linux/drivers/gpu/drm/exynos/exynos_mixer.c
Sean Paul 1c6244c30e drm/exynos: Merge overlay_ops into manager_ops
This patch merges overlay_ops into manager_ops. In all cases,
overlay_ops is implemented in the same place as manager ops, it doesn't
serve a functional purpose, and doesn't make things more clear.

Signed-off-by: Sean Paul <seanpaul@chromium.org>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
2014-03-24 00:36:27 +09:00

1326 lines
33 KiB
C

/*
* Copyright (C) 2011 Samsung Electronics Co.Ltd
* Authors:
* Seung-Woo Kim <sw0312.kim@samsung.com>
* Inki Dae <inki.dae@samsung.com>
* Joonyoung Shim <jy0922.shim@samsung.com>
*
* Based on drivers/media/video/s5p-tv/mixer_reg.c
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#include <drm/drmP.h>
#include "regs-mixer.h"
#include "regs-vp.h"
#include <linux/kernel.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include <linux/i2c.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/clk.h>
#include <linux/regulator/consumer.h>
#include <linux/of.h>
#include <drm/exynos_drm.h>
#include "exynos_drm_drv.h"
#include "exynos_drm_crtc.h"
#include "exynos_drm_hdmi.h"
#include "exynos_drm_iommu.h"
#define get_mixer_context(dev) platform_get_drvdata(to_platform_device(dev))
struct hdmi_win_data {
dma_addr_t dma_addr;
dma_addr_t chroma_dma_addr;
uint32_t pixel_format;
unsigned int bpp;
unsigned int crtc_x;
unsigned int crtc_y;
unsigned int crtc_width;
unsigned int crtc_height;
unsigned int fb_x;
unsigned int fb_y;
unsigned int fb_width;
unsigned int fb_height;
unsigned int src_width;
unsigned int src_height;
unsigned int mode_width;
unsigned int mode_height;
unsigned int scan_flags;
bool enabled;
bool resume;
};
struct mixer_resources {
int irq;
void __iomem *mixer_regs;
void __iomem *vp_regs;
spinlock_t reg_slock;
struct clk *mixer;
struct clk *vp;
struct clk *sclk_mixer;
struct clk *sclk_hdmi;
struct clk *sclk_dac;
};
enum mixer_version_id {
MXR_VER_0_0_0_16,
MXR_VER_16_0_33_0,
MXR_VER_128_0_0_184,
};
struct mixer_context {
struct device *dev;
struct drm_device *drm_dev;
int pipe;
bool interlace;
bool powered;
bool vp_enabled;
u32 int_en;
struct mutex mixer_mutex;
struct mixer_resources mixer_res;
struct hdmi_win_data win_data[MIXER_WIN_NR];
enum mixer_version_id mxr_ver;
void *parent_ctx;
wait_queue_head_t wait_vsync_queue;
atomic_t wait_vsync_event;
};
struct mixer_drv_data {
enum mixer_version_id version;
bool is_vp_enabled;
};
static const u8 filter_y_horiz_tap8[] = {
0, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, 0, 0, 0,
0, 2, 4, 5, 6, 6, 6, 6,
6, 5, 5, 4, 3, 2, 1, 1,
0, -6, -12, -16, -18, -20, -21, -20,
-20, -18, -16, -13, -10, -8, -5, -2,
127, 126, 125, 121, 114, 107, 99, 89,
79, 68, 57, 46, 35, 25, 16, 8,
};
static const u8 filter_y_vert_tap4[] = {
0, -3, -6, -8, -8, -8, -8, -7,
-6, -5, -4, -3, -2, -1, -1, 0,
127, 126, 124, 118, 111, 102, 92, 81,
70, 59, 48, 37, 27, 19, 11, 5,
0, 5, 11, 19, 27, 37, 48, 59,
70, 81, 92, 102, 111, 118, 124, 126,
0, 0, -1, -1, -2, -3, -4, -5,
-6, -7, -8, -8, -8, -8, -6, -3,
};
static const u8 filter_cr_horiz_tap4[] = {
0, -3, -6, -8, -8, -8, -8, -7,
-6, -5, -4, -3, -2, -1, -1, 0,
127, 126, 124, 118, 111, 102, 92, 81,
70, 59, 48, 37, 27, 19, 11, 5,
};
static inline u32 vp_reg_read(struct mixer_resources *res, u32 reg_id)
{
return readl(res->vp_regs + reg_id);
}
static inline void vp_reg_write(struct mixer_resources *res, u32 reg_id,
u32 val)
{
writel(val, res->vp_regs + reg_id);
}
static inline void vp_reg_writemask(struct mixer_resources *res, u32 reg_id,
u32 val, u32 mask)
{
u32 old = vp_reg_read(res, reg_id);
val = (val & mask) | (old & ~mask);
writel(val, res->vp_regs + reg_id);
}
static inline u32 mixer_reg_read(struct mixer_resources *res, u32 reg_id)
{
return readl(res->mixer_regs + reg_id);
}
static inline void mixer_reg_write(struct mixer_resources *res, u32 reg_id,
u32 val)
{
writel(val, res->mixer_regs + reg_id);
}
static inline void mixer_reg_writemask(struct mixer_resources *res,
u32 reg_id, u32 val, u32 mask)
{
