e = NULL;
struct amd_iommu_pci_seg *pci_seg;
char *s;
pci_seg = get_pci_segment(m->pci_seg, ivrs_base);
if (pci_seg == NULL)
return -ENOMEM;
e = kzalloc(sizeof(*e), GFP_KERNEL);
if (e == NULL)
return -ENOMEM;
switch (m->type) {
default:
kfree(e);
return 0;
case ACPI_IVMD_TYPE:
s = "IVMD_TYPEi\t\t\t";
e->devid_start = e->devid_end = m->devid;
break;
case ACPI_IVMD_TYPE_ALL:
s = "IVMD_TYPE_ALL\t\t";
e->devid_start = 0;
e->devid_end = pci_seg->last_bdf;
break;
case ACPI_IVMD_TYPE_RANGE:
s = "IVMD_TYPE_RANGE\t\t";
e->devid_start = m->devid;
e->devid_end = m->aux;
break;
}
e->address_start = PAGE_ALIGN(m->range_start);
e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
e->prot = m->flags >> 1;
/*
* Treat per-device exclusion ranges as r/w unity-mapped regions
* since some buggy BIOSes might lead to the overwritten exclusion
* range (exclusion_start and exclusion_length members). This
* happens when there are multiple exclusion ranges (IVMD entries)
* defined in ACPI table.
*/
if (m->flags & IVMD_FLAG_EXCL_RANGE)
e->prot = (IVMD_FLAG_IW | IVMD_FLAG_IR) >> 1;
DUMP_printk("%s devid_start: %04x:%02x:%02x.%x devid_end: "
"%04x:%02x:%02x.%x range_start: %016llx range_end: %016llx"
" flags: %x\n", s, m->pci_seg,
PCI_BUS_NUM(e->devid_start), PCI_SLOT(e->devid_start),
PCI_FUNC(e->devid_start), m->pci_seg,
PCI_BUS_NUM(e->devid_end),
PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
e->address_start, e->address_end, m->flags);
list_add_tail(&e->list, &pci_seg->unity_map);
return 0;
}
/* iterates over all memory definitions we find in the ACPI table */
static int __init init_memory_definitions(struct acpi_table_header *table)
{
u8 *p = (u8 *)table, *end = (u8 *)table;
struct ivmd_header *m;
end += table->length;
p += IVRS_HEADER_LENGTH;
while (p < end) {
m = (struct ivmd_header *)p;
if (m->flags & (IVMD_FLAG_UNITY_MAP | IVMD_FLAG_EXCL_RANGE))
init_unity_map_range(m, table);
p += m->length;
}
return 0;
}
/*
* Init the device table to not allow DMA access for devices
*/
static void init_device_table_dma(struct amd_iommu_pci_seg *pci_seg)
{
u32 devid;
struct dev_table_entry *dev_table = pci_seg->dev_table;
if (dev_table == NULL)
return;
for (devid = 0; devid <= pci_seg->last_bdf; ++devid) {
__set_dev_entry_bit(dev_table, devid, DEV_ENTRY_VALID);
if (!amd_iommu_snp_en)
__set_dev_entry_bit(dev_table, devid, DEV_ENTRY_TRANSLATION);
}
}
static void __init uninit_device_table_dma(struct amd_iommu_pci_seg *pci_seg)
{
u32 devid;
struct dev_table_entry *dev_table = pci_seg->dev_table;
if (dev_table == NULL)
return;
for (devid = 0; devid <= pci_seg->last_bdf; ++devid) {
dev_table[devid].data[0] = 0ULL;
dev_table[devid].data[1] = 0ULL;
}
}
static void init_device_table(void)
{
struct amd_iommu_pci_seg *pci_seg;
u32 devid;
if (!amd_iommu_irq_remap)
return;
for_each_pci_segment(pci_seg) {
for (devid = 0; devid <= pci_seg->last_bdf; ++devid)
__set_dev_entry_bit(pci_seg->dev_table,
devid, DEV_ENTRY_IRQ_TBL_EN);
}
}
static void iommu_init_flags(struct amd_iommu *iommu)
{
iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
iommu_feature_disable(iommu, CONTROL_ISOC_EN);
/*
* make IOMMU memory accesses cache coherent
*/
iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
/* Set IOTLB invalidation timeout to 1s */
iommu_set_inv_tlb_timeout(iommu, CTRL_INV_TO_1S);
}
static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
{
int i, j;
u32 ioc_feature_control;
struct pci_dev *pdev = iommu->root_pdev;
/* RD890 BIOSes may not have completely reconfigured the iommu */
if (!is_rd890_iommu(iommu->dev) || !pdev)
return;
/*
* First, we need to ensure that the iommu is enabled. This is
* controlled by a register in the northbridge
*/
/* Select Northbridge indirect register 0x75 and enable writing */
pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
pci_read_config_dword(pdev, 0x64, &ioc_feature_control);
/* Enable the iommu */
if (!(ioc_feature_control & 0x1))
pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);
/* Restore the iommu BAR */
pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
iommu->stored_addr_lo);
pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
iommu->stored_addr_hi);
/* Restore the l1 indirect regs for each of the 6 l1s */
for (i = 0; i < 6; i++)
for (j = 0; j < 0x12; j++)
iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);
/* Restore the l2 indirect regs */
for (i = 0; i < 0x83; i++)
iommu_write_l2(iommu, i, iommu->stored_l2[i]);
/* Lock PCI setup registers */
pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
iommu->stored_addr_lo | 1);
}
static void iommu_enable_ga(struct amd_iommu *iommu)
{
#ifdef CONFIG_IRQ_REMAP
switch (amd_iommu_guest_ir) {
case AMD_IOMMU_GUEST_IR_VAPIC:
case AMD_IOMMU_GUEST_IR_LEGACY_GA:
iommu_feature_enable(iommu, CONTROL_GA_EN);
iommu->irte_ops = &irte_128_ops;
break;
default:
iommu->irte_ops = &irte_32_ops;
break;
}
#endif
}
static void early_enable_iommu(struct amd_iommu *iommu)
{
iommu_disable(iommu);
iommu_init_flags(iommu);
iommu_set_device_table(iommu);
iommu_enable_command_buffer(iommu);
iommu_enable_event_buffer(iommu);
iommu_set_exclusion_range(iommu);
iommu_enable_ga(iommu);
iommu_enable_xt(iommu);
iommu_enable(iommu);
iommu_flush_all_caches(iommu);
}
/*
* This function finally enables all IOMMUs found in the system after
* they have been initialized.
*
* Or if in kdump kernel and IOMMUs are all pre-enabled, try to copy
* the old content of device table entries. Not this case or copy failed,
* just continue as normal kernel does.
*/
static void early_enable_iommus(void)
{
struct amd_iommu *iommu;
struct amd_iommu_pci_seg *pci_seg;
if (!copy_device_table()) {
/*
* If come here because of failure in copying device table from old
* kernel with all IOMMUs enabled, print error message and try to
* free allocated old_dev_tbl_cpy.
*/
if (amd_iommu_pre_enabled)
pr_err("Failed to copy DEV table from previous kernel.\n");
for_each_pci_segment(pci_seg) {
if (pci_seg->old_dev_tbl_cpy != NULL) {
free_pages((unsigned long)pci_seg->old_dev_tbl_cpy,
get_order(pci_seg->dev_table_size));
pci_seg->old_dev_tbl_cpy = NULL;
}
}
for_each_iommu(iommu) {
clear_translation_pre_enabled(iommu);
early_enable_iommu(iommu);
}
} else {
pr_info("Copied DEV table from previous kernel.\n");
for_each_pci_segment(pci_seg) {
free_pages((unsigned long)pci_seg->dev_table,
get_order(pci_seg->dev_table_size));
pci_seg->dev_table = pci_seg->old_dev_tbl_cpy;
}
for_each_iommu(iommu) {
iommu_disable_command_buffer(iommu);
iommu_disable_event_buffer(iommu);
iommu_enable_command_buffer(iommu);
iommu_enable_event_buffer(iommu);
iommu_enable_ga(iommu);
iommu_enable_xt(iommu);
iommu_set_device_table(iommu);
iommu_flush_all_caches(iommu);
}
}
}
static void enable_iommus_v2(void)
{
struct amd_iommu *iommu;
for_each_iommu(iommu) {
iommu_enable_ppr_log(iommu);
iommu_enable_gt(iommu);
}
}
static void enable_iommus_vapic(void)
{
#ifdef CONFIG_IRQ_REMAP
u32 status, i;
struct amd_iommu *iommu;
for_each_iommu(iommu) {
/*
* Disable GALog if already running. It could have been enabled
* in the previous boot before kdump.
