1ba3cbf3ec
In __kfence_alloc() and __kfence_free(), we will set and check canary. Assuming that the size of the object is close to 0, nearly 4k memory accesses are required because setting and checking canary is executed byte by byte. canary is now defined like this: KFENCE_CANARY_PATTERN(addr) ((u8)0xaa ^ (u8)((unsigned long)(addr) & 0x7)) Observe that canary is only related to the lower three bits of the address, so every 8 bytes of canary are the same. We can access 8-byte canary each time instead of byte-by-byte, thereby optimizing nearly 4k memory accesses to 4k/8 times. Use the bcc tool funclatency to measure the latency of __kfence_alloc() and __kfence_free(), the numbers (deleted the distribution of latency) is posted below. Though different object sizes will have an impact on the measurement, we ignore it for now and assume the average object size is roughly equal. Before patching: __kfence_alloc: avg = 5055 nsecs, total: 5515252 nsecs, count: 1091 __kfence_free: avg = 5319 nsecs, total: 9735130 nsecs, count: 1830 After patching: __kfence_alloc: avg = 3597 nsecs, total: 6428491 nsecs, count: 1787 __kfence_free: avg = 3046 nsecs, total: 3415390 nsecs, count: 1121 The numbers indicate that there is ~30% - ~40% performance improvement. Link: https://lkml.kernel.org/r/20230403122738.6006-1-zhangpeng.00@bytedance.com Signed-off-by: Peng Zhang <zhangpeng.00@bytedance.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
1179 lines
35 KiB
C
1179 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* KFENCE guarded object allocator and fault handling.
|
|
*
|
|
* Copyright (C) 2020, Google LLC.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "kfence: " fmt
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/kcsan-checks.h>
|
|
#include <linux/kfence.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/list.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/panic_notifier.h>
|
|
#include <linux/random.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/string.h>
|
|
|
|
#include <asm/kfence.h>
|
|
|
|
#include "kfence.h"
|
|
|
|
/* Disables KFENCE on the first warning assuming an irrecoverable error. */
|
|
#define KFENCE_WARN_ON(cond) \
|
|
({ \
|
|
const bool __cond = WARN_ON(cond); \
|
|
if (unlikely(__cond)) { \
|
|
WRITE_ONCE(kfence_enabled, false); \
|
|
disabled_by_warn = true; \
|
|
} \
|
|
__cond; \
|
|
})
|
|
|
|
/* === Data ================================================================= */
|
|
|
|
static bool kfence_enabled __read_mostly;
|
|
static bool disabled_by_warn __read_mostly;
|
|
|
|
unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
|
|
EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
|
|
|
|
#ifdef MODULE_PARAM_PREFIX
|
|
#undef MODULE_PARAM_PREFIX
|
|
#endif
|
|
#define MODULE_PARAM_PREFIX "kfence."
|
|
|
|
static int kfence_enable_late(void);
|
|
static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
|
|
{
|
|
unsigned long num;
|
|
int ret = kstrtoul(val, 0, &num);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Using 0 to indicate KFENCE is disabled. */
|
|
if (!num && READ_ONCE(kfence_enabled)) {
|
|
pr_info("disabled\n");
|
|
WRITE_ONCE(kfence_enabled, false);
|
|
}
|
|
|
|
*((unsigned long *)kp->arg) = num;
|
|
|
|
if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
|
|
return disabled_by_warn ? -EINVAL : kfence_enable_late();
|
|
return 0;
|
|
}
|
|
|
|
static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
|
|
{
|
|
if (!READ_ONCE(kfence_enabled))
|
|
return sprintf(buffer, "0\n");
|
|
|
|
return param_get_ulong(buffer, kp);
|
|
}
|
|
|
|
static const struct kernel_param_ops sample_interval_param_ops = {
|
|
.set = param_set_sample_interval,
|
|
.get = param_get_sample_interval,
|
|
};
|
|
module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
|
|
|
|
/* Pool usage% threshold when currently covered allocations are skipped. */
|
|
static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
|
|
module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
|
|
|
|
/* If true, use a deferrable timer. */
|
|
static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
|
|
module_param_named(deferrable, kfence_deferrable, bool, 0444);
|
|
|
|
/* If true, check all canary bytes on panic. */
|
|
static bool kfence_check_on_panic __read_mostly;
|
|
module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
|
|
|
|
/* The pool of pages used for guard pages and objects. */
|
|
char *__kfence_pool __read_mostly;
|
|
EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
|
|
|
|
/*
|
|
* Per-object metadata, with one-to-one mapping of object metadata to
|
|
* backing pages (in __kfence_pool).
|
|
*/
|
|
static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
|
|
struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
|
|
|
|
/* Freelist with available objects. */
|
|
static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
|
|
static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
|
|
|
|
/*
|
|
* The static key to set up a KFENCE allocation; or if static keys are not used
|
|
* to gate allocations, to avoid a load and compare if KFENCE is disabled.