u32 old = mixer_reg_read(res, reg_id);
val = (val & mask) | (old & ~mask);
writel(val, res->mixer_regs + reg_id);
}
static void mixer_regs_dump(struct mixer_context *ctx)
{
#define DUMPREG(reg_id) \
do { \
DRM_DEBUG_KMS(#reg_id " = %08x\n", \
(u32)readl(ctx->mixer_res.mixer_regs + reg_id)); \
} while (0)
DUMPREG(MXR_STATUS);
DUMPREG(MXR_CFG);
DUMPREG(MXR_INT_EN);
DUMPREG(MXR_INT_STATUS);
DUMPREG(MXR_LAYER_CFG);
DUMPREG(MXR_VIDEO_CFG);
DUMPREG(MXR_GRAPHIC0_CFG);
DUMPREG(MXR_GRAPHIC0_BASE);
DUMPREG(MXR_GRAPHIC0_SPAN);
DUMPREG(MXR_GRAPHIC0_WH);
DUMPREG(MXR_GRAPHIC0_SXY);
DUMPREG(MXR_GRAPHIC0_DXY);
DUMPREG(MXR_GRAPHIC1_CFG);
DUMPREG(MXR_GRAPHIC1_BASE);
DUMPREG(MXR_GRAPHIC1_SPAN);
DUMPREG(MXR_GRAPHIC1_WH);
DUMPREG(MXR_GRAPHIC1_SXY);
DUMPREG(MXR_GRAPHIC1_DXY);
#undef DUMPREG
}
static void vp_regs_dump(struct mixer_context *ctx)
{
#define DUMPREG(reg_id) \
do { \
DRM_DEBUG_KMS(#reg_id " = %08x\n", \
(u32) readl(ctx->mixer_res.vp_regs + reg_id)); \
} while (0)
DUMPREG(VP_ENABLE);
DUMPREG(VP_SRESET);
DUMPREG(VP_SHADOW_UPDATE);
DUMPREG(VP_FIELD_ID);
DUMPREG(VP_MODE);
DUMPREG(VP_IMG_SIZE_Y);
DUMPREG(VP_IMG_SIZE_C);
DUMPREG(VP_PER_RATE_CTRL);
DUMPREG(VP_TOP_Y_PTR);
DUMPREG(VP_BOT_Y_PTR);
DUMPREG(VP_TOP_C_PTR);
DUMPREG(VP_BOT_C_PTR);
DUMPREG(VP_ENDIAN_MODE);
DUMPREG(VP_SRC_H_POSITION);
DUMPREG(VP_SRC_V_POSITION);
DUMPREG(VP_SRC_WIDTH);
DUMPREG(VP_SRC_HEIGHT);
DUMPREG(VP_DST_H_POSITION);
DUMPREG(VP_DST_V_POSITION);
DUMPREG(VP_DST_WIDTH);
DUMPREG(VP_DST_HEIGHT);
DUMPREG(VP_H_RATIO);
DUMPREG(VP_V_RATIO);
#undef DUMPREG
}
static inline void vp_filter_set(struct mixer_resources *res,
int reg_id, const u8 *data, unsigned int size)
{
/* assure 4-byte align */
BUG_ON(size & 3);
for (; size; size -= 4, reg_id += 4, data += 4) {
u32 val = (data[0] << 24) | (data[1] << 16) |
(data[2] << 8) | data[3];
vp_reg_write(res, reg_id, val);
}
}
static void vp_default_filter(struct mixer_resources *res)
{
vp_filter_set(res, VP_POLY8_Y0_LL,
filter_y_horiz_tap8, sizeof(filter_y_horiz_tap8));
vp_filter_set(res, VP_POLY4_Y0_LL,
filter_y_vert_tap4, sizeof(filter_y_vert_tap4));
vp_filter_set(res, VP_POLY4_C0_LL,
filter_cr_horiz_tap4, sizeof(filter_cr_horiz_tap4));
}
static void mixer_vsync_set_update(struct mixer_context *ctx, bool enable)
{
struct mixer_resources *res = &ctx->mixer_res;
/* block update on vsync */
mixer_reg_writemask(res, MXR_STATUS, enable ?
MXR_STATUS_SYNC_ENABLE : 0, MXR_STATUS_SYNC_ENABLE);
if (ctx->vp_enabled)
vp_reg_write(res, VP_SHADOW_UPDATE, enable ?
VP_SHADOW_UPDATE_ENABLE : 0);
}
static void mixer_cfg_scan(struct mixer_context *ctx, unsigned int height)
{
struct mixer_resources *res = &ctx->mixer_res;
u32 val;
/* choosing between interlace and progressive mode */
val = (ctx->interlace ? MXR_CFG_SCAN_INTERLACE :
MXR_CFG_SCAN_PROGRASSIVE);
if (ctx->mxr_ver != MXR_VER_128_0_0_184) {
/* choosing between proper HD and SD mode */
if (height <= 480)
val |= MXR_CFG_SCAN_NTSC | MXR_CFG_SCAN_SD;
else if (height <= 576)
val |= MXR_CFG_SCAN_PAL | MXR_CFG_SCAN_SD;
else if (height <= 720)
val |= MXR_CFG_SCAN_HD_720 | MXR_CFG_SCAN_HD;
else if (height <= 1080)
val |= MXR_CFG_SCAN_HD_1080 | MXR_CFG_SCAN_HD;
else
val |= MXR_CFG_SCAN_HD_720 | MXR_CFG_SCAN_HD;
}
mixer_reg_writemask(res, MXR_CFG, val, MXR_CFG_SCAN_MASK);
}
static void mixer_cfg_rgb_fmt(struct mixer_context *ctx, unsigned int height)
{
struct mixer_resources *res = &ctx->mixer_res;
u32 val;
if (height == 480) {
val = MXR_CFG_RGB601_0_255;
} else if (height == 576) {
val = MXR_CFG_RGB601_0_255;
} else if (height == 720) {
val = MXR_CFG_RGB709_16_235;
mixer_reg_write(res, MXR_CM_COEFF_Y,
(1 << 30) | (94 << 20) | (314 << 10) |
(32 << 0));
mixer_reg_write(res, MXR_CM_COEFF_CB,
(972 << 20) | (851 << 10) | (225 << 0));
mixer_reg_write(res, MXR_CM_COEFF_CR,
(225 << 20) | (820 << 10) | (1004 << 0));
} else if (height == 1080) {
val = MXR_CFG_RGB709_16_235;
mixer_reg_write(res, MXR_CM_COEFF_Y,
(1 << 30) | (94 << 20) | (314 << 10) |
(32 << 0));
mixer_reg_write(res, MXR_CM_COEFF_CB,
(972 << 20) | (851 << 10) | (225 << 0));
