49c98c1dc7
In early LinkStreet silicon (e.g. 6095/6185), the per-VLAN STP states were kept in the VTU - there was no concept of a SID. Later, the information was split into two tables, where the VTU only tracked memberships and deferred the STP state tracking to the STU via a pointer (SID). This meant that a group of VLANs could share the same STU entry. Most likely, this was done to align with MSTP (802.1Q-2018, Clause 13), which is built on this principle. While the VTU is still 4k lines on most devices, the STU is capped at 64 entries. This means that the current stategy, updating STU info whenever a VTU entry is updated, can not easily support MSTP because: - The maximum number of VIDs would also be capped at 64, as we would have to allocate one SID for every VTU entry - even if many VLANs would effectively share the same MST. - MSTP updates would be unnecessarily slow as you would have to iterate over all VLANs that share the same MST. In order to support MSTP offloading in the future, manage the STU as a separate entity from the VTU. Only add support for newer hardware with separate VTU and STU. VTU-only devices can also be supported, but essentially this requires a software implementation of an STU (fanning out state changed to all VLANs tied to the same MST). Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
682 lines
14 KiB
C
682 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Marvell 88E6xxx VLAN [Spanning Tree] Translation Unit (VTU [STU]) support
|
|
*
|
|
* Copyright (c) 2008 Marvell Semiconductor
|
|
* Copyright (c) 2015 CMC Electronics, Inc.
|
|
* Copyright (c) 2017 Savoir-faire Linux, Inc.
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irqdomain.h>
|
|
|
|
#include "chip.h"
|
|
#include "global1.h"
|
|
|
|
/* Offset 0x02: VTU FID Register */
|
|
|
|
static int mv88e6xxx_g1_vtu_fid_read(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_entry *entry)
|
|
{
|
|
u16 val;
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_read(chip, MV88E6352_G1_VTU_FID, &val);
|
|
if (err)
|
|
return err;
|
|
|
|
entry->fid = val & MV88E6352_G1_VTU_FID_MASK;
|
|
entry->policy = !!(val & MV88E6352_G1_VTU_FID_VID_POLICY);
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_g1_vtu_fid_write(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_entry *entry)
|
|
{
|
|
u16 val = entry->fid & MV88E6352_G1_VTU_FID_MASK;
|
|
|
|
if (entry->policy)
|
|
val |= MV88E6352_G1_VTU_FID_VID_POLICY;
|
|
|
|
return mv88e6xxx_g1_write(chip, MV88E6352_G1_VTU_FID, val);
|
|
}
|
|
|
|
/* Offset 0x03: VTU SID Register */
|
|
|
|
static int mv88e6xxx_g1_vtu_sid_read(struct mv88e6xxx_chip *chip, u8 *sid)
|
|
{
|
|
u16 val;
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_read(chip, MV88E6352_G1_VTU_SID, &val);
|
|
if (err)
|
|
return err;
|
|
|
|
*sid = val & MV88E6352_G1_VTU_SID_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_g1_vtu_sid_write(struct mv88e6xxx_chip *chip, u8 sid)
|
|
{
|
|
u16 val = sid & MV88E6352_G1_VTU_SID_MASK;
|
|
|
|
return mv88e6xxx_g1_write(chip, MV88E6352_G1_VTU_SID, val);
|
|
}
|
|
|
|
/* Offset 0x05: VTU Operation Register */
|
|
|
|
static int mv88e6xxx_g1_vtu_op_wait(struct mv88e6xxx_chip *chip)
|
|
{
|
|
int bit = __bf_shf(MV88E6XXX_G1_VTU_OP_BUSY);
|
|
|
|
return mv88e6xxx_g1_wait_bit(chip, MV88E6XXX_G1_VTU_OP, bit, 0);
|
|
}
|
|
|
|
static int mv88e6xxx_g1_vtu_op(struct mv88e6xxx_chip *chip, u16 op)
|
|
{
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_VTU_OP,
|
|
MV88E6XXX_G1_VTU_OP_BUSY | op);
|
|
if (err)
|
|
return err;
|
|
|
|
return mv88e6xxx_g1_vtu_op_wait(chip);
|
|
}
|
|
|
|
/* Offset 0x06: VTU VID Register */
|
|
|
|
static int mv88e6xxx_g1_vtu_vid_read(struct mv88e6xxx_chip *chip,
|
|
bool *valid, u16 *vid)
|
|
{
|
|
u16 val;
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_VTU_VID, &val);
|
|
if (err)
|
|
return err;
|
|
|
|
if (vid) {
|
|
*vid = val & 0xfff;
|
|
|
|
if (val & MV88E6390_G1_VTU_VID_PAGE)
|
|
*vid |= 0x1000;
|
|
}
|
|
|
|
if (valid)
|
|
*valid = !!(val & MV88E6XXX_G1_VTU_VID_VALID);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_g1_vtu_vid_write(struct mv88e6xxx_chip *chip,
|
|
bool valid, u16 vid)
|
|
{
|
|
u16 val = vid & 0xfff;
|
|
|
|
if (vid & 0x1000)
|
|
val |= MV88E6390_G1_VTU_VID_PAGE;
|
|
|
|
if (valid)
|
|
val |= MV88E6XXX_G1_VTU_VID_VALID;
|
|
|
|
return mv88e6xxx_g1_write(chip, MV88E6XXX_G1_VTU_VID, val);
|
|
}
|
|
|
|
/* Offset 0x07: VTU/STU Data Register 1
|
|
* Offset 0x08: VTU/STU Data Register 2
|
|
* Offset 0x09: VTU/STU Data Register 3
|
|
*/
|
|
static int mv88e6185_g1_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
|
|
u16 *regs)
|
|
{
|
|
int i;
|
|
|
|
/* Read all 3 VTU/STU Data registers */
|
|
for (i = 0; i < 3; ++i) {
|
|
u16 *reg = ®s[i];
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_VTU_DATA1 + i, reg);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6185_g1_vtu_data_read(struct mv88e6xxx_chip *chip,
|
|
u8 *member, u8 *state)
|
|
{
|
|
u16 regs[3];
|
|
int err;
|
|
int i;
|
|
|
|
err = mv88e6185_g1_vtu_stu_data_read(chip, regs);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Extract MemberTag data */
|
|
for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
|
|
unsigned int member_offset = (i % 4) * 4;
|
|
unsigned int state_offset = member_offset + 2;
|
|
|
|
if (member)
|
|
member[i] = (regs[i / 4] >> member_offset) & 0x3;
|
|
|
|
if (state)
|
|
state[i] = (regs[i / 4] >> state_offset) & 0x3;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6185_g1_vtu_data_write(struct mv88e6xxx_chip *chip,
|
|
u8 *member, u8 *state)
|
|
{
|
|
u16 regs[3] = { 0 };
|
|
int i;
|
|
|
|
/* Insert MemberTag and PortState data */
|
|
for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
|
|
unsigned int member_offset = (i % 4) * 4;
|
|
unsigned int state_offset = member_offset + 2;
|
|
|
|
if (member)
|
|
regs[i / 4] |= (member[i] & 0x3) << member_offset;
|
|
|
|
if (state)
|
|
regs[i / 4] |= (state[i] & 0x3) << state_offset;
|
|
}
|
|
|
|
/* