9e3457112b
Add support for RFC4106 ESP encapsulation to the accelerated GCM implementation. This results in a ~10% speedup for IPsec frames of typical size (~1420 bytes) on Cortex-A53. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
587 lines
14 KiB
C
587 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Accelerated GHASH implementation with ARMv8 PMULL instructions.
|
|
*
|
|
* Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org>
|
|
*/
|
|
|
|
#include <asm/neon.h>
|
|
#include <asm/simd.h>
|
|
#include <asm/unaligned.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/gcm.h>
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/b128ops.h>
|
|
#include <crypto/gf128mul.h>
|
|
#include <crypto/internal/aead.h>
|
|
#include <crypto/internal/hash.h>
|
|
#include <crypto/internal/simd.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <linux/cpufeature.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/module.h>
|
|
|
|
MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
|
|
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_ALIAS_CRYPTO("ghash");
|
|
|
|
#define GHASH_BLOCK_SIZE 16
|
|
#define GHASH_DIGEST_SIZE 16
|
|
|
|
#define RFC4106_NONCE_SIZE 4
|
|
|
|
struct ghash_key {
|
|
be128 k;
|
|
u64 h[][2];
|
|
};
|
|
|
|
struct ghash_desc_ctx {
|
|
u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
|
|
u8 buf[GHASH_BLOCK_SIZE];
|
|
u32 count;
|
|
};
|
|
|
|
struct gcm_aes_ctx {
|
|
struct crypto_aes_ctx aes_key;
|
|
u8 nonce[RFC4106_NONCE_SIZE];
|
|
struct ghash_key ghash_key;
|
|
};
|
|
|
|
asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
|
|
u64 const h[][2], const char *head);
|
|
|
|
asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
|
|
u64 const h[][2], const char *head);
|
|
|
|
asmlinkage void pmull_gcm_encrypt(int bytes, u8 dst[], const u8 src[],
|
|
u64 const h[][2], u64 dg[], u8 ctr[],
|
|
u32 const rk[], int rounds, u8 tag[]);
|
|
asmlinkage int pmull_gcm_decrypt(int bytes, u8 dst[], const u8 src[],
|
|
u64 const h[][2], u64 dg[], u8 ctr[],
|
|
u32 const rk[], int rounds, const u8 l[],
|
|
const u8 tag[], u64 authsize);
|
|
|
|
static int ghash_init(struct shash_desc *desc)
|
|
{
|
|
struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
|
|
*ctx = (struct ghash_desc_ctx){};
|
|
return 0;
|
|
}
|
|
|
|
static void ghash_do_update(int blocks, u64 dg[], const char *src,
|
|
struct ghash_key *key, const char *head)
|
|
{
|
|
be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
|
|
|
|
do {
|
|
const u8 *in = src;
|
|
|
|
if (head) {
|
|
in = head;
|
|
blocks++;
|
|
head = NULL;
|
|
} else {
|
|
src += GHASH_BLOCK_SIZE;
|
|
}
|
|
|
|
crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
|
|
gf128mul_lle(&dst, &key->k);
|
|
} while (--blocks);
|
|
|
|
dg[0] = be64_to_cpu(dst.b);
|
|
dg[1] = be64_to_cpu(dst.a);
|
|
}
|
|
|
|
static __always_inline
|
|
void ghash_do_simd_update(int blocks, u64 dg[], const char *src,
|
|
struct ghash_key *key, const char *head,
|
|
void (*simd_update)(int blocks, u64 dg[],
|
|
const char *src,
|
|
u64 const h[][2],
|
|
const char *head))
|
|
{
|
|
if (likely(crypto_simd_usable())) {
|
|
kernel_neon_begin();
