a528d35e8b
Add a system call to make extended file information available, including file creation and some attribute flags where available through the underlying filesystem. The getattr inode operation is altered to take two additional arguments: a u32 request_mask and an unsigned int flags that indicate the synchronisation mode. This change is propagated to the vfs_getattr*() function. Functions like vfs_stat() are now inline wrappers around new functions vfs_statx() and vfs_statx_fd() to reduce stack usage. ======== OVERVIEW ======== The idea was initially proposed as a set of xattrs that could be retrieved with getxattr(), but the general preference proved to be for a new syscall with an extended stat structure. A number of requests were gathered for features to be included. The following have been included: (1) Make the fields a consistent size on all arches and make them large. (2) Spare space, request flags and information flags are provided for future expansion. (3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an __s64). (4) Creation time: The SMB protocol carries the creation time, which could be exported by Samba, which will in turn help CIFS make use of FS-Cache as that can be used for coherency data (stx_btime). This is also specified in NFSv4 as a recommended attribute and could be exported by NFSD [Steve French]. (5) Lightweight stat: Ask for just those details of interest, and allow a netfs (such as NFS) to approximate anything not of interest, possibly without going to the server [Trond Myklebust, Ulrich Drepper, Andreas Dilger] (AT_STATX_DONT_SYNC). (6) Heavyweight stat: Force a netfs to go to the server, even if it thinks its cached attributes are up to date [Trond Myklebust] (AT_STATX_FORCE_SYNC). And the following have been left out for future extension: (7) Data version number: Could be used by userspace NFS servers [Aneesh Kumar]. Can also be used to modify fill_post_wcc() in NFSD which retrieves i_version directly, but has just called vfs_getattr(). It could get it from the kstat struct if it used vfs_xgetattr() instead. (There's disagreement on the exact semantics of a single field, since not all filesystems do this the same way). (8) BSD stat compatibility: Including more fields from the BSD stat such as creation time (st_btime) and inode generation number (st_gen) [Jeremy Allison, Bernd Schubert]. (9) Inode generation number: Useful for FUSE and userspace NFS servers [Bernd Schubert]. (This was asked for but later deemed unnecessary with the open-by-handle capability available and caused disagreement as to whether it's a security hole or not). (10) Extra coherency data may be useful in making backups [Andreas Dilger]. (No particular data were offered, but things like last backup timestamp, the data version number and the DOS archive bit would come into this category). (11) Allow the filesystem to indicate what it can/cannot provide: A filesystem can now say it doesn't support a standard stat feature if that isn't available, so if, for instance, inode numbers or UIDs don't exist or are fabricated locally... (This requires a separate system call - I have an fsinfo() call idea for this). (12) Store a 16-byte volume ID in the superblock that can be returned in struct xstat [Steve French]. (Deferred to fsinfo). (13) Include granularity fields in the time data to indicate the granularity of each of the times (NFSv4 time_delta) [Steve French]. (Deferred to fsinfo). (14) FS_IOC_GETFLAGS value. These could be translated to BSD's st_flags. Note that the Linux IOC flags are a mess and filesystems such as Ext4 define flags that aren't in linux/fs.h, so translation in the kernel may be a necessity (or, possibly, we provide the filesystem type too). (Some attributes are made available in stx_attributes, but the general feeling was that the IOC flags were to ext[234]-specific and shouldn't be exposed through statx this way). (15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer, Michael Kerrisk]. (Deferred, probably to fsinfo. Finding out if there's an ACL or seclabal might require extra filesystem operations). (16) Femtosecond-resolution timestamps [Dave Chinner]. (A __reserved field has been left in the statx_timestamp struct for this - if there proves to be a need). (17) A set multiple attributes syscall to go with this. =============== NEW SYSTEM CALL =============== The new system call is: int ret = statx(int dfd, const char *filename, unsigned int flags, unsigned int mask, struct statx *buffer); The dfd, filename and flags parameters indicate the file to query, in a similar way to fstatat(). There is no equivalent of lstat() as that can be emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags. There is also no equivalent of fstat() as that can be emulated by passing a NULL filename to statx() with the fd of interest in dfd. Whether or not statx() synchronises the attributes with the backing store can be controlled by OR'ing a value into the flags argument (this typically only affects network filesystems): (1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this respect. (2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise its attributes with the server - which might require data writeback to occur to get the timestamps correct. (3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a network filesystem. The resulting values should be considered approximate. mask is a bitmask indicating the fields in struct statx that are of interest to the caller. The user should set this to STATX_BASIC_STATS to get the basic set returned by stat(). It should be noted that asking for more information may entail extra I/O operations. buffer points to the destination for the data. This must be 256 bytes in size. ====================== MAIN ATTRIBUTES RECORD ====================== The following structures are defined in which to return the main attribute set: struct statx_timestamp { __s64 tv_sec; __s32 tv_nsec; __s32 __reserved; }; struct statx { __u32 stx_mask; __u32 stx_blksize; __u64 stx_attributes; __u32 stx_nlink; __u32 stx_uid; __u32 stx_gid; __u16 stx_mode; __u16 __spare0[1]; __u64 stx_ino; __u64 stx_size; __u64 stx_blocks; __u64 __spare1[1]; struct statx_timestamp stx_atime; struct statx_timestamp stx_btime; struct statx_timestamp stx_ctime; struct statx_timestamp stx_mtime; __u32 stx_rdev_major; __u32 stx_rdev_minor; __u32 stx_dev_major; __u32 stx_dev_minor; __u64 __spare2[14]; }; The defined bits in request_mask and stx_mask are: STATX_TYPE Want/got stx_mode & S_IFMT STATX_MODE Want/got stx_mode & ~S_IFMT STATX_NLINK Want/got stx_nlink STATX_UID Want/got stx_uid STATX_GID Want/got stx_gid STATX_ATIME Want/got stx_atime{,_ns} STATX_MTIME Want/got stx_mtime{,_ns} STATX_CTIME Want/got stx_ctime{,_ns} STATX_INO Want/got stx_ino STATX_SIZE Want/got stx_size STATX_BLOCKS Want/got stx_blocks STATX_BASIC_STATS [The stuff in the normal stat struct] STATX_BTIME Want/got stx_btime{,_ns} STATX_ALL [All currently available stuff] stx_btime is the file creation time, stx_mask is a bitmask indicating the data provided and __spares*[] are where as-yet undefined fields can be placed. Time fields are structures with separate seconds and nanoseconds fields plus a reserved field in case we want to add even finer resolution. Note that times will be negative if before 1970; in such a case, the nanosecond fields will also be negative if not zero. The bits defined in the stx_attributes field convey information about a file, how it is accessed, where it is and what it does. The following attributes map to FS_*_FL flags and are the same numerical value: STATX_ATTR_COMPRESSED File is compressed by the fs STATX_ATTR_IMMUTABLE File is marked immutable STATX_ATTR_APPEND File is append-only STATX_ATTR_NODUMP File is not to be dumped STATX_ATTR_ENCRYPTED File requires key to decrypt in fs Within the kernel, the supported flags are listed by: KSTAT_ATTR_FS_IOC_FLAGS [Are any other IOC flags of sufficient general interest to be exposed through this interface?] New flags include: STATX_ATTR_AUTOMOUNT Object is an automount trigger These are for the use of GUI tools that might want to mark files specially, depending on what they are. Fields in struct statx come in a number of classes: (0) stx_dev_*, stx_blksize. These are local system information and are always