*/
status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
if (!(status & MMIO_STATUS_GALOG_RUN_MASK))
continue;
iommu_feature_disable(iommu, CONTROL_GALOG_EN);
iommu_feature_disable(iommu, CONTROL_GAINT_EN);
/*
* Need to set and poll check the GALOGRun bit to zero before
* we can set/ modify GA Log registers safely.
*/
for (i = 0; i < LOOP_TIMEOUT; ++i) {
status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
if (!(status & MMIO_STATUS_GALOG_RUN_MASK))
break;
udelay(10);
}
if (WARN_ON(i >= LOOP_TIMEOUT))
return;
}
if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
!check_feature_on_all_iommus(FEATURE_GAM_VAPIC)) {
amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY_GA;
return;
}
if (amd_iommu_snp_en &&
!FEATURE_SNPAVICSUP_GAM(amd_iommu_efr2)) {
pr_warn("Force to disable Virtual APIC due to SNP\n");
amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY_GA;
return;
}
/* Enabling GAM and SNPAVIC support */
for_each_iommu(iommu) {
if (iommu_init_ga_log(iommu) ||
iommu_ga_log_enable(iommu))
return;
iommu_feature_enable(iommu, CONTROL_GAM_EN);
if (amd_iommu_snp_en)
iommu_feature_enable(iommu, CONTROL_SNPAVIC_EN);
}
amd_iommu_irq_ops.capability |= (1 << IRQ_POSTING_CAP);
pr_info("Virtual APIC enabled\n");
#endif
}
static void enable_iommus(void)
{
early_enable_iommus();
enable_iommus_vapic();
enable_iommus_v2();
}
static void disable_iommus(void)
{
struct amd_iommu *iommu;
for_each_iommu(iommu)
iommu_disable(iommu);
#ifdef CONFIG_IRQ_REMAP
if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))
amd_iommu_irq_ops.capability &= ~(1 << IRQ_POSTING_CAP);
#endif
}
/*
* Suspend/Resume support
* disable suspend until real resume implemented
*/
static void amd_iommu_resume(void)
{
struct amd_iommu *iommu;
for_each_iommu(iommu)
iommu_apply_resume_quirks(iommu);
/* re-load the hardware */
enable_iommus();
amd_iommu_enable_interrupts();
}
static int amd_iommu_suspend(void)
{
/* disable IOMMUs to go out of the way for BIOS */
disable_iommus();
return 0;
}
static struct syscore_ops amd_iommu_syscore_ops = {
.suspend = amd_iommu_suspend,
.resume = amd_iommu_resume,
};
static void __init free_iommu_resources(void)
{
kmem_cache_destroy(amd_iommu_irq_cache);
amd_iommu_irq_cache = NULL;
free_iommu_all();
free_pci_segments();
}
/* SB IOAPIC is always on this device in AMD systems */
#define IOAPIC_SB_DEVID ((0x00 << 8) | PCI_DEVFN(0x14, 0))
static bool __init check_ioapic_information(void)
{
const char *fw_bug = FW_BUG;
bool ret, has_sb_ioapic;
int idx;
has_sb_ioapic = false;
ret = false;
/*
* If we have map overrides on the kernel command line the
* messages in this function might not describe firmware bugs
* anymore - so be careful
*/
if (cmdline_maps)
fw_bug = "";
for (idx = 0; idx < nr_ioapics; idx++) {
int devid, id = mpc_ioapic_id(idx);
devid = get_ioapic_devid(id);
if (devid < 0) {
pr_err("%s: IOAPIC[%d] not in IVRS table\n",
fw_bug, id);
ret = false;
} else if (devid == IOAPIC_SB_DEVID) {
has_sb_ioapic = true;
ret = true;
}
}
if (!has_sb_ioapic) {
/*
* We expect the SB IOAPIC to be listed in the IVRS
* table. The system timer is connected to the SB IOAPIC
* and if we don't have it in the list the system will
* panic at boot time. This situation usually happens
* when the BIOS is buggy and provides us the wrong
* device id for the IOAPIC in the system.