mixer_reg_write(res, MXR_CM_COEFF_CR,
(225 << 20) | (820 << 10) | (1004 << 0));
} else {
val = MXR_CFG_RGB709_16_235;
mixer_reg_write(res, MXR_CM_COEFF_Y,
(1 << 30) | (94 << 20) | (314 << 10) |
(32 << 0));
mixer_reg_write(res, MXR_CM_COEFF_CB,
(972 << 20) | (851 << 10) | (225 << 0));
mixer_reg_write(res, MXR_CM_COEFF_CR,
(225 << 20) | (820 << 10) | (1004 << 0));
}
mixer_reg_writemask(res, MXR_CFG, val, MXR_CFG_RGB_FMT_MASK);
}
static void mixer_cfg_layer(struct mixer_context *ctx, int win, bool enable)
{
struct mixer_resources *res = &ctx->mixer_res;
u32 val = enable ? ~0 : 0;
switch (win) {
case 0:
mixer_reg_writemask(res, MXR_CFG, val, MXR_CFG_GRP0_ENABLE);
break;
case 1:
mixer_reg_writemask(res, MXR_CFG, val, MXR_CFG_GRP1_ENABLE);
break;
case 2:
if (ctx->vp_enabled) {
vp_reg_writemask(res, VP_ENABLE, val, VP_ENABLE_ON);
mixer_reg_writemask(res, MXR_CFG, val,
MXR_CFG_VP_ENABLE);
}
break;
}
}
static void mixer_run(struct mixer_context *ctx)
{
struct mixer_resources *res = &ctx->mixer_res;
mixer_reg_writemask(res, MXR_STATUS, ~0, MXR_STATUS_REG_RUN);
mixer_regs_dump(ctx);
}
static void vp_video_buffer(struct mixer_context *ctx, int win)
{
struct mixer_resources *res = &ctx->mixer_res;
unsigned long flags;
struct hdmi_win_data *win_data;
unsigned int x_ratio, y_ratio;
unsigned int buf_num = 1;
dma_addr_t luma_addr[2], chroma_addr[2];
bool tiled_mode = false;
bool crcb_mode = false;
u32 val;
win_data = &ctx->win_data[win];
switch (win_data->pixel_format) {
case DRM_FORMAT_NV12MT:
tiled_mode = true;
case DRM_FORMAT_NV12:
crcb_mode = false;
buf_num = 2;
break;
/* TODO: single buffer format NV12, NV21 */
default:
/* ignore pixel format at disable time */
if (!win_data->dma_addr)
break;
DRM_ERROR("pixel format for vp is wrong [%d].\n",
win_data->pixel_format);
return;
}
/* scaling feature: (src << 16) / dst */
x_ratio = (win_data->src_width << 16) / win_data->crtc_width;
y_ratio = (win_data->src_height << 16) / win_data->crtc_height;
if (buf_num == 2) {
luma_addr[0] = win_data->dma_addr;
chroma_addr[0] = win_data->chroma_dma_addr;
} else {
luma_addr[0] = win_data->dma_addr;
chroma_addr[0] = win_data->dma_addr
+ (win_data->fb_width * win_data->fb_height);
}
if (win_data->scan_flags & DRM_MODE_FLAG_INTERLACE) {
ctx->interlace = true;
if (tiled_mode) {
luma_addr[1] = luma_addr[0] + 0x40;
chroma_addr[1] = chroma_addr[0] + 0x40;
} else {
luma_addr[1] = luma_addr[0] + win_data->fb_width;
chroma_addr[1] = chroma_addr[0] + win_data->fb_width;
}
} else {
ctx->interlace = false;
luma_addr[1] = 0;
chroma_addr[1] = 0;
}
spin_lock_irqsave(&res->reg_slock, flags);
mixer_vsync_set_update(ctx, false);
/* interlace or progressive scan mode */
val = (ctx->interlace ? ~0 : 0);
vp_reg_writemask(res, VP_MODE, val, VP_MODE_LINE_SKIP);
/* setup format */
val = (crcb_mode ? VP_MODE_NV21 : VP_MODE_NV12);
val |= (tiled_mode ? VP_MODE_MEM_TILED : VP_MODE_MEM_LINEAR);
vp_reg_writemask(res, VP_MODE, val, VP_MODE_FMT_MASK);
/* setting size of input image */
vp_reg_write(res, VP_IMG_SIZE_Y, VP_IMG_HSIZE(win_data->fb_width) |
VP_IMG_VSIZE(win_data->fb_height));
/* chroma height has to reduced by 2 to avoid chroma distorions */
vp_reg_write(res, VP_IMG_SIZE_C, VP_IMG_HSIZE(win_data->fb_width) |
VP_IMG_VSIZE(win_data->fb_height / 2));
vp_reg_write(res, VP_SRC_WIDTH, win_data->src_width);
vp_reg_write(res, VP_SRC_HEIGHT, win_data->src_height);
vp_reg_write(res, VP_SRC_H_POSITION,
VP_SRC_H_POSITION_VAL(win_data->fb_x));
vp_reg_write(res, VP_SRC_V_POSITION, win_data->fb_y);
vp_reg_write(res, VP_DST_WIDTH, win_data->crtc_width);
vp_reg_write(res, VP_DST_H_POSITION, win_data->crtc_x);
if (ctx->interlace) {
vp_reg_write(res, VP_DST_HEIGHT, win_data->crtc_height / 2);
vp_reg_write(res, VP_DST_V_POSITION, win_data->crtc_y / 2);
} else {
vp_reg_write(res, VP_DST_HEIGHT, win_data->crtc_height);
vp_reg_write(res, VP_DST_V_POSITION, win_data->crtc_y);
}
vp_reg_write(res, VP_H_RATIO, x_ratio);
vp_reg_write(res, VP_V_RATIO, y_ratio);
vp_reg_write(res, VP_ENDIAN_MODE, VP_ENDIAN_MODE_LITTLE);