available. (1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino, stx_size, stx_blocks. These will be returned whether the caller asks for them or not. The corresponding bits in stx_mask will be set to indicate whether they actually have valid values. If the caller didn't ask for them, then they may be approximated. For example, NFS won't waste any time updating them from the server, unless as a byproduct of updating something requested. If the values don't actually exist for the underlying object (such as UID or GID on a DOS file), then the bit won't be set in the stx_mask, even if the caller asked for the value. In such a case, the returned value will be a fabrication. Note that there are instances where the type might not be valid, for instance Windows reparse points. (2) stx_rdev_*. This will be set only if stx_mode indicates we're looking at a blockdev or a chardev, otherwise will be 0. (3) stx_btime. Similar to (1), except this will be set to 0 if it doesn't exist. ======= TESTING ======= The following test program can be used to test the statx system call: samples/statx/test-statx.c Just compile and run, passing it paths to the files you want to examine. The file is built automatically if CONFIG_SAMPLES is enabled. Here's some example output. Firstly, an NFS directory that crosses to another FSID. Note that the AUTOMOUNT attribute is set because transiting this directory will cause d_automount to be invoked by the VFS. [root@andromeda ~]# /tmp/test-statx -A /warthog/data statx(/warthog/data) = 0 results=7ff Size: 4096 Blocks: 8 IO Block: 1048576 directory Device: 00:26 Inode: 1703937 Links: 125 Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041 Access: 2016-11-24 09:02:12.219699527+0000 Modify: 2016-11-17 10:44:36.225653653+0000 Change: 2016-11-17 10:44:36.225653653+0000 Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------) Secondly, the result of automounting on that directory. [root@andromeda ~]# /tmp/test-statx /warthog/data statx(/warthog/data) = 0 results=7ff Size: 4096 Blocks: 8 IO Block: 1048576 directory Device: 00:27 Inode: 2 Links: 125 Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041 Access: 2016-11-24 09:02:12.219699527+0000 Modify: 2016-11-17 10:44:36.225653653+0000 Change: 2016-11-17 10:44:36.225653653+0000 Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2331 lines
53 KiB
C
2331 lines
53 KiB
C
/*
|
|
* fs/f2fs/file.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/falloc.h>
|
|
#include <linux/types.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/uuid.h>
|
|
#include <linux/file.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include "xattr.h"
|
|
#include "acl.h"
|
|
#include "gc.h"
|
|
#include "trace.h"
|
|
#include <trace/events/f2fs.h>
|
|
|
|
static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
|
|
{
|
|
struct page *page = vmf->page;
|
|
struct inode *inode = file_inode(vmf->vma->vm_file);
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct dnode_of_data dn;
|
|
int err;
|
|
|
|
sb_start_pagefault(inode->i_sb);
|
|
|
|
f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
|
|
|
|
/* block allocation */
|
|
f2fs_lock_op(sbi);
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = f2fs_reserve_block(&dn, page->index);
|
|
if (err) {
|
|
f2fs_unlock_op(sbi);
|
|
goto out;
|
|
}
|
|
f2fs_put_dnode(&dn);
|
|
f2fs_unlock_op(sbi);
|
|
|
|
f2fs_balance_fs(sbi, dn.node_changed);
|
|
|
|
file_update_time(vmf->vma->vm_file);
|
|
lock_page(page);
|
|
if (unlikely(page->mapping != inode->i_mapping ||
|
|
page_offset(page) > i_size_read(inode) ||
|
|
!PageUptodate(page))) {
|
|
unlock_page(page);
|
|
err = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* check to see if the page is mapped already (no holes)
|
|
*/
|
|
if (PageMappedToDisk(page))
|
|
goto mapped;
|
|
|
|
/* page is wholly or partially inside EOF */
|
|
if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
|
|
i_size_read(inode)) {
|
|
unsigned offset;
|
|
offset = i_size_read(inode) & ~PAGE_MASK;
|
|
zero_user_segment(page, offset, PAGE_SIZE);
|
|
}
|
|
set_page_dirty(page);
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
|
|
trace_f2fs_vm_page_mkwrite(page, DATA);
|
|
mapped:
|
|
/* fill the page */
|
|
f2fs_wait_on_page_writeback(page, DATA, false);
|
|
|
|
/* wait for GCed encrypted page writeback */
|
|
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
|
|
f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
|
|
|
|
out:
|
|
sb_end_pagefault(inode->i_sb);
|
|
f2fs_update_time(sbi, REQ_TIME);
|
|
return block_page_mkwrite_return(err);
|
|
}
|
|
|
|
static const struct vm_operations_struct f2fs_file_vm_ops = {
|
|
.fault = filemap_fault,
|
|
.map_pages = filemap_map_pages,
|
|
.page_mkwrite = f2fs_vm_page_mkwrite,
|
|
};
|
|
|
|
static int get_parent_ino(struct inode *inode, nid_t *pino)
|
|
{
|
|
struct dentry *dentry;
|
|
|
|
inode = igrab(inode);
|
|
dentry = d_find_any_alias(inode);
|
|
iput(inode);
|
|
if (!dentry)
|
|
return 0;
|
|
|
|
if (update_dent_inode(inode, inode, &dentry->d_name)) {
|
|
dput(dentry);
|
|
return 0;
|
|
}
|
|
|
|
*pino = parent_ino(dentry);
|
|
dput(dentry);
|
|
return 1;
|
|
}
|
|
|
|
static inline bool need_do_checkpoint(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
bool need_cp = false;
|
|
|
|
if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
|
|
need_cp = true;
|
|
else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
|
|
need_cp = true;
|
|
else if (file_wrong_pino(inode))
|
|
need_cp = true;
|
|
else if (!space_for_roll_forward(sbi))
|
|
need_cp = true;
|
|
else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
|
|
need_cp = true;
|
|
else if (test_opt(sbi, FASTBOOT))
|
|
need_cp = true;
|
|
else if (sbi->active_logs == 2)
|
|
need_cp = true;
|
|
|
|
return need_cp;
|
|
}
|
|
|
|
static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
|
|
bool ret = false;
|
|
/* But we need to avoid that there are some inode updates */
|
|
if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
|
|
ret = true;
|
|
f2fs_put_page(i, 0);
|
|
return ret;
|
|
}
|
|
|
|
static void try_to_fix_pino(struct inode *inode)
|
|
{
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
nid_t pino;
|
|
|
|
down_write(&fi->i_sem);
|
|
if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
|
|
get_parent_ino(inode, &pino)) {
|
|
f2fs_i_pino_write(inode, pino);
|
|
file_got_pino(inode);
|
|
}
|
|
up_write(&fi->i_sem);
|
|
}
|
|
|
|
static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
|
|
int datasync, bool atomic)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
nid_t ino = inode->i_ino;
|
|
int ret = 0;
|
|
bool need_cp = false;
|
|
struct writeback_control wbc = {
|
|
.sync_mode = WB_SYNC_ALL,
|
|
.nr_to_write = LONG_MAX,
|
|
.for_reclaim = 0,
|
|
};
|
|
|
|
if (unlikely(f2fs_readonly(inode->i_sb)))
|
|
return 0;
|
|
|
|
trace_f2fs_sync_file_enter(inode);
|
|
|
|
/* if fdatasync is triggered, let's do in-place-update */
|
|
if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
|
|
set_inode_flag(inode, FI_NEED_IPU);
|
|
ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
|
|
clear_inode_flag(inode, FI_NEED_IPU);
|
|
|
|
if (ret) {
|
|
trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* if the inode is dirty, let's recover all the time */
|
|
if (!f2fs_skip_inode_update(inode, datasync)) {
|
|
f2fs_write_inode(inode, NULL);
|
|
goto go_write;
|
|
}
|
|
|
|
/*
|
|
* if there is no written data, don't waste time to write recovery info.
|
|
*/
|
|
if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
|
|
!exist_written_data(sbi, ino, APPEND_INO)) {
|
|
|
|
/* it may call write_inode just prior to fsync */
|
|
if (need_inode_page_update(sbi, ino))
|
|
goto go_write;
|
|
|
|
if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
|
|
exist_written_data(sbi, ino, UPDATE_INO))
|
|
goto flush_out;
|
|
goto out;
|
|
}
|
|
go_write:
|
|
/*
|
|
* Both of fdatasync() and fsync() are able to be recovered from
|
|
* sudden-power-off.
|
|
*/
|
|
down_read(&F2FS_I(inode)->i_sem);
|
|
need_cp = need_do_checkpoint(inode);
|
|
up_read(&F2FS_I(inode)->i_sem);
|
|
|
|
if (need_cp) {
|
|
/* all the dirty node pages should be flushed for POR */
|
|
ret = f2fs_sync_fs(inode->i_sb, 1);
|
|
|
|
/*
|
|
* We've secured consistency through sync_fs. Following pino
|
|
* will be used only for fsynced inodes after checkpoint.