*/
pr_err("%s: No southbridge IOAPIC found\n", fw_bug);
}
if (!ret)
pr_err("Disabling interrupt remapping\n");
return ret;
}
static void __init free_dma_resources(void)
{
free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
get_order(MAX_DOMAIN_ID/8));
amd_iommu_pd_alloc_bitmap = NULL;
free_unity_maps();
}
static void __init ivinfo_init(void *ivrs)
{
amd_iommu_ivinfo = *((u32 *)(ivrs + IOMMU_IVINFO_OFFSET));
}
/*
* This is the hardware init function for AMD IOMMU in the system.
* This function is called either from amd_iommu_init or from the interrupt
* remapping setup code.
*
* This function basically parses the ACPI table for AMD IOMMU (IVRS)
* four times:
*
* 1 pass) Discover the most comprehensive IVHD type to use.
*
* 2 pass) Find the highest PCI device id the driver has to handle.
* Upon this information the size of the data structures is
* determined that needs to be allocated.
*
* 3 pass) Initialize the data structures just allocated with the
* information in the ACPI table about available AMD IOMMUs
* in the system. It also maps the PCI devices in the
* system to specific IOMMUs
*
* 4 pass) After the basic data structures are allocated and
* initialized we update them with information about memory
* remapping requirements parsed out of the ACPI table in
* this last pass.
*
* After everything is set up the IOMMUs are enabled and the necessary
* hotplug and suspend notifiers are registered.
*/
static int __init early_amd_iommu_init(void)
{
struct acpi_table_header *ivrs_base;
int remap_cache_sz, ret;
acpi_status status;
if (!amd_iommu_detected)
return -ENODEV;
status = acpi_get_table("IVRS", 0, &ivrs_base);
if (status == AE_NOT_FOUND)
return -ENODEV;
else if (ACPI_FAILURE(status)) {
const char *err = acpi_format_exception(status);
pr_err("IVRS table error: %s\n", err);
return -EINVAL;
}
/*
* Validate checksum here so we don't need to do it when
* we actually parse the table
*/
ret = check_ivrs_checksum(ivrs_base);
if (ret)
goto out;
ivinfo_init(ivrs_base);
amd_iommu_target_ivhd_type = get_highest_supported_ivhd_type(ivrs_base);
DUMP_printk("Using IVHD type %#x\n", amd_iommu_target_ivhd_type);
/* Device table - directly used by all IOMMUs */
ret = -ENOMEM;
amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
GFP_KERNEL | __GFP_ZERO,
get_order(MAX_DOMAIN_ID/8));
if (amd_iommu_pd_alloc_bitmap == NULL)
goto out;
/*
* never allocate domain 0 because its used as the non-allocated and
* error value placeholder
*/
__set_bit(0, amd_iommu_pd_alloc_bitmap);
/*
* now the data structures are allocated and basically initialized
* start the real acpi table scan
*/
ret = init_iommu_all(ivrs_base);
if (ret)
goto out;
/* Disable any previously enabled IOMMUs */
if (!is_kdump_kernel() || amd_iommu_disabled)
disable_iommus();
if (amd_iommu_irq_remap)
amd_iommu_irq_remap = check_ioapic_information();
if (amd_iommu_irq_remap) {
struct amd_iommu_pci_seg *pci_seg;
/*
* Interrupt remapping enabled, create kmem_cache for the
* remapping tables.