/* set buffer address to vp */
vp_reg_write(res, VP_TOP_Y_PTR, luma_addr[0]);
vp_reg_write(res, VP_BOT_Y_PTR, luma_addr[1]);
vp_reg_write(res, VP_TOP_C_PTR, chroma_addr[0]);
vp_reg_write(res, VP_BOT_C_PTR, chroma_addr[1]);
mixer_cfg_scan(ctx, win_data->mode_height);
mixer_cfg_rgb_fmt(ctx, win_data->mode_height);
mixer_cfg_layer(ctx, win, true);
mixer_run(ctx);
mixer_vsync_set_update(ctx, true);
spin_unlock_irqrestore(&res->reg_slock, flags);
vp_regs_dump(ctx);
}
static void mixer_layer_update(struct mixer_context *ctx)
{
struct mixer_resources *res = &ctx->mixer_res;
u32 val;
val = mixer_reg_read(res, MXR_CFG);
/* allow one update per vsync only */
if (!(val & MXR_CFG_LAYER_UPDATE_COUNT_MASK))
mixer_reg_writemask(res, MXR_CFG, ~0, MXR_CFG_LAYER_UPDATE);
}
static void mixer_graph_buffer(struct mixer_context *ctx, int win)
{
struct mixer_resources *res = &ctx->mixer_res;
unsigned long flags;
struct hdmi_win_data *win_data;
unsigned int x_ratio, y_ratio;
unsigned int src_x_offset, src_y_offset, dst_x_offset, dst_y_offset;
dma_addr_t dma_addr;
unsigned int fmt;
u32 val;
win_data = &ctx->win_data[win];
#define RGB565 4
#define ARGB1555 5
#define ARGB4444 6
#define ARGB8888 7
switch (win_data->bpp) {
case 16:
fmt = ARGB4444;
break;
case 32:
fmt = ARGB8888;
break;
default:
fmt = ARGB8888;
}
/* 2x scaling feature */
x_ratio = 0;
y_ratio = 0;
dst_x_offset = win_data->crtc_x;
dst_y_offset = win_data->crtc_y;
/* converting dma address base and source offset */
dma_addr = win_data->dma_addr
+ (win_data->fb_x * win_data->bpp >> 3)
+ (win_data->fb_y * win_data->fb_width * win_data->bpp >> 3);
src_x_offset = 0;
src_y_offset = 0;
if (win_data->scan_flags & DRM_MODE_FLAG_INTERLACE)
ctx->interlace = true;
else
ctx->interlace = false;
spin_lock_irqsave(&res->reg_slock, flags);
mixer_vsync_set_update(ctx, false);
/* setup format */
mixer_reg_writemask(res, MXR_GRAPHIC_CFG(win),
MXR_GRP_CFG_FORMAT_VAL(fmt), MXR_GRP_CFG_FORMAT_MASK);
/* setup geometry */
mixer_reg_write(res, MXR_GRAPHIC_SPAN(win), win_data->fb_width);
/* setup display size */
if (ctx->mxr_ver == MXR_VER_128_0_0_184 &&
win == MIXER_DEFAULT_WIN) {
val = MXR_MXR_RES_HEIGHT(win_data->fb_height);
val |= MXR_MXR_RES_WIDTH(win_data->fb_width);
mixer_reg_write(res, MXR_RESOLUTION, val);
}
val = MXR_GRP_WH_WIDTH(win_data->crtc_width);
val |= MXR_GRP_WH_HEIGHT(win_data->crtc_height);
val |= MXR_GRP_WH_H_SCALE(x_ratio);
val |= MXR_GRP_WH_V_SCALE(y_ratio);
mixer_reg_write(res, MXR_GRAPHIC_WH(win), val);
/* setup offsets in source image */
val = MXR_GRP_SXY_SX(src_x_offset);
val |= MXR_GRP_SXY_SY(src_y_offset);
mixer_reg_write(res, MXR_GRAPHIC_SXY(win), val);
/* setup offsets in display image */
val = MXR_GRP_DXY_DX(dst_x_offset);
val |= MXR_GRP_DXY_DY(dst_y_offset);
mixer_reg_write(res, MXR_GRAPHIC_DXY(win), val);
/* set buffer address to mixer */
mixer_reg_write(res, MXR_GRAPHIC_BASE(win), dma_addr);
mixer_cfg_scan(ctx, win_data->mode_height);
mixer_cfg_rgb_fmt(ctx, win_data->mode_height);
mixer_cfg_layer(ctx, win, true);
/* layer update mandatory for mixer 16.0.33.0 */
if (ctx->mxr_ver == MXR_VER_16_0_33_0 ||
ctx->mxr_ver == MXR_VER_128_0_0_184)
mixer_layer_update(ctx);
mixer_run(ctx);
mixer_vsync_set_update(ctx, true);
spin_unlock_irqrestore(&res->reg_slock, flags);
}
static void vp_win_reset(struct mixer_context *ctx)
{
struct mixer_resources *res = &ctx->mixer_res;
int tries = 100;
vp_reg_write(res, VP_SRESET, VP_SRESET_PROCESSING);
for (tries = 100; tries; --tries) {
/* waiting until VP_SRESET_PROCESSING is 0 */
if (~vp_reg_read(res, VP_SRESET) & VP_SRESET_PROCESSING)
break;
usleep_range(10000, 12000);
}
WARN(tries == 0, "failed to reset Video Processor\n");
}
static void mixer_win_reset(struct mixer_context *ctx)
{
struct mixer_resources *res = &ctx->mixer_res;
unsigned long flags;
u32 val; /* value stored to register */
spin_lock_irqsave(&res->reg_slock, flags);
mixer_vsync_set_update(ctx, false);
mixer_reg_writemask(res, MXR_CFG, MXR_CFG_DST_HDMI, MXR_CFG_DST_MASK);
/* set output in RGB888 mode */