|
|
*/
|
|
try_to_fix_pino(inode);
|
|
clear_inode_flag(inode, FI_APPEND_WRITE);
|
|
clear_inode_flag(inode, FI_UPDATE_WRITE);
|
|
goto out;
|
|
}
|
|
sync_nodes:
|
|
ret = fsync_node_pages(sbi, inode, &wbc, atomic);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* if cp_error was enabled, we should avoid infinite loop */
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
if (need_inode_block_update(sbi, ino)) {
|
|
f2fs_mark_inode_dirty_sync(inode, true);
|
|
f2fs_write_inode(inode, NULL);
|
|
goto sync_nodes;
|
|
}
|
|
|
|
ret = wait_on_node_pages_writeback(sbi, ino);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* once recovery info is written, don't need to tack this */
|
|
remove_ino_entry(sbi, ino, APPEND_INO);
|
|
clear_inode_flag(inode, FI_APPEND_WRITE);
|
|
flush_out:
|
|
remove_ino_entry(sbi, ino, UPDATE_INO);
|
|
clear_inode_flag(inode, FI_UPDATE_WRITE);
|
|
if (!atomic)
|
|
ret = f2fs_issue_flush(sbi);
|
|
f2fs_update_time(sbi, REQ_TIME);
|
|
out:
|
|
trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
|
|
f2fs_trace_ios(NULL, 1);
|
|
return ret;
|
|
}
|
|
|
|
int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
|
|
{
|
|
return f2fs_do_sync_file(file, start, end, datasync, false);
|
|
}
|
|
|
|
static pgoff_t __get_first_dirty_index(struct address_space *mapping,
|
|
pgoff_t pgofs, int whence)
|
|
{
|
|
struct pagevec pvec;
|
|
int nr_pages;
|
|
|
|
if (whence != SEEK_DATA)
|
|
return 0;
|
|
|
|
/* find first dirty page index */
|
|
pagevec_init(&pvec, 0);
|
|
nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
|
|
PAGECACHE_TAG_DIRTY, 1);
|
|
pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
|
|
pagevec_release(&pvec);
|
|
return pgofs;
|
|
}
|
|
|
|
static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
|
|
int whence)
|
|
{
|
|
switch (whence) {
|
|
case SEEK_DATA:
|
|
if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
|
|
(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
|
|
return true;
|
|
break;
|
|
case SEEK_HOLE:
|
|
if (blkaddr == NULL_ADDR)
|
|
return true;
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
loff_t maxbytes = inode->i_sb->s_maxbytes;
|
|
struct dnode_of_data dn;
|
|
pgoff_t pgofs, end_offset, dirty;
|
|
loff_t data_ofs = offset;
|
|
loff_t isize;
|
|
int err = 0;
|
|
|
|
inode_lock(inode);
|
|
|
|
isize = i_size_read(inode);
|
|
if (offset >= isize)
|
|
goto fail;
|
|
|
|
/* handle inline data case */
|
|
if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
|
|
if (whence == SEEK_HOLE)
|
|
data_ofs = isize;
|
|
goto found;
|
|
}
|
|
|
|
pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
|
|
|
|
dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
|
|
|
|
for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
|
|
if (err && err != -ENOENT) {
|
|
goto fail;
|
|
} else if (err == -ENOENT) {
|
|
/* direct node does not exists */
|
|
if (whence == SEEK_DATA) {
|
|
pgofs = get_next_page_offset(&dn, pgofs);
|
|
continue;
|
|
} else {
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
|
|
|
|
/* find data/hole in dnode block */
|
|
for (; dn.ofs_in_node < end_offset;
|
|
dn.ofs_in_node++, pgofs++,
|
|
data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
|
|
block_t blkaddr;
|
|
blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
|
|
|
|
if (__found_offset(blkaddr, dirty, pgofs, whence)) {
|
|
f2fs_put_dnode(&dn);
|
|
goto found;
|
|
}
|
|
}
|
|
f2fs_put_dnode(&dn);
|
|
}
|
|
|
|
if (whence == SEEK_DATA)
|
|
goto fail;
|
|
found:
|
|
if (whence == SEEK_HOLE && data_ofs > isize)
|
|
data_ofs = isize;
|
|
inode_unlock(inode);
|
|
return vfs_setpos(file, data_ofs, maxbytes);
|
|
fail:
|
|
inode_unlock(inode);
|
|
return -ENXIO;
|
|
}
|
|
|
|
static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
loff_t maxbytes = inode->i_sb->s_maxbytes;
|
|
|
|
switch (whence) {
|
|
case SEEK_SET:
|
|
case SEEK_CUR:
|
|
case SEEK_END:
|
|
return generic_file_llseek_size(file, offset, whence,
|
|
maxbytes, i_size_read(inode));
|
|
case SEEK_DATA:
|
|
case SEEK_HOLE:
|
|
if (offset < 0)
|
|
return -ENXIO;
|
|
return f2fs_seek_block(file, offset, whence);
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
int err;
|
|
|
|
if (f2fs_encrypted_inode(inode)) {
|
|
err = fscrypt_get_encryption_info(inode);
|
|
if (err)
|
|
return 0;
|
|
if (!f2fs_encrypted_inode(inode))
|
|
return -ENOKEY;
|
|
}
|
|
|
|
/* we don't need to use inline_data strictly */
|
|
err = f2fs_convert_inline_inode(inode);
|
|
if (err)
|
|
return err;
|
|
|
|
file_accessed(file);
|
|
vma->vm_ops = &f2fs_file_vm_ops;
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_file_open(struct inode *inode, struct file *filp)
|
|
{
|
|
int ret = generic_file_open(inode, filp);
|
|
struct dentry *dir;
|
|
|
|
if (!ret && f2fs_encrypted_inode(inode)) {
|
|
ret = fscrypt_get_encryption_info(inode);
|
|
if (ret)
|
|
return -EACCES;
|
|
if (!fscrypt_has_encryption_key(inode))
|
|
return -ENOKEY;
|
|
}
|
|
dir = dget_parent(file_dentry(filp));
|
|
if (f2fs_encrypted_inode(d_inode(dir)) &&
|
|
!fscrypt_has_permitted_context(d_inode(dir), inode)) {
|
|
dput(dir);
|
|
return -EPERM;
|
|
}
|
|
dput(dir);
|
|
return ret;
|
|
}
|
|
|
|
int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
|
|
struct f2fs_node *raw_node;
|
|
int nr_free = 0, ofs = dn->ofs_in_node, len = count;
|
|
__le32 *addr;
|
|
|
|
raw_node = F2FS_NODE(dn->node_page);
|
|
addr = blkaddr_in_node(raw_node) + ofs;
|
|
|
|
for (; count > 0; count--, addr++, dn->ofs_in_node++) {
|
|
block_t blkaddr = le32_to_cpu(*addr);
|
|
if (blkaddr == NULL_ADDR)
|
|
continue;
|
|
|
|
dn->data_blkaddr = NULL_ADDR;
|
|
set_data_blkaddr(dn);
|
|
invalidate_blocks(sbi, blkaddr);
|
|
if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
|
|
clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
|
|
nr_free++;
|
|
}
|
|
|
|
if (nr_free) {
|
|
pgoff_t fofs;
|
|
/*
|
|
* once we invalidate valid blkaddr in range [ofs, ofs + count],
|
|
* we will invalidate all blkaddr in the whole range.
|
|
*/
|
|
fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
|
|
dn->inode) + ofs;
|
|
f2fs_update_extent_cache_range(dn, fofs, 0, len);
|
|
dec_valid_block_count(sbi, dn->inode, nr_free);
|
|
}
|
|
dn->ofs_in_node = ofs;
|
|
|
|
f2fs_update_time(sbi, REQ_TIME);
|
|
trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
|
|
dn->ofs_in_node, nr_free);
|
|
return nr_free;
|
|
}
|
|
|
|
void truncate_data_blocks(struct dnode_of_data *dn)
|
|
{
|
|
truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
|
|
}
|
|
|
|
static int truncate_partial_data_page(struct inode *inode, u64 from,
|
|
bool cache_only)
|
|
{
|
|
unsigned offset = from & (PAGE_SIZE - 1);
|
|
pgoff_t index = from >> PAGE_SHIFT;
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct page *page;
|
|
|
|
if (!offset && !cache_only)
|
|
return 0;
|
|
|
|
if (cache_only) {
|
|
page = find_lock_page(mapping, index);
|
|
if (page && PageUptodate(page))
|
|
goto truncate_out;
|
|
f2fs_put_page(page, 1);
|
|
return 0;
|
|
}
|
|
|
|
page = get_lock_data_page(inode, index, true);
|
|
if (IS_ERR(page))
|
|
return 0;
|
|
truncate_out:
|
|
f2fs_wait_on_page_writeback(page, DATA, true);
|
|
zero_user(page, offset, PAGE_SIZE - offset);
|
|
if (!cache_only || !f2fs_encrypted_inode(inode) ||
|
|
!S_ISREG(inode->i_mode))
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
return 0;
|
|
}
|
|
|
|
int truncate_blocks(struct inode *inode, u64 from, bool lock)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
unsigned int blocksize = inode->i_sb->s_blocksize;
|
|
struct dnode_of_data dn;
|
|
pgoff_t free_from;
|
|
int count = 0, err = 0;
|
|
struct page *ipage;
|
|
bool truncate_page = false;
|
|
|
|
trace_f2fs_truncate_blocks_enter(inode, from);
|
|
|
|
free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
|
|
|
|
if (free_from >= sbi->max_file_blocks)
|
|
goto free_partial;
|
|
|
|
if (lock)
|
|
f2fs_lock_op(sbi);
|
|
|
|
ipage = get_node_page(sbi, inode->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
err = PTR_ERR(ipage);
|
|
goto out;
|
|
}
|
|
|
|
if (f2fs_has_inline_data(inode)) {
|
|
truncate_inline_inode(ipage, from);
|
|
if (from == 0)
|
|
clear_inode_flag(inode, FI_DATA_EXIST);
|
|
f2fs_put_page(ipage, 1);
|
|
truncate_page = true;
|
|
goto out;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, ipage, NULL, 0);
|
|
err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
|
|
if (err) {
|
|
if (err == -ENOENT)
|
|
goto free_next;
|
|
goto out;
|
|
}
|
|
|
|
count = ADDRS_PER_PAGE(dn.node_page, inode);
|
|
|
|
count -= dn.ofs_in_node;
|
|
f2fs_bug_on(sbi, count < 0);
|
|
|
|
if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
|
|
truncate_data_blocks_range(&dn, count);
|
|
free_from += count;
|
|
}
|
|
|
|
f2fs_put_dnode(&dn);
|
|
free_next:
|
|
err = truncate_inode_blocks(inode, free_from);
|
|
out:
|
|
if (lock)
|
|
f2fs_unlock_op(sbi);
|
|
free_partial:
|
|
/* lastly zero out the first data page */
|
|
if (!err)
|
|
err = truncate_partial_data_page(inode, from, truncate_page);
|
|
|
|
trace_f2fs_truncate_blocks_exit(inode, err);
|
|
return err;
|
|
}
|
|
|
|
int f2fs_truncate(struct inode *inode)
|
|
{
|
|
int err;
|
|
|
|
if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
|
|
S_ISLNK(inode->i_mode)))
|
|
return 0;
|
|
|
|
trace_f2fs_truncate(inode);
|
|
|
|
/* we should check inline_data size */
|
|
if (!f2fs_may_inline_data(inode)) {
|
|
err = f2fs_convert_inline_inode(inode);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = truncate_blocks(inode, i_size_read(inode), true);
|
|
if (err)
|
|
return err;
|
|
|
|
inode->i_mtime = inode->i_ctime = current_time(inode);
|
|
f2fs_mark_inode_dirty_sync(inode, false);
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_getattr(const struct path *path, struct kstat *stat,
|
|
u32 request_mask, unsigned int flags)
|
|
{
|
|
struct inode *inode = d_inode(path->dentry);
|
|
generic_fillattr(inode, stat);
|
|
stat->blocks <<= 3;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
|
static void __setattr_copy(struct inode *inode, const struct iattr *attr)
|
|
{
|
|
unsigned int ia_valid = attr->ia_valid;
|
|
|
|
if (ia_valid & ATTR_UID)
|
|
inode->i_uid = attr->ia_uid;
|
|
if (ia_valid & ATTR_GID)
|
|
inode->i_gid = attr->ia_gid;
|
|
if (ia_valid & ATTR_ATIME)
|
|
inode->i_atime = timespec_trunc(attr->ia_atime,
|
|
inode->i_sb->s_time_gran);
|
|
if (ia_valid & ATTR_MTIME)
|
|
inode->i_mtime = timespec_trunc(attr->ia_mtime,
|
|
inode->i_sb->s_time_gran);
|
|
if (ia_valid & ATTR_CTIME)
|
|
inode->i_ctime = timespec_trunc(attr->ia_ctime,
|
|
inode->i_sb->s_time_gran);
|
|
if (ia_valid & ATTR_MODE) {
|
|
umode_t mode = attr->ia_mode;
|
|
|
|
if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
|
|
mode &= ~S_ISGID;
|
|
set_acl_inode(inode, mode);
|
|
}
|
|
}
|
|
#else
|
|
#define __setattr_copy setattr_copy
|
|
#endif
|
|
|
|
int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
int err;
|
|
bool size_changed = false;
|
|
|
|
err = setattr_prepare(dentry, attr);
|
|
if (err)
|
|
return err;
|
|
|
|
if (attr->ia_valid & ATTR_SIZE) {
|
|
if (f2fs_encrypted_inode(inode) &&
|
|
fscrypt_get_encryption_info(inode))
|
|
return -EACCES;
|
|
|
|
if (attr->ia_size <= i_size_read(inode)) {
|
|
truncate_setsize(inode, attr->ia_size);
|
|
err = f2fs_truncate(inode);
|
|
if (err)
|
|
return err;
|
|
} else {
|
|
/*
|
|
* do not trim all blocks after i_size if target size is
|
|
* larger than i_size.
