1b9ba00017
Some USB function drivers (e.g. f_mass_storage.c) need to delay or defer the data/status stages of standard control requests like SET_CONFIGURATION or SET_INTERFACE till they are done with their bookkeeping and are actually ready for accepting new commands to their interface. They can now achieve this functionality by returning USB_GADGET_DELAYED_STATUS in their setup handlers (e.g. set_alt()). The composite framework will then defer completion of the control transfer by not completing the data/status stages. This ensures that the host does not send new packets to the interface till the function driver is ready to take them. When the function driver that requested for USB_GADGET_DELAYED_STATUS is done with its bookkeeping, it should signal the composite framework to continue with the data/status stages of the control transfer. It can do so by invoking the new API usb_composite_setup_continue(). This is where the control transfer's data/status stages are completed and host can initiate new transfers. The DELAYED_STATUS mechanism is currently only supported if the expected data phase is 0 bytes (i.e. w_length == 0). Since SET_CONFIGURATION and SET_INTERFACE are the only cases that will use this mechanism, this is not a limitation. Signed-off-by: Roger Quadros <roger.quadros@nokia.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
To understand all the Linux-USB framework, you'll use these resources: * This source code. This is necessarily an evolving work, and includes kerneldoc that should help you get a current overview. ("make pdfdocs", and then look at "usb.pdf" for host side and "gadget.pdf" for peripheral side.) Also, Documentation/usb has more information. * The USB 2.0 specification (from www.usb.org), with supplements such as those for USB OTG and the various device classes. The USB specification has a good overview chapter, and USB peripherals conform to the widely known "Chapter 9". * Chip specifications for USB controllers. Examples include host controllers (on PCs, servers, and more); peripheral controllers (in devices with Linux firmware, like printers or cell phones); and hard-wired peripherals like Ethernet adapters. * Specifications for other protocols implemented by USB peripheral functions. Some are vendor-specific; others are vendor-neutral but just standardized outside of the www.usb.org team. Here is a list of what each subdirectory here is, and what is contained in them. core/ - This is for the core USB host code, including the usbfs files and the hub class driver ("khubd"). host/ - This is for USB host controller drivers. This includes UHCI, OHCI, EHCI, and others that might be used with more specialized "embedded" systems. gadget/ - This is for USB peripheral controller drivers and the various gadget drivers which talk to them. Individual USB driver directories. A new driver should be added to the first subdirectory in the list below that it fits into. image/ - This is for still image drivers, like scanners or digital cameras. ../input/ - This is for any driver that uses the input subsystem, like keyboard, mice, touchscreens, tablets, etc. ../media/ - This is for multimedia drivers, like video cameras, radios, and any other drivers that talk to the v4l subsystem. ../net/ - This is for network drivers. serial/ - This is for USB to serial drivers. storage/ - This is for USB mass-storage drivers. class/ - This is for all USB device drivers that do not fit into any of the above categories, and work for a range of USB Class specified devices. misc/ - This is for all USB device drivers that do not fit into any of the above categories.