mixer_reg_writemask(res, MXR_CFG, MXR_CFG_OUT_RGB888, MXR_CFG_OUT_MASK);
/* 16 beat burst in DMA */
mixer_reg_writemask(res, MXR_STATUS, MXR_STATUS_16_BURST,
MXR_STATUS_BURST_MASK);
/* setting default layer priority: layer1 > layer0 > video
* because typical usage scenario would be
* layer1 - OSD
* layer0 - framebuffer
* video - video overlay
*/
val = MXR_LAYER_CFG_GRP1_VAL(3);
val |= MXR_LAYER_CFG_GRP0_VAL(2);
if (ctx->vp_enabled)
val |= MXR_LAYER_CFG_VP_VAL(1);
mixer_reg_write(res, MXR_LAYER_CFG, val);
/* setting background color */
mixer_reg_write(res, MXR_BG_COLOR0, 0x008080);
mixer_reg_write(res, MXR_BG_COLOR1, 0x008080);
mixer_reg_write(res, MXR_BG_COLOR2, 0x008080);
/* setting graphical layers */
val = MXR_GRP_CFG_COLOR_KEY_DISABLE; /* no blank key */
val |= MXR_GRP_CFG_WIN_BLEND_EN;
val |= MXR_GRP_CFG_ALPHA_VAL(0xff); /* non-transparent alpha */
/* Don't blend layer 0 onto the mixer background */
mixer_reg_write(res, MXR_GRAPHIC_CFG(0), val);
/* Blend layer 1 into layer 0 */
val |= MXR_GRP_CFG_BLEND_PRE_MUL;
val |= MXR_GRP_CFG_PIXEL_BLEND_EN;
mixer_reg_write(res, MXR_GRAPHIC_CFG(1), val);
/* setting video layers */
val = MXR_GRP_CFG_ALPHA_VAL(0);
mixer_reg_write(res, MXR_VIDEO_CFG, val);
if (ctx->vp_enabled) {
/* configuration of Video Processor Registers */
vp_win_reset(ctx);
vp_default_filter(res);
}
/* disable all layers */
mixer_reg_writemask(res, MXR_CFG, 0, MXR_CFG_GRP0_ENABLE);
mixer_reg_writemask(res, MXR_CFG, 0, MXR_CFG_GRP1_ENABLE);
if (ctx->vp_enabled)
mixer_reg_writemask(res, MXR_CFG, 0, MXR_CFG_VP_ENABLE);
mixer_vsync_set_update(ctx, true);
spin_unlock_irqrestore(&res->reg_slock, flags);
}
static int mixer_iommu_on(void *ctx, bool enable)
{
struct exynos_drm_hdmi_context *drm_hdmi_ctx;
struct mixer_context *mdata = ctx;
struct drm_device *drm_dev;
drm_hdmi_ctx = mdata->parent_ctx;
drm_dev = drm_hdmi_ctx->drm_dev;
if (is_drm_iommu_supported(drm_dev)) {
if (enable)
return drm_iommu_attach_device(drm_dev, mdata->dev);
drm_iommu_detach_device(drm_dev, mdata->dev);
}
return 0;
}
static int mixer_enable_vblank(void *ctx, int pipe)
{
struct mixer_context *mixer_ctx = ctx;
struct mixer_resources *res = &mixer_ctx->mixer_res;
mixer_ctx->pipe = pipe;
/* enable vsync interrupt */
mixer_reg_writemask(res, MXR_INT_EN, MXR_INT_EN_VSYNC,
MXR_INT_EN_VSYNC);
return 0;
}
static void mixer_disable_vblank(void *ctx)
{
struct mixer_context *mixer_ctx = ctx;
struct mixer_resources *res = &mixer_ctx->mixer_res;
/* disable vsync interrupt */
mixer_reg_writemask(res, MXR_INT_EN, 0, MXR_INT_EN_VSYNC);
}
static void mixer_win_mode_set(void *ctx,
struct exynos_drm_overlay *overlay)
{
struct mixer_context *mixer_ctx = ctx;
struct hdmi_win_data *win_data;
int win;
if (!overlay) {
DRM_ERROR("overlay is NULL\n");
return;
}
DRM_DEBUG_KMS("set [%d]x[%d] at (%d,%d) to [%d]x[%d] at (%d,%d)\n",
overlay->fb_width, overlay->fb_height,
overlay->fb_x, overlay->fb_y,
overlay->crtc_width, overlay->crtc_height,
overlay->crtc_x, overlay->crtc_y);
win = overlay->zpos;
if (win == DEFAULT_ZPOS)
win = MIXER_DEFAULT_WIN;
if (win < 0 || win >= MIXER_WIN_NR) {
DRM_ERROR("mixer window[%d] is wrong\n", win);
return;
}
win_data = &mixer_ctx->win_data[win];
win_data->dma_addr = overlay->dma_addr[0];
win_data->chroma_dma_addr = overlay->dma_addr[1];
win_data->pixel_format = overlay->pixel_format;
win_data->bpp = overlay->bpp;
win_data->crtc_x = overlay->crtc_x;
win_data->crtc_y = overlay->crtc_y;
win_data->crtc_width = overlay->crtc_width;
win_data->crtc_height = overlay->crtc_height;
win_data->fb_x = overlay->fb_x;
win_data->fb_y = overlay->fb_y;
win_data->fb_width = overlay->fb_width;
win_data->fb_height = overlay->fb_height;
win_data->src_width = overlay->src_width;
win_data->src_height = overlay->src_height;
win_data->mode_width = overlay->mode_width;
win_data->mode_height = overlay->mode_height;
win_data->scan_flags = overlay->scan_flag;
}
static void mixer_win_commit(void *ctx, int win)
{
struct mixer_context *mixer_ctx = ctx;
DRM_DEBUG_KMS("win: %d\n", win);
mutex_lock(&mixer_ctx->mixer_mutex);