|
|
*/
|
|
truncate_setsize(inode, attr->ia_size);
|
|
|
|
/* should convert inline inode here */
|
|
if (!f2fs_may_inline_data(inode)) {
|
|
err = f2fs_convert_inline_inode(inode);
|
|
if (err)
|
|
return err;
|
|
}
|
|
inode->i_mtime = inode->i_ctime = current_time(inode);
|
|
}
|
|
|
|
size_changed = true;
|
|
}
|
|
|
|
__setattr_copy(inode, attr);
|
|
|
|
if (attr->ia_valid & ATTR_MODE) {
|
|
err = posix_acl_chmod(inode, get_inode_mode(inode));
|
|
if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
|
|
inode->i_mode = F2FS_I(inode)->i_acl_mode;
|
|
clear_inode_flag(inode, FI_ACL_MODE);
|
|
}
|
|
}
|
|
|
|
/* file size may changed here */
|
|
f2fs_mark_inode_dirty_sync(inode, size_changed);
|
|
|
|
/* inode change will produce dirty node pages flushed by checkpoint */
|
|
f2fs_balance_fs(F2FS_I_SB(inode), true);
|
|
|
|
return err;
|
|
}
|
|
|
|
const struct inode_operations f2fs_file_inode_operations = {
|
|
.getattr = f2fs_getattr,
|
|
.setattr = f2fs_setattr,
|
|
.get_acl = f2fs_get_acl,
|
|
.set_acl = f2fs_set_acl,
|
|
#ifdef CONFIG_F2FS_FS_XATTR
|
|
.listxattr = f2fs_listxattr,
|
|
#endif
|
|
.fiemap = f2fs_fiemap,
|
|
};
|
|
|
|
static int fill_zero(struct inode *inode, pgoff_t index,
|
|
loff_t start, loff_t len)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct page *page;
|
|
|
|
if (!len)
|
|
return 0;
|
|
|
|
f2fs_balance_fs(sbi, true);
|
|
|
|
f2fs_lock_op(sbi);
|
|
page = get_new_data_page(inode, NULL, index, false);
|
|
f2fs_unlock_op(sbi);
|
|
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
f2fs_wait_on_page_writeback(page, DATA, true);
|
|
zero_user(page, start, len);
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
return 0;
|
|
}
|
|
|
|
int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
|
|
{
|
|
int err;
|
|
|
|
while (pg_start < pg_end) {
|
|
struct dnode_of_data dn;
|
|
pgoff_t end_offset, count;
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
|
|
if (err) {
|
|
if (err == -ENOENT) {
|
|
pg_start++;
|
|
continue;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
|
|
count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
|
|
|
|
f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
|
|
|
|
truncate_data_blocks_range(&dn, count);
|
|
f2fs_put_dnode(&dn);
|
|
|
|
pg_start += count;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
|
|
{
|
|
pgoff_t pg_start, pg_end;
|
|
loff_t off_start, off_end;
|
|
int ret;
|
|
|
|
ret = f2fs_convert_inline_inode(inode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
|
|
pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
|
|
|
|
off_start = offset & (PAGE_SIZE - 1);
|
|
off_end = (offset + len) & (PAGE_SIZE - 1);
|
|
|
|
if (pg_start == pg_end) {
|
|
ret = fill_zero(inode, pg_start, off_start,
|
|
off_end - off_start);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
if (off_start) {
|
|
ret = fill_zero(inode, pg_start++, off_start,
|
|
PAGE_SIZE - off_start);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
if (off_end) {
|
|
ret = fill_zero(inode, pg_end, 0, off_end);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (pg_start < pg_end) {
|
|
struct address_space *mapping = inode->i_mapping;
|
|
loff_t blk_start, blk_end;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
f2fs_balance_fs(sbi, true);
|
|
|
|
blk_start = (loff_t)pg_start << PAGE_SHIFT;
|
|
blk_end = (loff_t)pg_end << PAGE_SHIFT;
|
|
truncate_inode_pages_range(mapping, blk_start,
|
|
blk_end - 1);
|
|
|
|
f2fs_lock_op(sbi);
|
|
ret = truncate_hole(inode, pg_start, pg_end);
|
|
f2fs_unlock_op(sbi);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
|
|
int *do_replace, pgoff_t off, pgoff_t len)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct dnode_of_data dn;
|
|
int ret, done, i;
|
|
|
|
next_dnode:
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
|
|
if (ret && ret != -ENOENT) {
|
|
return ret;
|
|
} else if (ret == -ENOENT) {
|
|
if (dn.max_level == 0)
|
|
return -ENOENT;
|
|
done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
|
|
blkaddr += done;
|
|
do_replace += done;
|
|
goto next;
|
|
}
|
|
|
|
done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
|
|
dn.ofs_in_node, len);
|
|
for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
|
|
*blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
|
|
if (!is_checkpointed_data(sbi, *blkaddr)) {
|
|
|
|
if (test_opt(sbi, LFS)) {
|
|
f2fs_put_dnode(&dn);
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
/* do not invalidate this block address */
|
|
f2fs_update_data_blkaddr(&dn, NULL_ADDR);
|
|
*do_replace = 1;
|
|
}
|
|
}
|
|
f2fs_put_dnode(&dn);
|
|
next:
|
|
len -= done;
|
|
off += done;
|
|
if (len)
|
|
goto next_dnode;
|
|
return 0;
|
|
}
|
|
|
|
static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
|
|
int *do_replace, pgoff_t off, int len)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct dnode_of_data dn;
|
|
int ret, i;
|
|
|
|
for (i = 0; i < len; i++, do_replace++, blkaddr++) {
|
|
if (*do_replace == 0)
|
|
continue;
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
|
|
if (ret) {
|
|
dec_valid_block_count(sbi, inode, 1);
|
|
invalidate_blocks(sbi, *blkaddr);
|
|
} else {
|
|
f2fs_update_data_blkaddr(&dn, *blkaddr);
|
|
}
|
|
f2fs_put_dnode(&dn);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
|
|
block_t *blkaddr, int *do_replace,
|
|
pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
|
|
pgoff_t i = 0;
|
|
int ret;
|
|
|
|
while (i < len) {
|
|
if (blkaddr[i] == NULL_ADDR && !full) {
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
|
|
struct dnode_of_data dn;
|
|
struct node_info ni;
|
|
size_t new_size;
|
|
pgoff_t ilen;
|
|
|
|
set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
|
|
ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
get_node_info(sbi, dn.nid, &ni);
|
|
ilen = min((pgoff_t)
|
|
ADDRS_PER_PAGE(dn.node_page, dst_inode) -
|
|
dn.ofs_in_node, len - i);
|
|
do {
|
|
dn.data_blkaddr = datablock_addr(dn.node_page,
|
|
dn.ofs_in_node);
|
|
truncate_data_blocks_range(&dn, 1);
|
|
|
|
if (do_replace[i]) {
|
|
f2fs_i_blocks_write(src_inode,
|
|
1, false);
|
|
f2fs_i_blocks_write(dst_inode,
|
|
1, true);
|
|
f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
|
|
blkaddr[i], ni.version, true, false);
|
|
|
|
do_replace[i] = 0;
|
|
}
|
|
dn.ofs_in_node++;
|
|
i++;
|
|
new_size = (dst + i) << PAGE_SHIFT;
|
|
if (dst_inode->i_size < new_size)
|
|
f2fs_i_size_write(dst_inode, new_size);
|
|
} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
|
|
|
|
f2fs_put_dnode(&dn);
|
|
} else {
|
|
struct page *psrc, *pdst;
|
|
|
|
psrc = get_lock_data_page(src_inode, src + i, true);
|
|
if (IS_ERR(psrc))
|
|
return PTR_ERR(psrc);
|
|
pdst = get_new_data_page(dst_inode, NULL, dst + i,
|
|
true);
|
|
if (IS_ERR(pdst)) {
|
|
f2fs_put_page(psrc, 1);
|
|
return PTR_ERR(pdst);
|
|
}
|
|
f2fs_copy_page(psrc, pdst);
|
|
set_page_dirty(pdst);
|
|
f2fs_put_page(pdst, 1);
|
|
f2fs_put_page(psrc, 1);
|
|
|
|
ret = truncate_hole(src_inode, src + i, src + i + 1);
|
|
if (ret)
|
|
return ret;
|
|
i++;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __exchange_data_block(struct inode *src_inode,
|
|
struct inode *dst_inode, pgoff_t src, pgoff_t dst,
|
|
pgoff_t len, bool full)
|
|
{
|
|
block_t *src_blkaddr;
|
|
int *do_replace;
|
|
pgoff_t olen;
|
|
int ret;
|
|
|
|
while (len) {
|
|
olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
|
|
|
|
src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
|
|
if (!src_blkaddr)
|
|
return -ENOMEM;
|
|
|
|
do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
|
|
if (!do_replace) {
