Roger Quadros 1b9ba00017 usb: gadget: composite: Allow function drivers to pause control transfers
Some USB function drivers (e.g. f_mass_storage.c) need to delay or defer the
data/status stages of standard control requests like SET_CONFIGURATION or
SET_INTERFACE till they are done with their bookkeeping and are actually ready
for accepting new commands to their interface.

They can now achieve this functionality by returning USB_GADGET_DELAYED_STATUS
in their setup handlers (e.g. set_alt()). The composite framework will then
defer completion of the control transfer by not completing the data/status stages.

This ensures that the host does not send new packets to the interface till the
function driver is ready to take them.

When the function driver that requested for USB_GADGET_DELAYED_STATUS is done
with its bookkeeping, it should signal the composite framework to continue with
the data/status stages of the control transfer. It can do so by invoking
the new API usb_composite_setup_continue(). This is where the control transfer's
data/status stages are completed and host can initiate new transfers.

The DELAYED_STATUS mechanism is currently only supported if the expected data phase
is 0 bytes (i.e. w_length == 0). Since SET_CONFIGURATION and SET_INTERFACE are the
only cases that will use this mechanism, this is not a limitation.

Signed-off-by: Roger Quadros <roger.quadros@nokia.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-10 14:14:57 -07:00
..
2011-03-31 11:26:23 -03:00
2011-03-31 11:26:23 -03:00
2011-03-31 11:26:23 -03:00
2011-05-03 10:12:00 -07:00
2011-03-31 11:26:23 -03:00
2011-03-31 11:26:23 -03:00

To understand all the Linux-USB framework, you'll use these resources:

    * This source code.  This is necessarily an evolving work, and
      includes kerneldoc that should help you get a current overview.
      ("make pdfdocs", and then look at "usb.pdf" for host side and
      "gadget.pdf" for peripheral side.)  Also, Documentation/usb has
      more information.

    * The USB 2.0 specification (from www.usb.org), with supplements
      such as those for USB OTG and the various device classes.
      The USB specification has a good overview chapter, and USB
      peripherals conform to the widely known "Chapter 9".

    * Chip specifications for USB controllers.  Examples include
      host controllers (on PCs, servers, and more); peripheral
      controllers (in devices with Linux firmware, like printers or
      cell phones); and hard-wired peripherals like Ethernet adapters.

    * Specifications for other protocols implemented by USB peripheral
      functions.  Some are vendor-specific; others are vendor-neutral
      but just standardized outside of the www.usb.org team.

Here is a list of what each subdirectory here is, and what is contained in
them.

core/		- This is for the core USB host code, including the
		  usbfs files and the hub class driver ("khubd").

host/		- This is for USB host controller drivers.  This
		  includes UHCI, OHCI, EHCI, and others that might
		  be used with more specialized "embedded" systems.

gadget/		- This is for USB peripheral controller drivers and
		  the various gadget drivers which talk to them.


Individual USB driver directories.  A new driver should be added to the
first subdirectory in the list below that it fits into.

image/		- This is for still image drivers, like scanners or
		  digital cameras.
../input/	- This is for any driver that uses the input subsystem,
		  like keyboard, mice, touchscreens, tablets, etc.
../media/	- This is for multimedia drivers, like video cameras,
		  radios, and any other drivers that talk to the v4l
		  subsystem.
../net/		- This is for network drivers.
serial/		- This is for USB to serial drivers.
storage/	- This is for USB mass-storage drivers.
class/		- This is for all USB device drivers that do not fit
		  into any of the above categories, and work for a range
		  of USB Class specified devices. 
misc/		- This is for all USB device drivers that do not fit
		  into any of the above categories.