if (!mixer_ctx->powered) {
mutex_unlock(&mixer_ctx->mixer_mutex);
return;
}
mutex_unlock(&mixer_ctx->mixer_mutex);
if (win > 1 && mixer_ctx->vp_enabled)
vp_video_buffer(mixer_ctx, win);
else
mixer_graph_buffer(mixer_ctx, win);
mixer_ctx->win_data[win].enabled = true;
}
static void mixer_win_disable(void *ctx, int win)
{
struct mixer_context *mixer_ctx = ctx;
struct mixer_resources *res = &mixer_ctx->mixer_res;
unsigned long flags;
DRM_DEBUG_KMS("win: %d\n", win);
mutex_lock(&mixer_ctx->mixer_mutex);
if (!mixer_ctx->powered) {
mutex_unlock(&mixer_ctx->mixer_mutex);
mixer_ctx->win_data[win].resume = false;
return;
}
mutex_unlock(&mixer_ctx->mixer_mutex);
spin_lock_irqsave(&res->reg_slock, flags);
mixer_vsync_set_update(mixer_ctx, false);
mixer_cfg_layer(mixer_ctx, win, false);
mixer_vsync_set_update(mixer_ctx, true);
spin_unlock_irqrestore(&res->reg_slock, flags);
mixer_ctx->win_data[win].enabled = false;
}
static int mixer_check_mode(void *ctx, struct drm_display_mode *mode)
{
struct mixer_context *mixer_ctx = ctx;
u32 w, h;
w = mode->hdisplay;
h = mode->vdisplay;
DRM_DEBUG_KMS("xres=%d, yres=%d, refresh=%d, intl=%d\n",
mode->hdisplay, mode->vdisplay, mode->vrefresh,
(mode->flags & DRM_MODE_FLAG_INTERLACE) ? 1 : 0);
if (mixer_ctx->mxr_ver == MXR_VER_0_0_0_16 ||
mixer_ctx->mxr_ver == MXR_VER_128_0_0_184)
return 0;
if ((w >= 464 && w <= 720 && h >= 261 && h <= 576) ||
(w >= 1024 && w <= 1280 && h >= 576 && h <= 720) ||
(w >= 1664 && w <= 1920 && h >= 936 && h <= 1080))
return 0;
return -EINVAL;
}
static void mixer_wait_for_vblank(void *ctx)
{
struct mixer_context *mixer_ctx = ctx;
mutex_lock(&mixer_ctx->mixer_mutex);
if (!mixer_ctx->powered) {
mutex_unlock(&mixer_ctx->mixer_mutex);
return;
}
mutex_unlock(&mixer_ctx->mixer_mutex);
atomic_set(&mixer_ctx->wait_vsync_event, 1);
/*
* wait for MIXER to signal VSYNC interrupt or return after
* timeout which is set to 50ms (refresh rate of 20).
*/
if (!wait_event_timeout(mixer_ctx->wait_vsync_queue,
!atomic_read(&mixer_ctx->wait_vsync_event),
HZ/20))
DRM_DEBUG_KMS("vblank wait timed out.\n");
}
static void mixer_window_suspend(struct mixer_context *ctx)
{
struct hdmi_win_data *win_data;
int i;
for (i = 0; i < MIXER_WIN_NR; i++) {
win_data = &ctx->win_data[i];
win_data->resume = win_data->enabled;
mixer_win_disable(ctx, i);
}
mixer_wait_for_vblank(ctx);
}
static void mixer_window_resume(struct mixer_context *ctx)
{
struct hdmi_win_data *win_data;
int i;
for (i = 0; i < MIXER_WIN_NR; i++) {
win_data = &ctx->win_data[i];
win_data->enabled = win_data->resume;
win_data->resume = false;
}
}
static void mixer_poweron(struct mixer_context *ctx)
{
struct mixer_resources *res = &ctx->mixer_res;
mutex_lock(&ctx->mixer_mutex);
if (ctx->powered) {
mutex_unlock(&ctx->mixer_mutex);
return;
}
ctx->powered = true;
mutex_unlock(&ctx->mixer_mutex);
clk_prepare_enable(res->mixer);
if (ctx->vp_enabled) {
clk_prepare_enable(res->vp);
clk_prepare_enable(res->sclk_mixer);
}
mixer_reg_write(res, MXR_INT_EN, ctx->int_en);
mixer_win_reset(ctx);
mixer_window_resume(ctx);
}
static void mixer_poweroff(struct mixer_context *ctx)
{
struct mixer_resources *res = &ctx->mixer_res;
mutex_lock(&ctx->mixer_mutex);
if (!ctx->powered)
goto out;
mutex_unlock(&ctx->mixer_mutex);
mixer_window_suspend(ctx);
ctx->int_en = mixer_reg_read(res, MXR_INT_EN);
clk_disable_unprepare(res->mixer);
if (ctx->vp_enabled) {
clk_disable_unprepare(res->vp);
clk_disable_unprepare(res->sclk_mixer);
}
mutex_lock(&ctx->mixer_mutex);
ctx->powered = false;
out:
mutex_unlock(&ctx->mixer_mutex);
}
static void mixer_dpms(void *ctx, int mode)
{
struct mixer_context *mixer_ctx = ctx;
switch (mode) {
case DRM_MODE_DPMS_ON:
if (pm_runtime_suspended(mixer_ctx->dev))
pm_runtime_get_sync(mixer_ctx->dev);
break;
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
case DRM_MODE_DPMS_OFF:
if (!pm_runtime_suspended(mixer_ctx->dev))
pm_runtime_put_sync(mixer_ctx->dev);
break;
default:
DRM_DEBUG_KMS("unknown dpms mode: %d\n", mode);
break;
}
}
static struct exynos_mixer_ops mixer_ops = {