|
|
kvfree(src_blkaddr);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = __read_out_blkaddrs(src_inode, src_blkaddr,
|
|
do_replace, src, olen);
|
|
if (ret)
|
|
goto roll_back;
|
|
|
|
ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
|
|
do_replace, src, dst, olen, full);
|
|
if (ret)
|
|
goto roll_back;
|
|
|
|
src += olen;
|
|
dst += olen;
|
|
len -= olen;
|
|
|
|
kvfree(src_blkaddr);
|
|
kvfree(do_replace);
|
|
}
|
|
return 0;
|
|
|
|
roll_back:
|
|
__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
|
|
kvfree(src_blkaddr);
|
|
kvfree(do_replace);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
|
|
int ret;
|
|
|
|
f2fs_balance_fs(sbi, true);
|
|
f2fs_lock_op(sbi);
|
|
|
|
f2fs_drop_extent_tree(inode);
|
|
|
|
ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
|
|
f2fs_unlock_op(sbi);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
|
|
{
|
|
pgoff_t pg_start, pg_end;
|
|
loff_t new_size;
|
|
int ret;
|
|
|
|
if (offset + len >= i_size_read(inode))
|
|
return -EINVAL;
|
|
|
|
/* collapse range should be aligned to block size of f2fs. */
|
|
if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
|
|
return -EINVAL;
|
|
|
|
ret = f2fs_convert_inline_inode(inode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pg_start = offset >> PAGE_SHIFT;
|
|
pg_end = (offset + len) >> PAGE_SHIFT;
|
|
|
|
/* write out all dirty pages from offset */
|
|
ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
|
|
if (ret)
|
|
return ret;
|
|
|
|
truncate_pagecache(inode, offset);
|
|
|
|
ret = f2fs_do_collapse(inode, pg_start, pg_end);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* write out all moved pages, if possible */
|
|
filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
|
|
truncate_pagecache(inode, offset);
|
|
|
|
new_size = i_size_read(inode) - len;
|
|
truncate_pagecache(inode, new_size);
|
|
|
|
ret = truncate_blocks(inode, new_size, true);
|
|
if (!ret)
|
|
f2fs_i_size_write(inode, new_size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
|
|
pgoff_t end)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
|
|
pgoff_t index = start;
|
|
unsigned int ofs_in_node = dn->ofs_in_node;
|
|
blkcnt_t count = 0;
|
|
int ret;
|
|
|
|
for (; index < end; index++, dn->ofs_in_node++) {
|
|
if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
|
|
count++;
|
|
}
|
|
|
|
dn->ofs_in_node = ofs_in_node;
|
|
ret = reserve_new_blocks(dn, count);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dn->ofs_in_node = ofs_in_node;
|
|
for (index = start; index < end; index++, dn->ofs_in_node++) {
|
|
dn->data_blkaddr =
|
|
datablock_addr(dn->node_page, dn->ofs_in_node);
|
|
/*
|
|
* reserve_new_blocks will not guarantee entire block
|
|
* allocation.
|
|
*/
|
|
if (dn->data_blkaddr == NULL_ADDR) {
|
|
ret = -ENOSPC;
|
|
break;
|
|
}
|
|
if (dn->data_blkaddr != NEW_ADDR) {
|
|
invalidate_blocks(sbi, dn->data_blkaddr);
|
|
dn->data_blkaddr = NEW_ADDR;
|
|
set_data_blkaddr(dn);
|
|
}
|
|
}
|
|
|
|
f2fs_update_extent_cache_range(dn, start, 0, index - start);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
|
|
int mode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct address_space *mapping = inode->i_mapping;
|
|
pgoff_t index, pg_start, pg_end;
|
|
loff_t new_size = i_size_read(inode);
|
|
loff_t off_start, off_end;
|
|
int ret = 0;
|
|
|
|
ret = inode_newsize_ok(inode, (len + offset));
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = f2fs_convert_inline_inode(inode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
truncate_pagecache_range(inode, offset, offset + len - 1);
|
|
|
|
pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
|
|
pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
|
|
|
|
off_start = offset & (PAGE_SIZE - 1);
|
|
off_end = (offset + len) & (PAGE_SIZE - 1);
|
|
|
|
if (pg_start == pg_end) {
|
|
ret = fill_zero(inode, pg_start, off_start,
|
|
off_end - off_start);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (offset + len > new_size)
|
|
new_size = offset + len;
|
|
new_size = max_t(loff_t, new_size, offset + len);
|
|
} else {
|
|
if (off_start) {
|
|
ret = fill_zero(inode, pg_start++, off_start,
|
|
PAGE_SIZE - off_start);
|
|
if (ret)
|
|
return ret;
|
|
|
|
new_size = max_t(loff_t, new_size,
|
|
(loff_t)pg_start << PAGE_SHIFT);
|
|
}
|
|
|
|
for (index = pg_start; index < pg_end;) {
|
|
struct dnode_of_data dn;
|
|
unsigned int end_offset;
|
|
pgoff_t end;
|
|
|
|
f2fs_lock_op(sbi);
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
|
|
if (ret) {
|
|
f2fs_unlock_op(sbi);
|
|
goto out;
|
|
}
|
|
|
|
end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
|
|
end = min(pg_end, end_offset - dn.ofs_in_node + index);
|
|
|
|
ret = f2fs_do_zero_range(&dn, index, end);
|
|
f2fs_put_dnode(&dn);
|
|
f2fs_unlock_op(sbi);
|
|
|
|
f2fs_balance_fs(sbi, dn.node_changed);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
index = end;
|
|
new_size = max_t(loff_t, new_size,
|
|
(loff_t)index << PAGE_SHIFT);
|
|
}
|
|
|
|
if (off_end) {
|
|
ret = fill_zero(inode, pg_end, 0, off_end);
|
|
if (ret)
|
|
goto out;
|
|
|
|
new_size = max_t(loff_t, new_size, offset + len);
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
|
|
f2fs_i_size_write(inode, new_size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
pgoff_t nr, pg_start, pg_end, delta, idx;
|
|
loff_t new_size;
|
|
int ret = 0;
|
|
|
|
new_size = i_size_read(inode) + len;
|
|
if (new_size > inode->i_sb->s_maxbytes)
|
|
return -EFBIG;
|
|
|
|
if (offset >= i_size_read(inode))
|
|
return -EINVAL;
|
|
|
|
/* insert range should be aligned to block size of f2fs. */
|
|
if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
|
|
return -EINVAL;
|
|
|
|
ret = f2fs_convert_inline_inode(inode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
f2fs_balance_fs(sbi, true);
|
|
|
|
ret = truncate_blocks(inode, i_size_read(inode), true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* write out all dirty pages from offset */
|
|
ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
|
|
if (ret)
|
|
return ret;
|
|
|
|
truncate_pagecache(inode, offset);
|
|
|
|
pg_start = offset >> PAGE_SHIFT;
|
|
pg_end = (offset + len) >> PAGE_SHIFT;
|
|
delta = pg_end - pg_start;
|
|
idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
|
|
|
|
while (!ret && idx > pg_start) {
|
|
nr = idx - pg_start;
|
|
if (nr > delta)
|
|
nr = delta;
|
|
idx -= nr;
|
|
|
|
f2fs_lock_op(sbi);
|
|
f2fs_drop_extent_tree(inode);
|
|
|
|
ret = __exchange_data_block(inode, inode, idx,
|
|
idx + delta, nr, false);
|
|
f2fs_unlock_op(sbi);
|
|
}
|
|
|
|
/* write out all moved pages, if possible */
|
|
filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
|
|
truncate_pagecache(inode, offset);
|
|
|
|
if (!ret)
|
|
f2fs_i_size_write(inode, new_size);
|
|
return ret;
|
|
}
|
|
|
|
static int expand_inode_data(struct inode *inode, loff_t offset,
|
|
loff_t len, int mode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
|
|
pgoff_t pg_end;
|
|
loff_t new_size = i_size_read(inode);
|
|
loff_t off_end;
|
|
int err;
|
|
|
|
err = inode_newsize_ok(inode, (len + offset));
|
|
if (err)
|
|
return err;
|
|
|
|
err = f2fs_convert_inline_inode(inode);
|
|
if (err)
|
|
return err;
|
|
|
|
f2fs_balance_fs(sbi, true);
|
|
|
|
pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
|
|
off_end = (offset + len) & (PAGE_SIZE - 1);
|
|
|
|
map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
|
|
map.m_len = pg_end - map.m_lblk;
|
|
if (off_end)
|
|
map.m_len++;
|
|
|
|
err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
|
|
if (err) {
|
|
pgoff_t last_off;