*/
ret = -ENOMEM;
if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
remap_cache_sz = MAX_IRQS_PER_TABLE * sizeof(u32);
else
remap_cache_sz = MAX_IRQS_PER_TABLE * (sizeof(u64) * 2);
amd_iommu_irq_cache = kmem_cache_create("irq_remap_cache",
remap_cache_sz,
DTE_INTTAB_ALIGNMENT,
0, NULL);
if (!amd_iommu_irq_cache)
goto out;
for_each_pci_segment(pci_seg) {
if (alloc_irq_lookup_table(pci_seg))
goto out;
}
}
ret = init_memory_definitions(ivrs_base);
if (ret)
goto out;
/* init the device table */
init_device_table();
out:
/* Don't leak any ACPI memory */
acpi_put_table(ivrs_base);
return ret;
}
static int amd_iommu_enable_interrupts(void)
{
struct amd_iommu *iommu;
int ret = 0;
for_each_iommu(iommu) {
ret = iommu_init_irq(iommu);
if (ret)
goto out;
}
out:
return ret;
}
static bool __init detect_ivrs(void)
{
struct acpi_table_header *ivrs_base;
acpi_status status;
int i;
status = acpi_get_table("IVRS", 0, &ivrs_base);
if (status == AE_NOT_FOUND)
return false;
else if (ACPI_FAILURE(status)) {
const char *err = acpi_format_exception(status);
pr_err("IVRS table error: %s\n", err);
return false;
}
acpi_put_table(ivrs_base);
if (amd_iommu_force_enable)
goto out;
/* Don't use IOMMU if there is Stoney Ridge graphics */
for (i = 0; i < 32; i++) {
u32 pci_id;
pci_id = read_pci_config(0, i, 0, 0);
if ((pci_id & 0xffff) == 0x1002 && (pci_id >> 16) == 0x98e4) {
pr_info("Disable IOMMU on Stoney Ridge\n");
return false;
}
}
out:
/* Make sure ACS will be enabled during PCI probe */
pci_request_acs();
return true;
}
/****************************************************************************
*
* AMD IOMMU Initialization State Machine
*
****************************************************************************/
static int __init state_next(void)
{
int ret = 0;
switch (init_state) {
case IOMMU_START_STATE:
if (!detect_ivrs()) {
init_state = IOMMU_NOT_FOUND;
ret = -ENODEV;
} else {
init_state = IOMMU_IVRS_DETECTED;
}
break;
case IOMMU_IVRS_DETECTED:
if (amd_iommu_disabled) {
init_state = IOMMU_CMDLINE_DISABLED;
ret = -EINVAL;
} else {
ret = early_amd_iommu_init();
init_state = ret ? IOMMU_INIT_ERROR : IOMMU_ACPI_FINISHED;
}
break;
case IOMMU_ACPI_FINISHED:
early_enable_iommus();
x86_platform.iommu_shutdown = disable_iommus;
init_state = IOMMU_ENABLED;
break;
case IOMMU_ENABLED:
register_syscore_ops(&amd_iommu_syscore_ops);
ret = amd_iommu_init_pci();
init_state = ret ? IOMMU_INIT_ERROR : IOMMU_PCI_INIT;
enable_iommus_vapic();
enable_iommus_v2();
break;
case IOMMU_PCI_INIT:
ret = amd_iommu_enable_interrupts();
init_state = ret ? IOMMU_INIT_ERROR : IOMMU_INTERRUPTS_EN;
break;
case IOMMU_INTERRUPTS_EN:
init_state = IOMMU_INITIALIZED;
break;
case IOMMU_INITIALIZED:
/* Nothing to do */
break;
case IOMMU_NOT_FOUND:
case IOMMU_INIT_ERROR:
case IOMMU_CMDLINE_DISABLED:
/* Error states => do nothing */
ret = -EINVAL;
break;
default:
/* Unknown state */
BUG();
}
if (ret) {
free_dma_resources();
if (!irq_remapping_enabled) {
disable_iommus();
free_iommu_resources();
} else {
struct amd_iommu *iommu;
struct amd_iommu_pci_seg *pci_seg;
for_each_pci_segment(pci_seg)
uninit_device_table_dma(pci_seg);
for_each_iommu(iommu)
iommu_flush_all_caches(iommu);
}
}
return ret;
}
static int __init iommu_go_to_state(enum iommu_init_state state)
{
int ret = -EINVAL;
while (init_state != state) {
if (init_state == IOMMU_NOT_FOUND ||
init_state == IOMMU_INIT_ERROR ||
init_state == IOMMU_CMDLINE_DISABLED)
break;
ret = state_next();
}
return ret;
}
#ifdef CONFIG_IRQ_REMAP
int __init amd_iommu_prepare(void)
{
int ret;
amd_iommu_irq_remap = true;
ret = iommu_go_to_state(IOMMU_ACPI_FINISHED);
if (ret) {
amd_iommu_irq_remap = false;
return ret;
}
return amd_iommu_irq_remap ? 0 : -ENODEV;
}
int __init amd_iommu_enable(void)
{
int ret;
ret = iommu_go_to_state(IOMMU_ENABLED);
if (ret)
return ret;
irq_remapping_enabled = 1;
return amd_iommu_xt_mode;
}
void amd_iommu_disable(void)
{
amd_iommu_suspend();
}
int amd_iommu_reenable(int mode)
{
amd_iommu_resume();
return 0;
}
int __init amd_iommu_enable_faulting(void)
{
/* We enable MSI later when PCI is initialized */
return 0;
}
#endif
/*
* This is the core init function for AMD IOMMU hardware in the system.