/* manager */
.iommu_on = mixer_iommu_on,
.enable_vblank = mixer_enable_vblank,
.disable_vblank = mixer_disable_vblank,
.wait_for_vblank = mixer_wait_for_vblank,
.dpms = mixer_dpms,
.win_mode_set = mixer_win_mode_set,
.win_commit = mixer_win_commit,
.win_disable = mixer_win_disable,
/* display */
.check_mode = mixer_check_mode,
};
static irqreturn_t mixer_irq_handler(int irq, void *arg)
{
struct exynos_drm_hdmi_context *drm_hdmi_ctx = arg;
struct mixer_context *ctx = drm_hdmi_ctx->ctx;
struct mixer_resources *res = &ctx->mixer_res;
u32 val, base, shadow;
spin_lock(&res->reg_slock);
/* read interrupt status for handling and clearing flags for VSYNC */
val = mixer_reg_read(res, MXR_INT_STATUS);
/* handling VSYNC */
if (val & MXR_INT_STATUS_VSYNC) {
/* interlace scan need to check shadow register */
if (ctx->interlace) {
base = mixer_reg_read(res, MXR_GRAPHIC_BASE(0));
shadow = mixer_reg_read(res, MXR_GRAPHIC_BASE_S(0));
if (base != shadow)
goto out;
base = mixer_reg_read(res, MXR_GRAPHIC_BASE(1));
shadow = mixer_reg_read(res, MXR_GRAPHIC_BASE_S(1));
if (base != shadow)
goto out;
}
drm_handle_vblank(drm_hdmi_ctx->drm_dev, ctx->pipe);
exynos_drm_crtc_finish_pageflip(drm_hdmi_ctx->drm_dev,
ctx->pipe);
/* set wait vsync event to zero and wake up queue. */
if (atomic_read(&ctx->wait_vsync_event)) {
atomic_set(&ctx->wait_vsync_event, 0);
wake_up(&ctx->wait_vsync_queue);
}
}
out:
/* clear interrupts */
if (~val & MXR_INT_EN_VSYNC) {
/* vsync interrupt use different bit for read and clear */
val &= ~MXR_INT_EN_VSYNC;
val |= MXR_INT_CLEAR_VSYNC;
}
mixer_reg_write(res, MXR_INT_STATUS, val);
spin_unlock(&res->reg_slock);
return IRQ_HANDLED;
}
static int mixer_resources_init(struct exynos_drm_hdmi_context *ctx,
struct platform_device *pdev)
{
struct mixer_context *mixer_ctx = ctx->ctx;
struct device *dev = &pdev->dev;
struct mixer_resources *mixer_res = &mixer_ctx->mixer_res;
struct resource *res;
int ret;
spin_lock_init(&mixer_res->reg_slock);
mixer_res->mixer = devm_clk_get(dev, "mixer");
if (IS_ERR(mixer_res->mixer)) {
dev_err(dev, "failed to get clock 'mixer'\n");
return -ENODEV;
}
mixer_res->sclk_hdmi = devm_clk_get(dev, "sclk_hdmi");
if (IS_ERR(mixer_res->sclk_hdmi)) {
dev_err(dev, "failed to get clock 'sclk_hdmi'\n");
return -ENODEV;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL) {
dev_err(dev, "get memory resource failed.\n");
return -ENXIO;
}
mixer_res->mixer_regs = devm_ioremap(dev, res->start,
resource_size(res));
if (mixer_res->mixer_regs == NULL) {
dev_err(dev, "register mapping failed.\n");
return -ENXIO;
}
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (res == NULL) {
dev_err(dev, "get interrupt resource failed.\n");
return -ENXIO;
}
ret = devm_request_irq(dev, res->start, mixer_irq_handler,
0, "drm_mixer", ctx);
if (ret) {
dev_err(dev, "request interrupt failed.\n");
return ret;
}
mixer_res->irq = res->start;
return 0;
}
static int vp_resources_init(struct exynos_drm_hdmi_context *ctx,
struct platform_device *pdev)
{
struct mixer_context *mixer_ctx = ctx->ctx;
struct device *dev = &pdev->dev;
struct mixer_resources *mixer_res = &mixer_ctx->mixer_res;
struct resource *res;
mixer_res->vp = devm_clk_get(dev, "vp");
if (IS_ERR(mixer_res->vp)) {
dev_err(dev, "failed to get clock 'vp'\n");
return -ENODEV;
}
mixer_res->sclk_mixer = devm_clk_get(dev, "sclk_mixer");
if (IS_ERR(mixer_res->sclk_mixer)) {
dev_err(dev, "failed to get clock 'sclk_mixer'\n");
return -ENODEV;
}
mixer_res->sclk_dac = devm_clk_get(dev, "sclk_dac");
if (IS_ERR(mixer_res->sclk_dac)) {
dev_err(dev, "failed to get clock 'sclk_dac'\n");
return -ENODEV;
}
if (mixer_res->sclk_hdmi)
clk_set_parent(mixer_res->sclk_mixer, mixer_res->sclk_hdmi);
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (res == NULL) {
dev_err(dev, "get memory resource failed.\n");
return -ENXIO;
}
mixer_res->vp_regs = devm_ioremap(dev, res->start,
resource_size(res));
if (mixer_res->vp_regs == NULL) {
dev_err(dev, "register mapping failed.\n");
return -ENXIO;
}
return 0;
}