|
|
|
|
if (!map.m_len)
|
|
return err;
|
|
|
|
last_off = map.m_lblk + map.m_len - 1;
|
|
|
|
/* update new size to the failed position */
|
|
new_size = (last_off == pg_end) ? offset + len:
|
|
(loff_t)(last_off + 1) << PAGE_SHIFT;
|
|
} else {
|
|
new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
|
|
}
|
|
|
|
if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
|
|
f2fs_i_size_write(inode, new_size);
|
|
|
|
return err;
|
|
}
|
|
|
|
static long f2fs_fallocate(struct file *file, int mode,
|
|
loff_t offset, loff_t len)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
long ret = 0;
|
|
|
|
/* f2fs only support ->fallocate for regular file */
|
|
if (!S_ISREG(inode->i_mode))
|
|
return -EINVAL;
|
|
|
|
if (f2fs_encrypted_inode(inode) &&
|
|
(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
|
|
FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
|
|
FALLOC_FL_INSERT_RANGE))
|
|
return -EOPNOTSUPP;
|
|
|
|
inode_lock(inode);
|
|
|
|
if (mode & FALLOC_FL_PUNCH_HOLE) {
|
|
if (offset >= inode->i_size)
|
|
goto out;
|
|
|
|
ret = punch_hole(inode, offset, len);
|
|
} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
|
|
ret = f2fs_collapse_range(inode, offset, len);
|
|
} else if (mode & FALLOC_FL_ZERO_RANGE) {
|
|
ret = f2fs_zero_range(inode, offset, len, mode);
|
|
} else if (mode & FALLOC_FL_INSERT_RANGE) {
|
|
ret = f2fs_insert_range(inode, offset, len);
|
|
} else {
|
|
ret = expand_inode_data(inode, offset, len, mode);
|
|
}
|
|
|
|
if (!ret) {
|
|
inode->i_mtime = inode->i_ctime = current_time(inode);
|
|
f2fs_mark_inode_dirty_sync(inode, false);
|
|
if (mode & FALLOC_FL_KEEP_SIZE)
|
|
file_set_keep_isize(inode);
|
|
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
|
|
}
|
|
|
|
out:
|
|
inode_unlock(inode);
|
|
|
|
trace_f2fs_fallocate(inode, mode, offset, len, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_release_file(struct inode *inode, struct file *filp)
|
|
{
|
|
/*
|
|
* f2fs_relase_file is called at every close calls. So we should
|
|
* not drop any inmemory pages by close called by other process.
|
|
*/
|
|
if (!(filp->f_mode & FMODE_WRITE) ||
|
|
atomic_read(&inode->i_writecount) != 1)
|
|
return 0;
|
|
|
|
/* some remained atomic pages should discarded */
|
|
if (f2fs_is_atomic_file(inode))
|
|
drop_inmem_pages(inode);
|
|
if (f2fs_is_volatile_file(inode)) {
|
|
clear_inode_flag(inode, FI_VOLATILE_FILE);
|
|
set_inode_flag(inode, FI_DROP_CACHE);
|
|
filemap_fdatawrite(inode->i_mapping);
|
|
clear_inode_flag(inode, FI_DROP_CACHE);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
|
|
#define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
|
|
|
|
static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
|
|
{
|
|
if (S_ISDIR(mode))
|
|
return flags;
|
|
else if (S_ISREG(mode))
|
|
return flags & F2FS_REG_FLMASK;
|
|
else
|
|
return flags & F2FS_OTHER_FLMASK;
|
|
}
|
|
|
|
static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
|
|
return put_user(flags, (int __user *)arg);
|
|
}
|
|
|
|
static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
unsigned int flags;
|
|
unsigned int oldflags;
|
|
int ret;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EACCES;
|
|
|
|
if (get_user(flags, (int __user *)arg))
|
|
return -EFAULT;
|
|
|
|
ret = mnt_want_write_file(filp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
flags = f2fs_mask_flags(inode->i_mode, flags);
|
|
|
|
inode_lock(inode);
|
|
|
|
oldflags = fi->i_flags;
|
|
|
|
if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
|
|
if (!capable(CAP_LINUX_IMMUTABLE)) {
|
|
inode_unlock(inode);
|
|
ret = -EPERM;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
flags = flags & FS_FL_USER_MODIFIABLE;
|
|
flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
|
|
fi->i_flags = flags;
|
|
inode_unlock(inode);
|
|
|
|
inode->i_ctime = current_time(inode);
|
|
f2fs_set_inode_flags(inode);
|
|
out:
|
|
mnt_drop_write_file(filp);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
|
|
return put_user(inode->i_generation, (int __user *)arg);
|
|
}
|
|
|
|
static int f2fs_ioc_start_atomic_write(struct file *filp)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
int ret;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EACCES;
|
|
|
|
ret = mnt_want_write_file(filp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
inode_lock(inode);
|
|
|
|
if (f2fs_is_atomic_file(inode))
|
|
goto out;
|
|
|
|
ret = f2fs_convert_inline_inode(inode);
|
|
if (ret)
|
|
goto out;
|
|
|
|
set_inode_flag(inode, FI_ATOMIC_FILE);
|
|
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
|
|
|
|
if (!get_dirty_pages(inode))
|
|
goto out;
|
|
|
|
f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
|
|
"Unexpected flush for atomic writes: ino=%lu, npages=%u",
|
|
inode->i_ino, get_dirty_pages(inode));
|
|
ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
|
|
if (ret)
|
|
clear_inode_flag(inode, FI_ATOMIC_FILE);
|
|
out:
|
|
stat_inc_atomic_write(inode);
|
|
stat_update_max_atomic_write(inode);
|
|
inode_unlock(inode);
|
|
mnt_drop_write_file(filp);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_ioc_commit_atomic_write(struct file *filp)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
int ret;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EACCES;
|
|
|
|
ret = mnt_want_write_file(filp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
inode_lock(inode);
|
|
|
|
if (f2fs_is_volatile_file(inode))
|
|
goto err_out;
|
|
|
|
if (f2fs_is_atomic_file(inode)) {
|
|
ret = commit_inmem_pages(inode);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
|
|
if (!ret) {
|
|
clear_inode_flag(inode, FI_ATOMIC_FILE);
|
|
stat_dec_atomic_write(inode);
|
|
}
|
|
} else {
|
|
ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
|
|
}
|
|
err_out:
|
|
inode_unlock(inode);
|
|
mnt_drop_write_file(filp);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_ioc_start_volatile_write(struct file *filp)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
int ret;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EACCES;
|
|
|
|
ret = mnt_want_write_file(filp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
inode_lock(inode);
|
|
|
|
if (f2fs_is_volatile_file(inode))
|
|
goto out;
|
|
|
|
ret = f2fs_convert_inline_inode(inode);
|
|
if (ret)
|
|
goto out;
|
|
|
|
set_inode_flag(inode, FI_VOLATILE_FILE);
|
|
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
|
|
out:
|
|
inode_unlock(inode);
|
|
mnt_drop_write_file(filp);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_ioc_release_volatile_write(struct file *filp)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
int ret;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EACCES;
|
|
|
|
ret = mnt_want_write_file(filp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
inode_lock(inode);
|
|
|
|
if (!f2fs_is_volatile_file(inode))
|
|
goto out;
|
|
|
|
if (!f2fs_is_first_block_written(inode)) {
|
|
ret = truncate_partial_data_page(inode, 0, true);
|
|
goto out;
|
|
}
|
|
|
|
ret = punch_hole(inode, 0, F2FS_BLKSIZE);
|
|
out:
|
|
inode_unlock(inode);
|
|
mnt_drop_write_file(filp);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_ioc_abort_volatile_write(struct file *filp)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
int ret;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EACCES;
|
|
|
|
ret = mnt_want_write_file(filp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
inode_lock(inode);
|
|
|
|
if (f2fs_is_atomic_file(inode))
|
|
drop_inmem_pages(inode);
|
|
if (f2fs_is_volatile_file(inode)) {
|
|
clear_inode_flag(inode, FI_VOLATILE_FILE);