|
|
simd_update(blocks, dg, src, key->h, head);
|
|
kernel_neon_end();
|
|
} else {
|
|
ghash_do_update(blocks, dg, src, key, head);
|
|
}
|
|
}
|
|
|
|
/* avoid hogging the CPU for too long */
|
|
#define MAX_BLOCKS (SZ_64K / GHASH_BLOCK_SIZE)
|
|
|
|
static int ghash_update(struct shash_desc *desc, const u8 *src,
|
|
unsigned int len)
|
|
{
|
|
struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
|
|
|
|
ctx->count += len;
|
|
|
|
if ((partial + len) >= GHASH_BLOCK_SIZE) {
|
|
struct ghash_key *key = crypto_shash_ctx(desc->tfm);
|
|
int blocks;
|
|
|
|
if (partial) {
|
|
int p = GHASH_BLOCK_SIZE - partial;
|
|
|
|
memcpy(ctx->buf + partial, src, p);
|
|
src += p;
|
|
len -= p;
|
|
}
|
|
|
|
blocks = len / GHASH_BLOCK_SIZE;
|
|
len %= GHASH_BLOCK_SIZE;
|
|
|
|
do {
|
|
int chunk = min(blocks, MAX_BLOCKS);
|
|
|
|
ghash_do_simd_update(chunk, ctx->digest, src, key,
|
|
partial ? ctx->buf : NULL,
|
|
pmull_ghash_update_p8);
|
|
|
|
blocks -= chunk;
|
|
src += chunk * GHASH_BLOCK_SIZE;
|
|
partial = 0;
|
|
} while (unlikely(blocks > 0));
|
|
}
|
|
if (len)
|
|
memcpy(ctx->buf + partial, src, len);
|
|
return 0;
|
|
}
|
|
|
|
static int ghash_final(struct shash_desc *desc, u8 *dst)
|
|
{
|
|
struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
|
|
|
|
if (partial) {
|
|
struct ghash_key *key = crypto_shash_ctx(desc->tfm);
|
|
|
|
memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
|
|
|
|
ghash_do_simd_update(1, ctx->digest, ctx->buf, key, NULL,
|
|
pmull_ghash_update_p8);
|
|
}
|
|
put_unaligned_be64(ctx->digest[1], dst);
|
|
put_unaligned_be64(ctx->digest[0], dst + 8);
|
|
|
|
memzero_explicit(ctx, sizeof(*ctx));
|
|
return 0;
|
|
}
|
|
|
|
static void ghash_reflect(u64 h[], const be128 *k)
|
|
{
|
|
u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
|
|
|
|
h[0] = (be64_to_cpu(k->b) << 1) | carry;
|
|
h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
|
|
|
|
if (carry)
|
|
h[1] ^= 0xc200000000000000UL;
|
|
}
|
|
|
|
static int ghash_setkey(struct crypto_shash *tfm,
|
|
const u8 *inkey, unsigned int keylen)
|
|
{
|
|
struct ghash_key *key = crypto_shash_ctx(tfm);
|
|
|
|
if (keylen != GHASH_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
/* needed for the fallback */
|
|
memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
|
|
|
|
ghash_reflect(key->h[0], &key->k);
|
|
return 0;
|
|
}
|
|
|
|
static struct shash_alg ghash_alg = {
|
|
.base.cra_name = "ghash",
|
|
.base.cra_driver_name = "ghash-neon",
|
|
.base.cra_priority = 150,
|
|
.base.cra_blocksize = GHASH_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct ghash_key) + sizeof(u64[2]),
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.digestsize = GHASH_DIGEST_SIZE,
|
|
.init = ghash_init,
|
|
.update = ghash_update,
|
|
.final = ghash_final,
|
|
.setkey = ghash_setkey,
|
|
.descsize = sizeof(struct ghash_desc_ctx),
|
|
};
|
|
|
|
static int num_rounds(struct crypto_aes_ctx *ctx)
|
|
{
|
|
/*
|
|
* # of rounds specified by AES:
|
|
* 128 bit key 10 rounds
|
|
* 192 bit key 12 rounds
|
|
* 256 bit key 14 rounds
|
|
* => n byte key => 6 + (n/4) rounds
|
|
*/
|
|
return 6 + ctx->key_length / 4;