|
|
*/
|
|
DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
|
|
|
|
/* Gates the allocation, ensuring only one succeeds in a given period. */
|
|
atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
|
|
|
|
/*
|
|
* A Counting Bloom filter of allocation coverage: limits currently covered
|
|
* allocations of the same source filling up the pool.
|
|
*
|
|
* Assuming a range of 15%-85% unique allocations in the pool at any point in
|
|
* time, the below parameters provide a probablity of 0.02-0.33 for false
|
|
* positive hits respectively:
|
|
*
|
|
* P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
|
|
*/
|
|
#define ALLOC_COVERED_HNUM 2
|
|
#define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
|
|
#define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER)
|
|
#define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER)
|
|
#define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1)
|
|
static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
|
|
|
|
/* Stack depth used to determine uniqueness of an allocation. */
|
|
#define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
|
|
|
|
/*
|
|
* Randomness for stack hashes, making the same collisions across reboots and
|
|
* different machines less likely.
|
|
*/
|
|
static u32 stack_hash_seed __ro_after_init;
|
|
|
|
/* Statistics counters for debugfs. */
|
|
enum kfence_counter_id {
|
|
KFENCE_COUNTER_ALLOCATED,
|
|
KFENCE_COUNTER_ALLOCS,
|
|
KFENCE_COUNTER_FREES,
|
|
KFENCE_COUNTER_ZOMBIES,
|
|
KFENCE_COUNTER_BUGS,
|
|
KFENCE_COUNTER_SKIP_INCOMPAT,
|
|
KFENCE_COUNTER_SKIP_CAPACITY,
|
|
KFENCE_COUNTER_SKIP_COVERED,
|
|
KFENCE_COUNTER_COUNT,
|
|
};
|
|
static atomic_long_t counters[KFENCE_COUNTER_COUNT];
|
|
static const char *const counter_names[] = {
|
|
[KFENCE_COUNTER_ALLOCATED] = "currently allocated",
|
|
[KFENCE_COUNTER_ALLOCS] = "total allocations",
|
|
[KFENCE_COUNTER_FREES] = "total frees",
|
|
[KFENCE_COUNTER_ZOMBIES] = "zombie allocations",
|
|
[KFENCE_COUNTER_BUGS] = "total bugs",
|
|
[KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)",
|
|
[KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)",
|
|
[KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)",
|
|
};
|
|
static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
|
|
|
|
/* === Internals ============================================================ */
|
|
|
|
static inline bool should_skip_covered(void)
|
|
{
|
|
unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
|
|
|
|
return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
|
|
}
|
|
|
|
static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
|
|
{
|
|
num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
|
|
num_entries = filter_irq_stacks(stack_entries, num_entries);
|
|
return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
|
|
}
|
|
|
|
/*
|
|
* Adds (or subtracts) count @val for allocation stack trace hash
|
|
* @alloc_stack_hash from Counting Bloom filter.
|
|
*/
|
|
static void alloc_covered_add(u32 alloc_stack_hash, int val)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
|
|
atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
|
|
alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns true if the allocation stack trace hash @alloc_stack_hash is
|
|
* currently contained (non-zero count) in Counting Bloom filter.
|
|
*/
|
|
static bool alloc_covered_contains(u32 alloc_stack_hash)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
|
|
if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
|
|
return false;
|
|
alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool kfence_protect(unsigned long addr)
|
|
{
|
|
return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
|
|
}
|
|
|
|
static bool kfence_unprotect(unsigned long addr)
|
|
{
|
|
return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
|
|
}
|
|
|
|
static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
|
|
{
|
|
unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
|
|
unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
|
|
|
|
/* The checks do not affect performance; only called from slow-paths. */
|
|
|
|
/* Only call with a pointer into kfence_metadata. */
|
|
if (KFENCE_WARN_ON(meta < kfence_metadata ||
|
|
meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
|
|
return 0;
|
|
|
|
/*
|
|
* This metadata object only ever maps to 1 page; verify that the stored
|
|
* address is in the expected range.
|
|
*/
|
|
if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
|
|
return 0;
|
|
|
|
return pageaddr;
|
|
}
|
|
|
|
/*
|
|
* Update the object's metadata state, including updating the alloc/free stacks
|
|
* depending on the state transition.
|
|
*/
|
|
static noinline void
|
|
metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
|
|
unsigned long *stack_entries, size_t num_stack_entries)
|
|
{
|
|
struct kfence_track *track =
|
|
next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
|
|
|
|
lockdep_assert_held(&meta->lock);
|
|
|
|
if (stack_entries) {
|
|
memcpy(track->stack_entries, stack_entries,
|
|
num_stack_entries * sizeof(stack_entries[0]));
|
|
} else {
|
|
/*
|
|
* Skip over 1 (this) functions; noinline ensures we do not
|
|
* accidentally skip over the caller by never inlining.