|
|
ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
|
|
}
|
|
|
|
inode_unlock(inode);
|
|
|
|
mnt_drop_write_file(filp);
|
|
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct super_block *sb = sbi->sb;
|
|
__u32 in;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (get_user(in, (__u32 __user *)arg))
|
|
return -EFAULT;
|
|
|
|
ret = mnt_want_write_file(filp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
switch (in) {
|
|
case F2FS_GOING_DOWN_FULLSYNC:
|
|
sb = freeze_bdev(sb->s_bdev);
|
|
if (sb && !IS_ERR(sb)) {
|
|
f2fs_stop_checkpoint(sbi, false);
|
|
thaw_bdev(sb->s_bdev, sb);
|
|
}
|
|
break;
|
|
case F2FS_GOING_DOWN_METASYNC:
|
|
/* do checkpoint only */
|
|
f2fs_sync_fs(sb, 1);
|
|
f2fs_stop_checkpoint(sbi, false);
|
|
break;
|
|
case F2FS_GOING_DOWN_NOSYNC:
|
|
f2fs_stop_checkpoint(sbi, false);
|
|
break;
|
|
case F2FS_GOING_DOWN_METAFLUSH:
|
|
sync_meta_pages(sbi, META, LONG_MAX);
|
|
f2fs_stop_checkpoint(sbi, false);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
f2fs_update_time(sbi, REQ_TIME);
|
|
out:
|
|
mnt_drop_write_file(filp);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
struct super_block *sb = inode->i_sb;
|
|
struct request_queue *q = bdev_get_queue(sb->s_bdev);
|
|
struct fstrim_range range;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (!blk_queue_discard(q))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (copy_from_user(&range, (struct fstrim_range __user *)arg,
|
|
sizeof(range)))
|
|
return -EFAULT;
|
|
|
|
ret = mnt_want_write_file(filp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
range.minlen = max((unsigned int)range.minlen,
|
|
q->limits.discard_granularity);
|
|
ret = f2fs_trim_fs(F2FS_SB(sb), &range);
|
|
mnt_drop_write_file(filp);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (copy_to_user((struct fstrim_range __user *)arg, &range,
|
|
sizeof(range)))
|
|
return -EFAULT;
|
|
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
|
|
return 0;
|
|
}
|
|
|
|
static bool uuid_is_nonzero(__u8 u[16])
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
if (u[i])
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
|
|
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
|
|
|
|
return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
|
|
}
|
|
|
|
static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
|
|
{
|
|
return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
|
|
}
|
|
|
|
static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
int err;
|
|
|
|
if (!f2fs_sb_has_crypto(inode->i_sb))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
|
|
goto got_it;
|
|
|
|
err = mnt_want_write_file(filp);
|
|
if (err)
|
|
return err;
|
|
|
|
/* update superblock with uuid */
|
|
generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
|
|
|
|
err = f2fs_commit_super(sbi, false);
|
|
if (err) {
|
|
/* undo new data */
|
|
memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
|
|
mnt_drop_write_file(filp);
|
|
return err;
|
|
}
|
|
mnt_drop_write_file(filp);
|
|
got_it:
|
|
if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
|
|
16))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
__u32 sync;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (get_user(sync, (__u32 __user *)arg))
|
|
return -EFAULT;
|
|
|
|
if (f2fs_readonly(sbi->sb))
|
|
return -EROFS;
|
|
|
|
ret = mnt_want_write_file(filp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!sync) {
|
|
if (!mutex_trylock(&sbi->gc_mutex)) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
} else {
|
|
mutex_lock(&sbi->gc_mutex);
|
|
}
|
|
|
|
ret = f2fs_gc(sbi, sync, true);
|
|
out:
|
|
mnt_drop_write_file(filp);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (f2fs_readonly(sbi->sb))
|
|
return -EROFS;
|
|
|
|
ret = mnt_want_write_file(filp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = f2fs_sync_fs(sbi->sb, 1);
|
|
|
|
mnt_drop_write_file(filp);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
|
|
struct file *filp,
|
|
struct f2fs_defragment *range)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
|
|
struct extent_info ei = {0,0,0};
|
|
pgoff_t pg_start, pg_end;
|
|
unsigned int blk_per_seg = sbi->blocks_per_seg;
|
|
unsigned int total = 0, sec_num;
|
|
unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
|
|
block_t blk_end = 0;
|
|
bool fragmented = false;
|
|
int err;
|
|
|
|
/* if in-place-update policy is enabled, don't waste time here */
|
|
if (need_inplace_update(inode))
|
|
return -EINVAL;
|
|
|
|
pg_start = range->start >> PAGE_SHIFT;
|
|
pg_end = (range->start + range->len) >> PAGE_SHIFT;
|
|
|
|
f2fs_balance_fs(sbi, true);
|
|
|
|
inode_lock(inode);
|
|
|
|
/* writeback all dirty pages in the range */
|
|
err = filemap_write_and_wait_range(inode->i_mapping, range->start,
|
|
range->start + range->len - 1);
|
|
if (err)
|
|
goto out;
|
|
|
|
/*
|
|
* lookup mapping info in extent cache, skip defragmenting if physical
|
|
* block addresses are continuous.
|
|
*/
|
|
if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
|
|
if (ei.fofs + ei.len >= pg_end)
|
|
goto out;
|
|
}
|
|
|
|
map.m_lblk = pg_start;
|
|
|
|
/*
|
|
* lookup mapping info in dnode page cache, skip defragmenting if all
|
|
* physical block addresses are continuous even if there are hole(s)
|
|
* in logical blocks.
|
|
*/
|
|
while (map.m_lblk < pg_end) {
|
|
map.m_len = pg_end - map.m_lblk;
|
|
err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (!(map.m_flags & F2FS_MAP_FLAGS)) {
|
|
map.m_lblk++;
|
|
continue;
|
|
}
|
|
|
|
if (blk_end && blk_end != map.m_pblk) {
|
|
fragmented = true;
|
|
break;
|
|
}
|
|
blk_end = map.m_pblk + map.m_len;
|
|
|
|
map.m_lblk += map.m_len;
|
|
}
|
|
|
|
if (!fragmented)
|
|
goto out;
|
|
|
|
map.m_lblk = pg_start;
|
|
map.m_len = pg_end - pg_start;
|
|
|
|
sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
|
|
|
|
/*
|
|
* make sure there are enough free section for LFS allocation, this can
|
|
* avoid defragment running in SSR mode when free section are allocated
|
|
* intensively
|
|
*/
|
|
if (has_not_enough_free_secs(sbi, 0, sec_num)) {
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
while (map.m_lblk < pg_end) {
|
|
pgoff_t idx;
|
|
int cnt = 0;
|
|
|
|
do_map:
|
|
map.m_len = pg_end - map.m_lblk;
|
|
err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
|
|
if (err)
|
|
goto clear_out;
|
|
|
|
if (!(map.m_flags & F2FS_MAP_FLAGS)) {
|
|
map.m_lblk++;
|
|
continue;
|
|
}
|
|
|
|
set_inode_flag(inode, FI_DO_DEFRAG);
|
|
|
|
idx = map.m_lblk;
|
|
while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
|
|
struct page *page;
|
|
|
|
page = get_lock_data_page(inode, idx, true);
|
|
if (IS_ERR(page)) {
|
|
err = PTR_ERR(page);
|
|
goto clear_out;
|
|
}
|
|
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
|
|
idx++;
|
|
cnt++;
|
|
total++;
|
|
}
|
|
|
|
map.m_lblk = idx;
|
|
|
|
if (idx < pg_end && cnt < blk_per_seg)
|
|
goto do_map;
|
|
|
|
clear_inode_flag(inode, FI_DO_DEFRAG);
|
|
|
|
err = filemap_fdatawrite(inode->i_mapping);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
clear_out:
|
|
clear_inode_flag(inode, FI_DO_DEFRAG);
|
|
out:
|
|
inode_unlock(inode);
|
|
if (!err)
|
|
range->len = (u64)total << PAGE_SHIFT;
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct f2fs_defragment range;
|
|
int err;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (!S_ISREG(inode->i_mode))
|
|
return -EINVAL;
|
|
|
|
err = mnt_want_write_file(filp);
|
|
if (err)
|
|
return err;
|
|
|
|
if (f2fs_readonly(sbi->sb)) {
|
|
err = -EROFS;
|
|
goto out;
|
|
}
|
|
|
|
if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