|
|
}
|
|
|
|
static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *inkey,
|
|
unsigned int keylen)
|
|
{
|
|
struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
|
|
u8 key[GHASH_BLOCK_SIZE];
|
|
be128 h;
|
|
int ret;
|
|
|
|
ret = aes_expandkey(&ctx->aes_key, inkey, keylen);
|
|
if (ret)
|
|
return -EINVAL;
|
|
|
|
aes_encrypt(&ctx->aes_key, key, (u8[AES_BLOCK_SIZE]){});
|
|
|
|
/* needed for the fallback */
|
|
memcpy(&ctx->ghash_key.k, key, GHASH_BLOCK_SIZE);
|
|
|
|
ghash_reflect(ctx->ghash_key.h[0], &ctx->ghash_key.k);
|
|
|
|
h = ctx->ghash_key.k;
|
|
gf128mul_lle(&h, &ctx->ghash_key.k);
|
|
ghash_reflect(ctx->ghash_key.h[1], &h);
|
|
|
|
gf128mul_lle(&h, &ctx->ghash_key.k);
|
|
ghash_reflect(ctx->ghash_key.h[2], &h);
|
|
|
|
gf128mul_lle(&h, &ctx->ghash_key.k);
|
|
ghash_reflect(ctx->ghash_key.h[3], &h);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
|
|
{
|
|
return crypto_gcm_check_authsize(authsize);
|
|
}
|
|
|
|
static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
|
|
int *buf_count, struct gcm_aes_ctx *ctx)
|
|
{
|
|
if (*buf_count > 0) {
|
|
int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
|
|
|
|
memcpy(&buf[*buf_count], src, buf_added);
|
|
|
|
*buf_count += buf_added;
|
|
src += buf_added;
|
|
count -= buf_added;
|
|
}
|
|
|
|
if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
|
|
int blocks = count / GHASH_BLOCK_SIZE;
|
|
|
|
ghash_do_simd_update(blocks, dg, src, &ctx->ghash_key,
|
|
*buf_count ? buf : NULL,
|
|
pmull_ghash_update_p64);
|
|
|
|
src += blocks * GHASH_BLOCK_SIZE;
|
|
count %= GHASH_BLOCK_SIZE;
|
|
*buf_count = 0;
|
|
}
|
|
|
|
if (count > 0) {
|
|
memcpy(buf, src, count);
|
|
*buf_count = count;
|
|
}
|
|
}
|
|
|
|
static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[], u32 len)
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
|
|
u8 buf[GHASH_BLOCK_SIZE];
|
|
struct scatter_walk walk;
|
|
int buf_count = 0;
|
|
|
|
scatterwalk_start(&walk, req->src);
|
|
|
|
do {
|
|
u32 n = scatterwalk_clamp(&walk, len);
|
|
u8 *p;
|
|
|
|
if (!n) {
|
|
scatterwalk_start(&walk, sg_next(walk.sg));
|
|
n = scatterwalk_clamp(&walk, len);
|
|
}
|
|
p = scatterwalk_map(&walk);
|
|
|
|
gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
|
|
len -= n;
|
|
|
|
scatterwalk_unmap(p);
|
|
scatterwalk_advance(&walk, n);
|
|
scatterwalk_done(&walk, 0, len);
|
|
} while (len);
|
|
|
|
if (buf_count) {
|
|
memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
|
|
ghash_do_simd_update(1, dg, buf, &ctx->ghash_key, NULL,
|
|
pmull_ghash_update_p64);
|
|
}
|
|
}
|
|
|
|
static int gcm_encrypt(struct aead_request *req, char *iv, int assoclen)
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
|
|
int nrounds = num_rounds(&ctx->aes_key);
|
|
struct skcipher_walk walk;
|
|
u8 buf[AES_BLOCK_SIZE];
|
|
u64 dg[2] = {};
|
|
be128 lengths;
|
|
u8 *tag;
|
|
int err;
|
|
|
|
lengths.a = cpu_to_be64(assoclen * 8);
|
|
lengths.b = cpu_to_be64(req->cryptlen * 8);
|
|
|
|
if (assoclen)
|
|
gcm_calculate_auth_mac(req, dg, assoclen);
|
|
|
|
put_unaligned_be32(2, iv + GCM_AES_IV_SIZE);
|
|
|
|
err = skcipher_walk_aead_encrypt(&walk, req, false);