|
|
*/
|
|
num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
|
|
}
|
|
track->num_stack_entries = num_stack_entries;
|
|
track->pid = task_pid_nr(current);
|
|
track->cpu = raw_smp_processor_id();
|
|
track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
|
|
|
|
/*
|
|
* Pairs with READ_ONCE() in
|
|
* kfence_shutdown_cache(),
|
|
* kfence_handle_page_fault().
|
|
*/
|
|
WRITE_ONCE(meta->state, next);
|
|
}
|
|
|
|
/* Check canary byte at @addr. */
|
|
static inline bool check_canary_byte(u8 *addr)
|
|
{
|
|
struct kfence_metadata *meta;
|
|
unsigned long flags;
|
|
|
|
if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
|
|
return true;
|
|
|
|
atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
|
|
|
|
meta = addr_to_metadata((unsigned long)addr);
|
|
raw_spin_lock_irqsave(&meta->lock, flags);
|
|
kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
|
|
raw_spin_unlock_irqrestore(&meta->lock, flags);
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline void set_canary(const struct kfence_metadata *meta)
|
|
{
|
|
const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
|
|
unsigned long addr = pageaddr;
|
|
|
|
/*
|
|
* The canary may be written to part of the object memory, but it does
|
|
* not affect it. The user should initialize the object before using it.
|
|
*/
|
|
for (; addr < meta->addr; addr += sizeof(u64))
|
|
*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
|
|
|
|
addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
|
|
for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
|
|
*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
|
|
}
|
|
|
|
static inline void check_canary(const struct kfence_metadata *meta)
|
|
{
|
|
const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
|
|
unsigned long addr = pageaddr;
|
|
|
|
/*
|
|
* We'll iterate over each canary byte per-side until a corrupted byte
|
|
* is found. However, we'll still iterate over the canary bytes to the
|
|
* right of the object even if there was an error in the canary bytes to
|
|
* the left of the object. Specifically, if check_canary_byte()
|
|
* generates an error, showing both sides might give more clues as to
|
|
* what the error is about when displaying which bytes were corrupted.
|
|
*/
|
|
|
|
/* Apply to left of object. */
|
|
for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
|
|
if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the canary is corrupted in a certain 64 bytes, or the canary
|
|
* memory cannot be completely covered by multiple consecutive 64 bytes,
|
|
* it needs to be checked one by one.
|
|
*/
|
|
for (; addr < meta->addr; addr++) {
|
|
if (unlikely(!check_canary_byte((u8 *)addr)))
|
|
break;
|
|
}
|
|
|
|
/* Apply to right of object. */
|
|
for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
|
|
if (unlikely(!check_canary_byte((u8 *)addr)))
|
|
return;
|
|
}
|
|
for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
|
|
if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {
|
|
|
|
for (; addr - pageaddr < PAGE_SIZE; addr++) {
|
|
if (!check_canary_byte((u8 *)addr))
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
|
|
unsigned long *stack_entries, size_t num_stack_entries,
|
|
u32 alloc_stack_hash)
|
|
{
|
|
struct kfence_metadata *meta = NULL;
|
|
unsigned long flags;
|
|
struct slab *slab;
|
|
void *addr;
|
|
const bool random_right_allocate = get_random_u32_below(2);
|
|
const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
|
|
!get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
|
|
|
|
/* Try to obtain a free object. */
|
|
raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
|
|
if (!list_empty(&kfence_freelist)) {
|
|
meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
|
|
list_del_init(&meta->list);
|
|
}
|
|
raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
|
|
if (!meta) {
|
|
atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
|
|
return NULL;
|
|
}
|
|
|
|
if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
|
|
/*
|
|
* This is extremely unlikely -- we are reporting on a
|
|
* use-after-free, which locked meta->lock, and the reporting
|
|
* code via printk calls kmalloc() which ends up in
|
|
* kfence_alloc() and tries to grab the same object that we're
|
|
* reporting on. While it has never been observed, lockdep does
|
|
* report that there is a possibility of deadlock. Fix it by
|
|
* using trylock and bailing out gracefully.
|
|
*/
|
|
raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
|
|
/* Put the object back on the freelist. */
|
|
list_add_tail(&meta->list, &kfence_freelist);
|
|
raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
meta->addr = metadata_to_pageaddr(meta);
|
|
/* Unprotect if we're reusing this page. */
|
|
if (meta->state == KFENCE_OBJECT_FREED)
|
|
kfence_unprotect(meta->addr);
|
|
|
|
/*
|
|
* Note: for allocations made before RNG initialization, will always
|
|
* return zero. We still benefit from enabling KFENCE as early as
|
|
* possible, even when the RNG is not yet available, as this will allow
|
|
* KFENCE to detect bugs due to earlier allocations. The only downside
|
|
* is that the out-of-bounds accesses detected are deterministic for
|
|
* such allocations.