* This function is called from the generic x86 DMA layer initialization
* code.
*/
static int __init amd_iommu_init(void)
{
struct amd_iommu *iommu;
int ret;
ret = iommu_go_to_state(IOMMU_INITIALIZED);
#ifdef CONFIG_GART_IOMMU
if (ret && list_empty(&amd_iommu_list)) {
/*
* We failed to initialize the AMD IOMMU - try fallback
* to GART if possible.
*/
gart_iommu_init();
}
#endif
for_each_iommu(iommu)
amd_iommu_debugfs_setup(iommu);
return ret;
}
static bool amd_iommu_sme_check(void)
{
if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT) ||
(boot_cpu_data.x86 != 0x17))
return true;
/* For Fam17h, a specific level of support is required */
if (boot_cpu_data.microcode >= 0x08001205)
return true;
if ((boot_cpu_data.microcode >= 0x08001126) &&
(boot_cpu_data.microcode <= 0x080011ff))
return true;
pr_notice("IOMMU not currently supported when SME is active\n");
return false;
}
/****************************************************************************
*
* Early detect code. This code runs at IOMMU detection time in the DMA
* layer. It just looks if there is an IVRS ACPI table to detect AMD
* IOMMUs
*
****************************************************************************/
int __init amd_iommu_detect(void)
{
int ret;
if (no_iommu || (iommu_detected && !gart_iommu_aperture))
return -ENODEV;
if (!amd_iommu_sme_check())
return -ENODEV;
ret = iommu_go_to_state(IOMMU_IVRS_DETECTED);
if (ret)
return ret;
amd_iommu_detected = true;
iommu_detected = 1;
x86_init.iommu.iommu_init = amd_iommu_init;
return 1;
}
/****************************************************************************
*
* Parsing functions for the AMD IOMMU specific kernel command line
* options.
*
****************************************************************************/
static int __init parse_amd_iommu_dump(char *str)
{
amd_iommu_dump = true;
return 1;
}
static int __init parse_amd_iommu_intr(char *str)
{
for (; *str; ++str) {
if (strncmp(str, "legacy", 6) == 0) {
amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY_GA;
break;
}
if (strncmp(str, "vapic", 5) == 0) {
amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_VAPIC;
break;
}
}
return 1;
}
static int __init parse_amd_iommu_options(char *str)
{
if (!str)
return -EINVAL;
while (*str) {
if (strncmp(str, "fullflush", 9) == 0) {
pr_warn("amd_iommu=fullflush deprecated; use iommu.strict=1 instead\n");
iommu_set_dma_strict();
} else if (strncmp(str, "force_enable", 12) == 0) {
amd_iommu_force_enable = true;
} else if (strncmp(str, "off", 3) == 0) {
amd_iommu_disabled = true;
} else if (strncmp(str, "force_isolation", 15) == 0) {
amd_iommu_force_isolation = true;
} else if (strncmp(str, "pgtbl_v1", 8) == 0) {
amd_iommu_pgtable = AMD_IOMMU_V1;
} else if (strncmp(str, "pgtbl_v2", 8) == 0) {
amd_iommu_pgtable = AMD_IOMMU_V2;
} else {
pr_notice("Unknown option - '%s'\n", str);
}
str += strcspn(str, ",");
while (*str == ',')
str++;
}
return 1;
}
static int __init parse_ivrs_ioapic(char *str)
{
u32 seg = 0, bus, dev, fn;
int id, i;
u32 devid;
if (sscanf(str, "=%d@%x:%x.%x", &id, &bus, &dev, &fn) == 4 ||
sscanf(str, "=%d@%x:%x:%x.%x", &id, &seg, &bus, &dev, &fn) == 5)
goto found;
if (sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn) == 4 ||
sscanf(str, "[%d]=%x:%x:%x.%x", &id, &seg, &bus, &dev, &fn) == 5) {