|
|
sizeof(range))) {
|
|
err = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
/* verify alignment of offset & size */
|
|
if (range.start & (F2FS_BLKSIZE - 1) ||
|
|
range.len & (F2FS_BLKSIZE - 1)) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
err = f2fs_defragment_range(sbi, filp, &range);
|
|
f2fs_update_time(sbi, REQ_TIME);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
|
|
sizeof(range)))
|
|
err = -EFAULT;
|
|
out:
|
|
mnt_drop_write_file(filp);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
|
|
struct file *file_out, loff_t pos_out, size_t len)
|
|
{
|
|
struct inode *src = file_inode(file_in);
|
|
struct inode *dst = file_inode(file_out);
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(src);
|
|
size_t olen = len, dst_max_i_size = 0;
|
|
size_t dst_osize;
|
|
int ret;
|
|
|
|
if (file_in->f_path.mnt != file_out->f_path.mnt ||
|
|
src->i_sb != dst->i_sb)
|
|
return -EXDEV;
|
|
|
|
if (unlikely(f2fs_readonly(src->i_sb)))
|
|
return -EROFS;
|
|
|
|
if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
|
|
return -EINVAL;
|
|
|
|
if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (src == dst) {
|
|
if (pos_in == pos_out)
|
|
return 0;
|
|
if (pos_out > pos_in && pos_out < pos_in + len)
|
|
return -EINVAL;
|
|
}
|
|
|
|
inode_lock(src);
|
|
if (src != dst) {
|
|
if (!inode_trylock(dst)) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = -EINVAL;
|
|
if (pos_in + len > src->i_size || pos_in + len < pos_in)
|
|
goto out_unlock;
|
|
if (len == 0)
|
|
olen = len = src->i_size - pos_in;
|
|
if (pos_in + len == src->i_size)
|
|
len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
|
|
if (len == 0) {
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
dst_osize = dst->i_size;
|
|
if (pos_out + olen > dst->i_size)
|
|
dst_max_i_size = pos_out + olen;
|
|
|
|
/* verify the end result is block aligned */
|
|
if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
|
|
!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
|
|
!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
|
|
goto out_unlock;
|
|
|
|
ret = f2fs_convert_inline_inode(src);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = f2fs_convert_inline_inode(dst);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
/* write out all dirty pages from offset */
|
|
ret = filemap_write_and_wait_range(src->i_mapping,
|
|
pos_in, pos_in + len);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = filemap_write_and_wait_range(dst->i_mapping,
|
|
pos_out, pos_out + len);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
f2fs_balance_fs(sbi, true);
|
|
f2fs_lock_op(sbi);
|
|
ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
|
|
pos_out >> F2FS_BLKSIZE_BITS,
|
|
len >> F2FS_BLKSIZE_BITS, false);
|
|
|
|
if (!ret) {
|
|
if (dst_max_i_size)
|
|
f2fs_i_size_write(dst, dst_max_i_size);
|
|
else if (dst_osize != dst->i_size)
|
|
f2fs_i_size_write(dst, dst_osize);
|
|
}
|
|
f2fs_unlock_op(sbi);
|
|
out_unlock:
|
|
if (src != dst)
|
|
inode_unlock(dst);
|
|
out:
|
|
inode_unlock(src);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
|
|
{
|
|
struct f2fs_move_range range;
|
|
struct fd dst;
|
|
int err;
|
|
|
|
if (!(filp->f_mode & FMODE_READ) ||
|
|
!(filp->f_mode & FMODE_WRITE))
|
|
return -EBADF;
|
|
|
|
if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
|
|
sizeof(range)))
|
|
return -EFAULT;
|
|
|
|
dst = fdget(range.dst_fd);
|
|
if (!dst.file)
|
|
return -EBADF;
|
|
|
|
if (!(dst.file->f_mode & FMODE_WRITE)) {
|
|
err = -EBADF;
|
|
goto err_out;
|
|
}
|
|
|
|
err = mnt_want_write_file(filp);
|
|
if (err)
|
|
goto err_out;
|
|
|
|
err = f2fs_move_file_range(filp, range.pos_in, dst.file,
|
|
range.pos_out, range.len);
|
|
|
|
mnt_drop_write_file(filp);
|
|
|
|
if (copy_to_user((struct f2fs_move_range __user *)arg,
|
|
&range, sizeof(range)))
|
|
err = -EFAULT;
|
|
err_out:
|
|
fdput(dst);
|
|
return err;
|
|
}
|
|
|
|
long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
|
|
{
|
|
switch (cmd) {
|
|
case F2FS_IOC_GETFLAGS:
|
|
return f2fs_ioc_getflags(filp, arg);
|
|
case F2FS_IOC_SETFLAGS:
|
|
return f2fs_ioc_setflags(filp, arg);
|
|
case F2FS_IOC_GETVERSION:
|
|
return f2fs_ioc_getversion(filp, arg);
|
|
case F2FS_IOC_START_ATOMIC_WRITE:
|
|
return f2fs_ioc_start_atomic_write(filp);
|
|
case F2FS_IOC_COMMIT_ATOMIC_WRITE:
|
|
return f2fs_ioc_commit_atomic_write(filp);
|
|
case F2FS_IOC_START_VOLATILE_WRITE:
|
|
return f2fs_ioc_start_volatile_write(filp);
|
|
case F2FS_IOC_RELEASE_VOLATILE_WRITE:
|
|
return f2fs_ioc_release_volatile_write(filp);
|
|
case F2FS_IOC_ABORT_VOLATILE_WRITE:
|
|
return f2fs_ioc_abort_volatile_write(filp);
|
|
case F2FS_IOC_SHUTDOWN:
|
|
return f2fs_ioc_shutdown(filp, arg);
|
|
case FITRIM:
|
|
return f2fs_ioc_fitrim(filp, arg);
|
|
case F2FS_IOC_SET_ENCRYPTION_POLICY:
|
|
return f2fs_ioc_set_encryption_policy(filp, arg);
|
|
case F2FS_IOC_GET_ENCRYPTION_POLICY:
|
|
return f2fs_ioc_get_encryption_policy(filp, arg);
|
|
case F2FS_IOC_GET_ENCRYPTION_PWSALT:
|
|
return f2fs_ioc_get_encryption_pwsalt(filp, arg);
|
|
case F2FS_IOC_GARBAGE_COLLECT:
|
|
return f2fs_ioc_gc(filp, arg);
|
|
case F2FS_IOC_WRITE_CHECKPOINT:
|
|
return f2fs_ioc_write_checkpoint(filp, arg);
|
|
case F2FS_IOC_DEFRAGMENT:
|
|
return f2fs_ioc_defragment(filp, arg);
|
|
case F2FS_IOC_MOVE_RANGE:
|
|
return f2fs_ioc_move_range(filp, arg);
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file_inode(file);
|
|
struct blk_plug plug;
|
|
ssize_t ret;
|
|
|
|
if (f2fs_encrypted_inode(inode) &&
|
|
!fscrypt_has_encryption_key(inode) &&
|
|
fscrypt_get_encryption_info(inode))
|
|
return -EACCES;
|
|
|
|
inode_lock(inode);
|
|
ret = generic_write_checks(iocb, from);
|
|
if (ret > 0) {
|
|
int err;
|
|
|
|
if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
|
|
set_inode_flag(inode, FI_NO_PREALLOC);
|
|
|
|
err = f2fs_preallocate_blocks(iocb, from);
|
|
if (err) {
|
|
inode_unlock(inode);
|
|
return err;
|
|
}
|
|
blk_start_plug(&plug);
|
|
ret = __generic_file_write_iter(iocb, from);
|
|
blk_finish_plug(&plug);
|
|
clear_inode_flag(inode, FI_NO_PREALLOC);
|
|
}
|
|
inode_unlock(inode);
|
|
|
|
if (ret > 0)
|
|
ret = generic_write_sync(iocb, ret);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
{
|
|
switch (cmd) {
|
|
case F2FS_IOC32_GETFLAGS:
|
|
cmd = F2FS_IOC_GETFLAGS;
|
|
break;
|
|
case F2FS_IOC32_SETFLAGS:
|
|
cmd = F2FS_IOC_SETFLAGS;
|
|
break;
|
|
case F2FS_IOC32_GETVERSION:
|
|
cmd = F2FS_IOC_GETVERSION;
|
|
break;
|
|
case F2FS_IOC_START_ATOMIC_WRITE:
|
|
case F2FS_IOC_COMMIT_ATOMIC_WRITE:
|
|
case F2FS_IOC_START_VOLATILE_WRITE:
|
|
case F2FS_IOC_RELEASE_VOLATILE_WRITE:
|
|
case F2FS_IOC_ABORT_VOLATILE_WRITE:
|
|
case F2FS_IOC_SHUTDOWN:
|
|
case F2FS_IOC_SET_ENCRYPTION_POLICY:
|
|
case F2FS_IOC_GET_ENCRYPTION_PWSALT:
|
|
case F2FS_IOC_GET_ENCRYPTION_POLICY:
|
|
case F2FS_IOC_GARBAGE_COLLECT:
|
|
case F2FS_IOC_WRITE_CHECKPOINT:
|
|
case F2FS_IOC_DEFRAGMENT:
|
|
break;
|
|
case F2FS_IOC_MOVE_RANGE:
|
|
break;
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
|
|
}
|
|
#endif
|
|
|
|
const struct file_operations f2fs_file_operations = {
|
|
.llseek = f2fs_llseek,
|
|
.read_iter = generic_file_read_iter,
|
|
.write_iter = f2fs_file_write_iter,
|
|
.open = f2fs_file_open,
|
|
.release = f2fs_release_file,
|
|
.mmap = f2fs_file_mmap,
|
|
.fsync = f2fs_sync_file,
|
|
.fallocate = f2fs_fallocate,
|
|
.unlocked_ioctl = f2fs_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = f2fs_compat_ioctl,
|
|
#endif
|
|
.splice_read = generic_file_splice_read,
|
|
.splice_write = iter_file_splice_write,
|
|
};
|