|
|
*/
|
|
if (random_right_allocate) {
|
|
/* Allocate on the "right" side, re-calculate address. */
|
|
meta->addr += PAGE_SIZE - size;
|
|
meta->addr = ALIGN_DOWN(meta->addr, cache->align);
|
|
}
|
|
|
|
addr = (void *)meta->addr;
|
|
|
|
/* Update remaining metadata. */
|
|
metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
|
|
/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
|
|
WRITE_ONCE(meta->cache, cache);
|
|
meta->size = size;
|
|
meta->alloc_stack_hash = alloc_stack_hash;
|
|
raw_spin_unlock_irqrestore(&meta->lock, flags);
|
|
|
|
alloc_covered_add(alloc_stack_hash, 1);
|
|
|
|
/* Set required slab fields. */
|
|
slab = virt_to_slab((void *)meta->addr);
|
|
slab->slab_cache = cache;
|
|
#if defined(CONFIG_SLUB)
|
|
slab->objects = 1;
|
|
#elif defined(CONFIG_SLAB)
|
|
slab->s_mem = addr;
|
|
#endif
|
|
|
|
/* Memory initialization. */
|
|
set_canary(meta);
|
|
|
|
/*
|
|
* We check slab_want_init_on_alloc() ourselves, rather than letting
|
|
* SL*B do the initialization, as otherwise we might overwrite KFENCE's
|
|
* redzone.
|
|
*/
|
|
if (unlikely(slab_want_init_on_alloc(gfp, cache)))
|
|
memzero_explicit(addr, size);
|
|
if (cache->ctor)
|
|
cache->ctor(addr);
|
|
|
|
if (random_fault)
|
|
kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
|
|
|
|
atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
|
|
atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
|
|
|
|
return addr;
|
|
}
|
|
|
|
static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
|
|
{
|
|
struct kcsan_scoped_access assert_page_exclusive;
|
|
unsigned long flags;
|
|
bool init;
|
|
|
|
raw_spin_lock_irqsave(&meta->lock, flags);
|
|
|
|
if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
|
|
/* Invalid or double-free, bail out. */
|
|
atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
|
|
kfence_report_error((unsigned long)addr, false, NULL, meta,
|
|
KFENCE_ERROR_INVALID_FREE);
|
|
raw_spin_unlock_irqrestore(&meta->lock, flags);
|
|
return;
|
|
}
|
|
|
|
/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
|
|
kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
|
|
KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
|
|
&assert_page_exclusive);
|
|
|
|
if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
|
|
kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
|
|
|
|
/* Restore page protection if there was an OOB access. */
|
|
if (meta->unprotected_page) {
|
|
memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
|
|
kfence_protect(meta->unprotected_page);
|
|
meta->unprotected_page = 0;
|
|
}
|
|
|
|
/* Mark the object as freed. */
|
|
metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
|
|
init = slab_want_init_on_free(meta->cache);
|
|
raw_spin_unlock_irqrestore(&meta->lock, flags);
|
|
|
|
alloc_covered_add(meta->alloc_stack_hash, -1);
|
|
|
|
/* Check canary bytes for memory corruption. */
|
|
check_canary(meta);
|
|
|
|
/*
|
|
* Clear memory if init-on-free is set. While we protect the page, the
|
|
* data is still there, and after a use-after-free is detected, we
|
|
* unprotect the page, so the data is still accessible.
|
|
*/
|
|
if (!zombie && unlikely(init))
|
|
memzero_explicit(addr, meta->size);
|
|
|
|
/* Protect to detect use-after-frees. */
|
|
kfence_protect((unsigned long)addr);
|
|
|
|
kcsan_end_scoped_access(&assert_page_exclusive);
|
|
if (!zombie) {
|
|
/* Add it to the tail of the freelist for reuse. */
|
|
raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
|
|
KFENCE_WARN_ON(!list_empty(&meta->list));
|
|
list_add_tail(&meta->list, &kfence_freelist);
|
|
raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
|
|
|
|
atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
|
|
atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
|
|
} else {
|
|
/* See kfence_shutdown_cache(). */
|
|
atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
|
|
}
|
|
}
|
|
|
|
static void rcu_guarded_free(struct rcu_head *h)
|
|
{
|
|
struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
|
|
|
|
kfence_guarded_free((void *)meta->addr, meta, false);
|
|
}
|
|
|
|
/*
|
|
* Initialization of the KFENCE pool after its allocation.
|
|
* Returns 0 on success; otherwise returns the address up to
|
|
* which partial initialization succeeded.