pr_warn("ivrs_ioapic%s option format deprecated; use ivrs_ioapic=%d@%04x:%02x:%02x.%d instead\n",
str, id, seg, bus, dev, fn);
goto found;
}
pr_err("Invalid command line: ivrs_ioapic%s\n", str);
return 1;
found:
if (early_ioapic_map_size == EARLY_MAP_SIZE) {
pr_err("Early IOAPIC map overflow - ignoring ivrs_ioapic%s\n",
str);
return 1;
}
devid = IVRS_GET_SBDF_ID(seg, bus, dev, fn);
cmdline_maps = true;
i = early_ioapic_map_size++;
early_ioapic_map[i].id = id;
early_ioapic_map[i].devid = devid;
early_ioapic_map[i].cmd_line = true;
return 1;
}
static int __init parse_ivrs_hpet(char *str)
{
u32 seg = 0, bus, dev, fn;
int id, i;
u32 devid;
if (sscanf(str, "=%d@%x:%x.%x", &id, &bus, &dev, &fn) == 4 ||
sscanf(str, "=%d@%x:%x:%x.%x", &id, &seg, &bus, &dev, &fn) == 5)
goto found;
if (sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn) == 4 ||
sscanf(str, "[%d]=%x:%x:%x.%x", &id, &seg, &bus, &dev, &fn) == 5) {
pr_warn("ivrs_hpet%s option format deprecated; use ivrs_hpet=%d@%04x:%02x:%02x.%d instead\n",
str, id, seg, bus, dev, fn);
goto found;
}
pr_err("Invalid command line: ivrs_hpet%s\n", str);
return 1;
found:
if (early_hpet_map_size == EARLY_MAP_SIZE) {
pr_err("Early HPET map overflow - ignoring ivrs_hpet%s\n",
str);
return 1;
}
devid = IVRS_GET_SBDF_ID(seg, bus, dev, fn);
cmdline_maps = true;
i = early_hpet_map_size++;
early_hpet_map[i].id = id;
early_hpet_map[i].devid = devid;
early_hpet_map[i].cmd_line = true;
return 1;
}
static int __init parse_ivrs_acpihid(char *str)
{
u32 seg = 0, bus, dev, fn;
char *hid, *uid, *p, *addr;
char acpiid[ACPIHID_UID_LEN + ACPIHID_HID_LEN] = {0};
int i;
addr = strchr(str, '@');
if (!addr) {
if (sscanf(str, "[%x:%x.%x]=%s", &bus, &dev, &fn, acpiid) == 4 ||
sscanf(str, "[%x:%x:%x.%x]=%s", &seg, &bus, &dev, &fn, acpiid) == 5) {
pr_warn("ivrs_acpihid%s option format deprecated; use ivrs_acpihid=%s@%04x:%02x:%02x.%d instead\n",
str, acpiid, seg, bus, dev, fn);
goto found;
}
goto not_found;
}
/* We have the '@', make it the terminator to get just the acpiid */
*addr++ = 0;
if (sscanf(str, "=%s", acpiid) != 1)
goto not_found;
if (sscanf(addr, "%x:%x.%x", &bus, &dev, &fn) == 3 ||
sscanf(addr, "%x:%x:%x.%x", &seg, &bus, &dev, &fn) == 4)
goto found;
not_found:
pr_err("Invalid command line: ivrs_acpihid%s\n", str);
return 1;
found:
p = acpiid;
hid = strsep(&p, ":");
uid = p;
if (!hid || !(*hid) || !uid) {
pr_err("Invalid command line: hid or uid\n");
return 1;
}
/*
* Ignore leading zeroes after ':', so e.g., AMDI0095:00
* will match AMDI0095:0 in the second strcmp in acpi_dev_hid_uid_match
*/
while (*uid == '0' && *(uid + 1))
uid++;
i = early_acpihid_map_size++;
memcpy(early_acpihid_map[i].hid, hid, strlen(hid));
memcpy(early_acpihid_map[i].uid, uid, strlen(uid));
early_acpihid_map[i].devid = IVRS_GET_SBDF_ID(seg, bus, dev, fn);
early_acpihid_map[i].cmd_line = true;
return 1;
}
__setup("amd_iommu_dump", parse_amd_iommu_dump);
__setup("amd_iommu=", parse_amd_iommu_options);
__setup("amd_iommu_intr=", parse_amd_iommu_intr);
__setup("ivrs_ioapic", parse_ivrs_ioapic);
__setup("ivrs_hpet", parse_ivrs_hpet);
__setup("ivrs_acpihid", parse_ivrs_acpihid);
bool amd_iommu_v2_supported(void)
{
/*
* Since DTE[Mode]=0 is prohibited on SNP-enabled system
* (i.e. EFR[SNPSup]=1), IOMMUv2 page table cannot be used without
* setting up IOMMUv1 page table.