|
|
|
|
do {
|
|
const u8 *src = walk.src.virt.addr;
|
|
u8 *dst = walk.dst.virt.addr;
|
|
int nbytes = walk.nbytes;
|
|
|
|
tag = (u8 *)&lengths;
|
|
|
|
if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
|
|
src = dst = memcpy(buf + sizeof(buf) - nbytes,
|
|
src, nbytes);
|
|
} else if (nbytes < walk.total) {
|
|
nbytes &= ~(AES_BLOCK_SIZE - 1);
|
|
tag = NULL;
|
|
}
|
|
|
|
kernel_neon_begin();
|
|
pmull_gcm_encrypt(nbytes, dst, src, ctx->ghash_key.h,
|
|
dg, iv, ctx->aes_key.key_enc, nrounds,
|
|
tag);
|
|
kernel_neon_end();
|
|
|
|
if (unlikely(!nbytes))
|
|
break;
|
|
|
|
if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
|
|
memcpy(walk.dst.virt.addr,
|
|
buf + sizeof(buf) - nbytes, nbytes);
|
|
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
} while (walk.nbytes);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
/* copy authtag to end of dst */
|
|
scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
|
|
crypto_aead_authsize(aead), 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gcm_decrypt(struct aead_request *req, char *iv, int assoclen)
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
|
|
unsigned int authsize = crypto_aead_authsize(aead);
|
|
int nrounds = num_rounds(&ctx->aes_key);
|
|
struct skcipher_walk walk;
|
|
u8 otag[AES_BLOCK_SIZE];
|
|
u8 buf[AES_BLOCK_SIZE];
|
|
u64 dg[2] = {};
|
|
be128 lengths;
|
|
u8 *tag;
|
|
int ret;
|
|
int err;
|
|
|
|
lengths.a = cpu_to_be64(assoclen * 8);
|
|
lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8);
|
|
|
|
if (assoclen)
|
|
gcm_calculate_auth_mac(req, dg, assoclen);
|
|
|
|
put_unaligned_be32(2, iv + GCM_AES_IV_SIZE);
|
|
|
|
scatterwalk_map_and_copy(otag, req->src,
|
|
req->assoclen + req->cryptlen - authsize,
|
|
authsize, 0);
|
|
|
|
err = skcipher_walk_aead_decrypt(&walk, req, false);
|
|
|
|
do {
|
|
const u8 *src = walk.src.virt.addr;
|
|
u8 *dst = walk.dst.virt.addr;
|
|
int nbytes = walk.nbytes;
|
|
|
|
tag = (u8 *)&lengths;
|
|
|
|
if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
|
|
src = dst = memcpy(buf + sizeof(buf) - nbytes,
|
|
src, nbytes);
|
|
} else if (nbytes < walk.total) {
|
|
nbytes &= ~(AES_BLOCK_SIZE - 1);
|
|
tag = NULL;
|
|
}
|
|
|
|
kernel_neon_begin();
|
|
ret = pmull_gcm_decrypt(nbytes, dst, src, ctx->ghash_key.h,
|
|
dg, iv, ctx->aes_key.key_enc,
|
|
nrounds, tag, otag, authsize);
|
|
kernel_neon_end();
|
|
|
|
if (unlikely(!nbytes))
|
|
break;
|
|
|
|
if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
|
|
memcpy(walk.dst.virt.addr,
|
|
buf + sizeof(buf) - nbytes, nbytes);
|
|
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
} while (walk.nbytes);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
return ret ? -EBADMSG : 0;
|
|
}
|
|
|
|
static int gcm_aes_encrypt(struct aead_request *req)
|
|
{
|
|
u8 iv[AES_BLOCK_SIZE];
|
|
|
|
memcpy(iv, req->iv, GCM_AES_IV_SIZE);
|
|
return gcm_encrypt(req, iv, req->assoclen);
|
|
}
|
|
|
|
static int gcm_aes_decrypt(struct aead_request *req)
|
|
{
|
|
u8 iv[AES_BLOCK_SIZE];
|
|
|
|
memcpy(iv, req->iv, GCM_AES_IV_SIZE);
|
|
return gcm_decrypt(req, iv, req->assoclen);
|
|
}
|
|
|
|