|
|
*/
|
|
static unsigned long kfence_init_pool(void)
|
|
{
|
|
unsigned long addr = (unsigned long)__kfence_pool;
|
|
struct page *pages;
|
|
int i;
|
|
|
|
if (!arch_kfence_init_pool())
|
|
return addr;
|
|
|
|
pages = virt_to_page(__kfence_pool);
|
|
|
|
/*
|
|
* Set up object pages: they must have PG_slab set, to avoid freeing
|
|
* these as real pages.
|
|
*
|
|
* We also want to avoid inserting kfence_free() in the kfree()
|
|
* fast-path in SLUB, and therefore need to ensure kfree() correctly
|
|
* enters __slab_free() slow-path.
|
|
*/
|
|
for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
|
|
struct slab *slab = page_slab(nth_page(pages, i));
|
|
|
|
if (!i || (i % 2))
|
|
continue;
|
|
|
|
__folio_set_slab(slab_folio(slab));
|
|
#ifdef CONFIG_MEMCG
|
|
slab->memcg_data = (unsigned long)&kfence_metadata[i / 2 - 1].objcg |
|
|
MEMCG_DATA_OBJCGS;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Protect the first 2 pages. The first page is mostly unnecessary, and
|
|
* merely serves as an extended guard page. However, adding one
|
|
* additional page in the beginning gives us an even number of pages,
|
|
* which simplifies the mapping of address to metadata index.
|
|
*/
|
|
for (i = 0; i < 2; i++) {
|
|
if (unlikely(!kfence_protect(addr)))
|
|
return addr;
|
|
|
|
addr += PAGE_SIZE;
|
|
}
|
|
|
|
for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
|
|
struct kfence_metadata *meta = &kfence_metadata[i];
|
|
|
|
/* Initialize metadata. */
|
|
INIT_LIST_HEAD(&meta->list);
|
|
raw_spin_lock_init(&meta->lock);
|
|
meta->state = KFENCE_OBJECT_UNUSED;
|
|
meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
|
|
list_add_tail(&meta->list, &kfence_freelist);
|
|
|
|
/* Protect the right redzone. */
|
|
if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
|
|
goto reset_slab;
|
|
|
|
addr += 2 * PAGE_SIZE;
|
|
}
|
|
|
|
return 0;
|
|
|
|
reset_slab:
|
|
for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
|
|
struct slab *slab = page_slab(nth_page(pages, i));
|
|
|
|
if (!i || (i % 2))
|
|
continue;
|
|
#ifdef CONFIG_MEMCG
|
|
slab->memcg_data = 0;
|
|
#endif
|
|
__folio_clear_slab(slab_folio(slab));
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
static bool __init kfence_init_pool_early(void)
|
|
{
|
|
unsigned long addr;
|
|
|
|
if (!__kfence_pool)
|
|
return false;
|
|
|
|
addr = kfence_init_pool();
|
|
|
|
if (!addr) {
|
|
/*
|
|
* The pool is live and will never be deallocated from this point on.
|
|
* Ignore the pool object from the kmemleak phys object tree, as it would
|
|
* otherwise overlap with allocations returned by kfence_alloc(), which
|
|
* are registered with kmemleak through the slab post-alloc hook.
|
|
*/
|
|
kmemleak_ignore_phys(__pa(__kfence_pool));
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Only release unprotected pages, and do not try to go back and change
|
|
* page attributes due to risk of failing to do so as well. If changing
|
|
* page attributes for some pages fails, it is very likely that it also
|
|
* fails for the first page, and therefore expect addr==__kfence_pool in
|
|
* most failure cases.
|
|
*/
|
|
memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
|
|
__kfence_pool = NULL;
|
|
return false;
|
|
}
|
|
|
|
static bool kfence_init_pool_late(void)
|
|
{
|
|
unsigned long addr, free_size;
|
|
|
|
addr = kfence_init_pool();
|
|
|
|
if (!addr)
|
|
return true;
|
|
|
|
/* Same as above. */
|
|
free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
|
|
#ifdef CONFIG_CONTIG_ALLOC
|
|
free_contig_range(page_to_pfn(virt_to_page((void *)addr)), free_size / PAGE_SIZE);
|
|
#else
|
|
free_pages_exact((void *)addr, free_size);
|
|
#endif
|
|
__kfence_pool = NULL;
|
|
return false;
|
|
}
|
|
|
|
/* === DebugFS Interface ==================================================== */
|
|
|
|
static int stats_show(struct seq_file *seq, void *v)
|
|
{
|
|
int i;
|
|
|
|
seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
|
|
for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
|
|
seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
|
|
|
|
return 0;
|
|
}
|
|
DEFINE_SHOW_ATTRIBUTE(stats);
|
|
|
|
/*
|
|
* debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
|
|
* start_object() and next_object() return the object index + 1, because NULL is used
|
|
* to stop iteration.