*/
return amd_iommu_v2_present && !amd_iommu_snp_en;
}
EXPORT_SYMBOL(amd_iommu_v2_supported);
struct amd_iommu *get_amd_iommu(unsigned int idx)
{
unsigned int i = 0;
struct amd_iommu *iommu;
for_each_iommu(iommu)
if (i++ == idx)
return iommu;
return NULL;
}
/****************************************************************************
*
* IOMMU EFR Performance Counter support functionality. This code allows
* access to the IOMMU PC functionality.
*
****************************************************************************/
u8 amd_iommu_pc_get_max_banks(unsigned int idx)
{
struct amd_iommu *iommu = get_amd_iommu(idx);
if (iommu)
return iommu->max_banks;
return 0;
}
EXPORT_SYMBOL(amd_iommu_pc_get_max_banks);
bool amd_iommu_pc_supported(void)
{
return amd_iommu_pc_present;
}
EXPORT_SYMBOL(amd_iommu_pc_supported);
u8 amd_iommu_pc_get_max_counters(unsigned int idx)
{
struct amd_iommu *iommu = get_amd_iommu(idx);
if (iommu)
return iommu->max_counters;
return 0;
}
EXPORT_SYMBOL(amd_iommu_pc_get_max_counters);
static int iommu_pc_get_set_reg(struct amd_iommu *iommu, u8 bank, u8 cntr,
u8 fxn, u64 *value, bool is_write)
{
u32 offset;
u32 max_offset_lim;
/* Make sure the IOMMU PC resource is available */
if (!amd_iommu_pc_present)
return -ENODEV;
/* Check for valid iommu and pc register indexing */
if (WARN_ON(!iommu || (fxn > 0x28) || (fxn & 7)))
return -ENODEV;
offset = (u32)(((0x40 | bank) << 12) | (cntr << 8) | fxn);
/* Limit the offset to the hw defined mmio region aperture */
max_offset_lim = (u32)(((0x40 | iommu->max_banks) << 12) |
(iommu->max_counters << 8) | 0x28);
if ((offset < MMIO_CNTR_REG_OFFSET) ||
(offset > max_offset_lim))
return -EINVAL;
if (is_write) {
u64 val = *value & GENMASK_ULL(47, 0);
writel((u32)val, iommu->mmio_base + offset);
writel((val >> 32), iommu->mmio_base + offset + 4);
} else {
*value = readl(iommu->mmio_base + offset + 4);
*value <<= 32;
*value |= readl(iommu->mmio_base + offset);
*value &= GENMASK_ULL(47, 0);
}
return 0;
}
int amd_iommu_pc_get_reg(struct amd_iommu *iommu, u8 bank, u8 cntr, u8 fxn, u64 *value)
{
if (!iommu)
return -EINVAL;
return iommu_pc_get_set_reg(iommu, bank, cntr, fxn, value, false);
}
int amd_iommu_pc_set_reg(struct amd_iommu *iommu, u8 bank, u8 cntr, u8 fxn, u64 *value)
{
if (!iommu)
return -EINVAL;
return iommu_pc_get_set_reg(iommu, bank, cntr, fxn, value, true);
}
#ifdef CONFIG_AMD_MEM_ENCRYPT
int amd_iommu_snp_enable(void)
{
/*
* The SNP support requires that IOMMU must be enabled, and is
* not configured in the passthrough mode.
*/
if (no_iommu || iommu_default_passthrough()) {
pr_err("SNP: IOMMU is disabled or configured in passthrough mode, SNP cannot be supported");
return -EINVAL;
}
/*
* Prevent enabling SNP after IOMMU_ENABLED state because this process
* affect how IOMMU driver sets up data structures and configures
* IOMMU hardware.
*/
if (init_state > IOMMU_ENABLED) {
pr_err("SNP: Too late to enable SNP for IOMMU.\n");
return -EINVAL;
}
amd_iommu_snp_en = check_feature_on_all_iommus(FEATURE_SNP);
if (!amd_iommu_snp_en)
return -EINVAL;
pr_info("SNP enabled\n");
/* Enforce IOMMU v1 pagetable when SNP is enabled. */
if (amd_iommu_pgtable != AMD_IOMMU_V1) {
pr_warn("Force to using AMD IOMMU v1 page table due to SNP\n");
amd_iommu_pgtable = AMD_IOMMU_V1;
}
return 0;
}
#endif