static struct mixer_drv_data exynos5420_mxr_drv_data = {
.version = MXR_VER_128_0_0_184,
.is_vp_enabled = 0,
};
static struct mixer_drv_data exynos5250_mxr_drv_data = {
.version = MXR_VER_16_0_33_0,
.is_vp_enabled = 0,
};
static struct mixer_drv_data exynos4210_mxr_drv_data = {
.version = MXR_VER_0_0_0_16,
.is_vp_enabled = 1,
};
static struct platform_device_id mixer_driver_types[] = {
{
.name = "s5p-mixer",
.driver_data = (unsigned long)&exynos4210_mxr_drv_data,
}, {
.name = "exynos5-mixer",
.driver_data = (unsigned long)&exynos5250_mxr_drv_data,
}, {
/* end node */
}
};
static struct of_device_id mixer_match_types[] = {
{
.compatible = "samsung,exynos5-mixer",
.data = &exynos5250_mxr_drv_data,
}, {
.compatible = "samsung,exynos5250-mixer",
.data = &exynos5250_mxr_drv_data,
}, {
.compatible = "samsung,exynos5420-mixer",
.data = &exynos5420_mxr_drv_data,
}, {
/* end node */
}
};
static int mixer_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct exynos_drm_hdmi_context *drm_hdmi_ctx;
struct mixer_context *ctx;
struct mixer_drv_data *drv;
int ret;
dev_info(dev, "probe start\n");
drm_hdmi_ctx = devm_kzalloc(dev, sizeof(*drm_hdmi_ctx),
GFP_KERNEL);
if (!drm_hdmi_ctx)
return -ENOMEM;
ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
mutex_init(&ctx->mixer_mutex);
if (dev->of_node) {
const struct of_device_id *match;
match = of_match_node(mixer_match_types, dev->of_node);
drv = (struct mixer_drv_data *)match->data;
} else {
drv = (struct mixer_drv_data *)
platform_get_device_id(pdev)->driver_data;
}
ctx->dev = dev;
ctx->parent_ctx = (void *)drm_hdmi_ctx;
drm_hdmi_ctx->ctx = (void *)ctx;
ctx->vp_enabled = drv->is_vp_enabled;
ctx->mxr_ver = drv->version;
init_waitqueue_head(&ctx->wait_vsync_queue);
atomic_set(&ctx->wait_vsync_event, 0);
platform_set_drvdata(pdev, drm_hdmi_ctx);
/* acquire resources: regs, irqs, clocks */
ret = mixer_resources_init(drm_hdmi_ctx, pdev);
if (ret) {
DRM_ERROR("mixer_resources_init failed\n");
goto fail;
}
if (ctx->vp_enabled) {
/* acquire vp resources: regs, irqs, clocks */
ret = vp_resources_init(drm_hdmi_ctx, pdev);
if (ret) {
DRM_ERROR("vp_resources_init failed\n");
goto fail;
}
}
/* attach mixer driver to common hdmi. */
exynos_mixer_drv_attach(drm_hdmi_ctx);
/* register specific callback point to common hdmi. */
exynos_mixer_ops_register(&mixer_ops);
pm_runtime_enable(dev);
return 0;
fail:
dev_info(dev, "probe failed\n");
return ret;
}
static int mixer_remove(struct platform_device *pdev)
{
dev_info(&pdev->dev, "remove successful\n");
pm_runtime_disable(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int mixer_suspend(struct device *dev)
{
struct exynos_drm_hdmi_context *drm_hdmi_ctx = get_mixer_context(dev);
struct mixer_context *ctx = drm_hdmi_ctx->ctx;
if (pm_runtime_suspended(dev)) {
DRM_DEBUG_KMS("Already suspended\n");
return 0;
}
mixer_poweroff(ctx);
return 0;
}
static int mixer_resume(struct device *dev)
{
struct exynos_drm_hdmi_context *drm_hdmi_ctx = get_mixer_context(dev);
struct mixer_context *ctx = drm_hdmi_ctx->ctx;
if (!pm_runtime_suspended(dev)) {
DRM_DEBUG_KMS("Already resumed\n");
return 0;
}
mixer_poweron(ctx);
return 0;
}
#endif
#ifdef CONFIG_PM_RUNTIME
static int mixer_runtime_suspend(struct device *dev)
{
struct exynos_drm_hdmi_context *drm_hdmi_ctx = get_mixer_context(dev);
struct mixer_context *ctx = drm_hdmi_ctx->ctx;
mixer_poweroff(ctx);
return 0;
}
static int mixer_runtime_resume(struct device *dev)
{
struct exynos_drm_hdmi_context *drm_hdmi_ctx = get_mixer_context(dev);
struct mixer_context *ctx = drm_hdmi_ctx->ctx;
mixer_poweron(ctx);
return 0;
}
#endif
static const struct dev_pm_ops mixer_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(mixer_suspend, mixer_resume)
SET_RUNTIME_PM_OPS(mixer_runtime_suspend, mixer_runtime_resume, NULL)
};
struct platform_driver mixer_driver = {
.driver = {
.name = "exynos-mixer",
.owner = THIS_MODULE,
.pm = &mixer_pm_ops,
.of_match_table = mixer_match_types,
},
.probe = mixer_probe,
.remove = mixer_remove,
.id_table = mixer_driver_types,
};