|
|
*/
|
|
static void *start_object(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
|
|
return (void *)((long)*pos + 1);
|
|
return NULL;
|
|
}
|
|
|
|
static void stop_object(struct seq_file *seq, void *v)
|
|
{
|
|
}
|
|
|
|
static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
++*pos;
|
|
if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
|
|
return (void *)((long)*pos + 1);
|
|
return NULL;
|
|
}
|
|
|
|
static int show_object(struct seq_file *seq, void *v)
|
|
{
|
|
struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&meta->lock, flags);
|
|
kfence_print_object(seq, meta);
|
|
raw_spin_unlock_irqrestore(&meta->lock, flags);
|
|
seq_puts(seq, "---------------------------------\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations objects_sops = {
|
|
.start = start_object,
|
|
.next = next_object,
|
|
.stop = stop_object,
|
|
.show = show_object,
|
|
};
|
|
DEFINE_SEQ_ATTRIBUTE(objects);
|
|
|
|
static int kfence_debugfs_init(void)
|
|
{
|
|
struct dentry *kfence_dir;
|
|
|
|
if (!READ_ONCE(kfence_enabled))
|
|
return 0;
|
|
|
|
kfence_dir = debugfs_create_dir("kfence", NULL);
|
|
debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
|
|
debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
|
|
return 0;
|
|
}
|
|
|
|
late_initcall(kfence_debugfs_init);
|
|
|
|
/* === Panic Notifier ====================================================== */
|
|
|
|
static void kfence_check_all_canary(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
|
|
struct kfence_metadata *meta = &kfence_metadata[i];
|
|
|
|
if (meta->state == KFENCE_OBJECT_ALLOCATED)
|
|
check_canary(meta);
|
|
}
|
|
}
|
|
|
|
static int kfence_check_canary_callback(struct notifier_block *nb,
|
|
unsigned long reason, void *arg)
|
|
{
|
|
kfence_check_all_canary();
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block kfence_check_canary_notifier = {
|
|
.notifier_call = kfence_check_canary_callback,
|
|
};
|
|
|
|
/* === Allocation Gate Timer ================================================ */
|
|
|
|
static struct delayed_work kfence_timer;
|
|
|
|
#ifdef CONFIG_KFENCE_STATIC_KEYS
|
|
/* Wait queue to wake up allocation-gate timer task. */
|
|
static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
|
|
|
|
static void wake_up_kfence_timer(struct irq_work *work)
|
|
{
|
|
wake_up(&allocation_wait);
|
|
}
|
|
static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
|
|
#endif
|
|
|
|
/*
|
|
* Set up delayed work, which will enable and disable the static key. We need to
|
|
* use a work queue (rather than a simple timer), since enabling and disabling a
|
|
* static key cannot be done from an interrupt.
|
|
*
|
|
* Note: Toggling a static branch currently causes IPIs, and here we'll end up
|
|
* with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
|
|
* more aggressive sampling intervals), we could get away with a variant that
|
|
* avoids IPIs, at the cost of not immediately capturing allocations if the
|
|
* instructions remain cached.
|
|
*/
|
|
static void toggle_allocation_gate(struct work_struct *work)
|
|
{
|
|
if (!READ_ONCE(kfence_enabled))
|
|
return;
|
|
|
|
atomic_set(&kfence_allocation_gate, 0);
|
|
#ifdef CONFIG_KFENCE_STATIC_KEYS
|
|
/* Enable static key, and await allocation to happen. */
|
|
static_branch_enable(&kfence_allocation_key);
|
|
|
|
wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
|
|
|
|
/* Disable static key and reset timer. */
|
|
static_branch_disable(&kfence_allocation_key);
|
|
#endif
|
|
queue_delayed_work(system_unbound_wq, &kfence_timer,
|
|
msecs_to_jiffies(kfence_sample_interval));
|
|
}
|
|
|
|
/* === Public interface ===================================================== */
|
|
|
|
void __init kfence_alloc_pool(void)
|
|
{
|
|
if (!kfence_sample_interval)
|
|
return;
|
|
|
|
__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
|
|
|
|
if (!__kfence_pool)
|
|
pr_err("failed to allocate pool\n");
|
|
}
|
|
|
|
static void kfence_init_enable(void)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
|
|
static_branch_enable(&kfence_allocation_key);
|
|
|
|
if (kfence_deferrable)
|
|
INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
|
|
else
|
|
INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
|
|
|
|
if (kfence_check_on_panic)
|
|
atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
|
|
|
|
WRITE_ONCE(kfence_enabled, true);
|
|
queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
|
|
|
|
pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
|
|
CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
|
|
(void *)(__kfence_pool + KFENCE_POOL_SIZE));
|
|
}
|
|
|
|
void __init kfence_init(void)
|
|
{
|
|
stack_hash_seed = get_random_u32();
|
|
|
|
/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
|
|
if (!kfence_sample_interval)
|
|
return;
|
|
|
|
if (!kfence_init_pool_early()) {
|
|
pr_err("%s failed\n", __func__);
|
|
return;
|
|
}
|
|
|
|
kfence_init_enable();
|
|
}
|
|
|
|
static int kfence_init_late(void)
|
|
{
|
|
const unsigned long nr_pages = KFENCE_POOL_SIZE / PAGE_SIZE;
|
|
#ifdef CONFIG_CONTIG_ALLOC
|
|
struct page *pages;
|
|
|
|
pages = alloc_contig_pages(nr_pages, GFP_KERNEL, first_online_node, NULL);
|
|
if (!pages)
|
|
return -ENOMEM;
|
|
__kfence_pool = page_to_virt(pages);
|
|
#else
|
|
if (nr_pages > MAX_ORDER_NR_PAGES) {
|
|
pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
|
|
return -EINVAL;
|
|
}
|
|
__kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
|
|
if (!__kfence_pool)
|
|
return -ENOMEM;
|
|
#endif
|
|
|
|
if (!kfence_init_pool_late()) {
|
|
pr_err("%s failed\n", __func__);
|
|
return -EBUSY;
|
|
}
|
|
|
|
kfence_init_enable();
|
|
kfence_debugfs_init();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kfence_enable_late(void)
|
|
{
|
|
if (!__kfence_pool)
|
|
return kfence_init_late();
|
|
|
|
WRITE_ONCE(kfence_enabled, true);
|
|
queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
|
|
pr_info("re-enabled\n");
|
|
return 0;
|
|
}
|
|
|
|
void kfence_shutdown_cache(struct kmem_cache *s)
|
|
{
|
|
unsigned long flags;
|
|
struct kfence_metadata *meta;
|
|
int i;
|
|
|
|
for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
|
|
bool in_use;
|
|
|
|
meta = &kfence_metadata[i];
|
|
|
|
/*
|
|
* If we observe some inconsistent cache and state pair where we
|
|
* should have returned false here, cache destruction is racing
|
|
* with either kmem_cache_alloc() or kmem_cache_free(). Taking
|
|
* the lock will not help, as different critical section
|
|
* serialization will have the same outcome.
|
|
*/
|
|
if (READ_ONCE(meta->cache) != s ||
|
|
READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
|
|
continue;
|
|
|
|
raw_spin_lock_irqsave(&meta->lock, flags);
|
|
in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
|
|
raw_spin_unlock_irqrestore(&meta->lock, flags);
|
|
|
|
if (in_use) {
|
|
/*
|
|
* This cache still has allocations, and we should not
|
|
* release them back into the freelist so they can still
|
|
* safely be used and retain the kernel's default
|
|
* behaviour of keeping the allocations alive (leak the
|
|
* cache); however, they effectively become "zombie
|
|
* allocations" as the KFENCE objects are the only ones
|
|
* still in use and the owning cache is being destroyed.
|
|
*
|
|
* We mark them freed, so that any subsequent use shows
|
|
* more useful error messages that will include stack
|
|
* traces of the user of the object, the original
|
|
* allocation, and caller to shutdown_cache().
|
|
*/
|
|
kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
|
|
meta = &kfence_metadata[i];
|
|
|
|
/* See above. */
|
|
if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
|
|
continue;
|
|
|
|
raw_spin_lock_irqsave(&meta->lock, flags);
|
|
if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
|
|
meta->cache = NULL;
|
|
raw_spin_unlock_irqrestore(&meta->lock, flags);
|
|
}
|
|
}
|
|
|
|
void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
|
|
{
|
|
unsigned long stack_entries[KFENCE_STACK_DEPTH];
|
|
size_t num_stack_entries;
|
|
u32 alloc_stack_hash;
|
|
|
|
/*
|
|
* Perform size check before switching kfence_allocation_gate, so that
|
|
* we don't disable KFENCE without making an allocation.
|
|
*/
|
|
if (size > PAGE_SIZE) {
|
|
atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Skip allocations from non-default zones, including DMA. We cannot
|
|
* guarantee that pages in the KFENCE pool will have the requested
|
|
* properties (e.g. reside in DMAable memory).
|
|
*/
|
|
if ((flags & GFP_ZONEMASK) ||
|
|
(s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
|
|
atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Skip allocations for this slab, if KFENCE has been disabled for
|
|
* this slab.
|
|
*/
|
|
if (s->flags & SLAB_SKIP_KFENCE)
|
|
return NULL;
|
|
|
|
if (atomic_inc_return(&kfence_allocation_gate) > 1)
|
|
return NULL;
|
|
#ifdef CONFIG_KFENCE_STATIC_KEYS
|
|
/*
|
|
* waitqueue_active() is fully ordered after the update of
|
|
* kfence_allocation_gate per atomic_inc_return().