static int rfc4106_setkey(struct crypto_aead *tfm, const u8 *inkey,
|
|
unsigned int keylen)
|
|
{
|
|
struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
|
|
int err;
|
|
|
|
keylen -= RFC4106_NONCE_SIZE;
|
|
err = gcm_aes_setkey(tfm, inkey, keylen);
|
|
if (err)
|
|
return err;
|
|
|
|
memcpy(ctx->nonce, inkey + keylen, RFC4106_NONCE_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
static int rfc4106_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
|
|
{
|
|
return crypto_rfc4106_check_authsize(authsize);
|
|
}
|
|
|
|
static int rfc4106_encrypt(struct aead_request *req)
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
|
|
u8 iv[AES_BLOCK_SIZE];
|
|
|
|
memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
|
|
memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
|
|
|
|
return crypto_ipsec_check_assoclen(req->assoclen) ?:
|
|
gcm_encrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
|
|
}
|
|
|
|
static int rfc4106_decrypt(struct aead_request *req)
|
|
{
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
|
|
u8 iv[AES_BLOCK_SIZE];
|
|
|
|
memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
|
|
memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
|
|
|
|
return crypto_ipsec_check_assoclen(req->assoclen) ?:
|
|
gcm_decrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
|
|
}
|
|
|
|
static struct aead_alg gcm_aes_algs[] = {{
|
|
.ivsize = GCM_AES_IV_SIZE,
|
|
.chunksize = AES_BLOCK_SIZE,
|
|
.maxauthsize = AES_BLOCK_SIZE,
|
|
.setkey = gcm_aes_setkey,
|
|
.setauthsize = gcm_aes_setauthsize,
|
|
.encrypt = gcm_aes_encrypt,
|
|
.decrypt = gcm_aes_decrypt,
|
|
|
|
.base.cra_name = "gcm(aes)",
|
|
.base.cra_driver_name = "gcm-aes-ce",
|
|
.base.cra_priority = 300,
|
|
.base.cra_blocksize = 1,
|
|
.base.cra_ctxsize = sizeof(struct gcm_aes_ctx) +
|
|
4 * sizeof(u64[2]),
|
|
.base.cra_module = THIS_MODULE,
|
|
}, {
|
|
.ivsize = GCM_RFC4106_IV_SIZE,
|
|
.chunksize = AES_BLOCK_SIZE,
|
|
.maxauthsize = AES_BLOCK_SIZE,
|
|
.setkey = rfc4106_setkey,
|
|
.setauthsize = rfc4106_setauthsize,
|
|
.encrypt = rfc4106_encrypt,
|
|
.decrypt = rfc4106_decrypt,
|
|
|
|
.base.cra_name = "rfc4106(gcm(aes))",
|
|
.base.cra_driver_name = "rfc4106-gcm-aes-ce",
|
|
.base.cra_priority = 300,
|
|
.base.cra_blocksize = 1,
|
|
.base.cra_ctxsize = sizeof(struct gcm_aes_ctx) +
|
|
4 * sizeof(u64[2]),
|
|
.base.cra_module = THIS_MODULE,
|
|
}};
|
|
|
|
static int __init ghash_ce_mod_init(void)
|
|
{
|
|
if (!cpu_have_named_feature(ASIMD))
|
|
return -ENODEV;
|
|
|
|
if (cpu_have_named_feature(PMULL))
|
|
return crypto_register_aeads(gcm_aes_algs,
|
|
ARRAY_SIZE(gcm_aes_algs));
|
|
|
|
return crypto_register_shash(&ghash_alg);
|
|
}
|
|
|
|
static void __exit ghash_ce_mod_exit(void)
|
|
{
|
|
if (cpu_have_named_feature(PMULL))
|
|
crypto_unregister_aeads(gcm_aes_algs, ARRAY_SIZE(gcm_aes_algs));
|
|
else
|
|
crypto_unregister_shash(&ghash_alg);
|
|
}
|
|
|
|
static const struct cpu_feature __maybe_unused ghash_cpu_feature[] = {
|
|
{ cpu_feature(PMULL) }, { }
|
|
};
|
|
MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
|
|
|
|
module_init(ghash_ce_mod_init);
|
|
module_exit(ghash_ce_mod_exit);
|