|
|
*/
|
|
if (waitqueue_active(&allocation_wait)) {
|
|
/*
|
|
* Calling wake_up() here may deadlock when allocations happen
|
|
* from within timer code. Use an irq_work to defer it.
|
|
*/
|
|
irq_work_queue(&wake_up_kfence_timer_work);
|
|
}
|
|
#endif
|
|
|
|
if (!READ_ONCE(kfence_enabled))
|
|
return NULL;
|
|
|
|
num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
|
|
|
|
/*
|
|
* Do expensive check for coverage of allocation in slow-path after
|
|
* allocation_gate has already become non-zero, even though it might
|
|
* mean not making any allocation within a given sample interval.
|
|
*
|
|
* This ensures reasonable allocation coverage when the pool is almost
|
|
* full, including avoiding long-lived allocations of the same source
|
|
* filling up the pool (e.g. pagecache allocations).
|
|
*/
|
|
alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
|
|
if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
|
|
atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
|
|
return NULL;
|
|
}
|
|
|
|
return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
|
|
alloc_stack_hash);
|
|
}
|
|
|
|
size_t kfence_ksize(const void *addr)
|
|
{
|
|
const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
|
|
|
|
/*
|
|
* Read locklessly -- if there is a race with __kfence_alloc(), this is
|
|
* either a use-after-free or invalid access.
|
|
*/
|
|
return meta ? meta->size : 0;
|
|
}
|
|
|
|
void *kfence_object_start(const void *addr)
|
|
{
|
|
const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
|
|
|
|
/*
|
|
* Read locklessly -- if there is a race with __kfence_alloc(), this is
|
|
* either a use-after-free or invalid access.
|
|
*/
|
|
return meta ? (void *)meta->addr : NULL;
|
|
}
|
|
|
|
void __kfence_free(void *addr)
|
|
{
|
|
struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
KFENCE_WARN_ON(meta->objcg);
|
|
#endif
|
|
/*
|
|
* If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
|
|
* the object, as the object page may be recycled for other-typed
|
|
* objects once it has been freed. meta->cache may be NULL if the cache
|
|
* was destroyed.
|
|
*/
|
|
if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
|
|
call_rcu(&meta->rcu_head, rcu_guarded_free);
|
|
else
|
|
kfence_guarded_free(addr, meta, false);
|
|
}
|
|
|
|
bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
|
|
{
|
|
const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
|
|
struct kfence_metadata *to_report = NULL;
|
|
enum kfence_error_type error_type;
|
|
unsigned long flags;
|
|
|
|
if (!is_kfence_address((void *)addr))
|
|
return false;
|
|
|
|
if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
|
|
return kfence_unprotect(addr); /* ... unprotect and proceed. */
|
|
|
|
atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
|
|
|
|
if (page_index % 2) {
|
|
/* This is a redzone, report a buffer overflow. */
|
|
struct kfence_metadata *meta;
|
|
int distance = 0;
|
|
|
|
meta = addr_to_metadata(addr - PAGE_SIZE);
|
|
if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
|
|
to_report = meta;
|
|
/* Data race ok; distance calculation approximate. */
|
|
distance = addr - data_race(meta->addr + meta->size);
|
|
}
|
|
|
|
meta = addr_to_metadata(addr + PAGE_SIZE);
|
|
if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
|
|
/* Data race ok; distance calculation approximate. */
|
|
if (!to_report || distance > data_race(meta->addr) - addr)
|
|
to_report = meta;
|
|
}
|
|
|
|
if (!to_report)
|
|
goto out;
|
|
|
|
raw_spin_lock_irqsave(&to_report->lock, flags);
|
|
to_report->unprotected_page = addr;
|
|
error_type = KFENCE_ERROR_OOB;
|
|
|
|
/*
|
|
* If the object was freed before we took the look we can still
|
|
* report this as an OOB -- the report will simply show the
|
|
* stacktrace of the free as well.
|
|
*/
|
|
} else {
|
|
to_report = addr_to_metadata(addr);
|
|
if (!to_report)
|
|
goto out;
|
|
|
|
raw_spin_lock_irqsave(&to_report->lock, flags);
|
|
error_type = KFENCE_ERROR_UAF;
|
|
/*
|
|
* We may race with __kfence_alloc(), and it is possible that a
|
|
* freed object may be reallocated. We simply report this as a
|
|
* use-after-free, with the stack trace showing the place where
|
|
* the object was re-allocated.
|
|
*/
|
|
}
|
|
|
|
out:
|
|
if (to_report) {
|
|
kfence_report_error(addr, is_write, regs, to_report, error_type);
|
|
raw_spin_unlock_irqrestore(&to_report->lock, flags);
|
|
} else {
|
|
/* This may be a UAF or OOB access, but we can't be sure. */
|
|
kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
|
|
}
|
|
|
|
return kfence_unprotect(addr); /* Unprotect and let access proceed. */
|
|
}
|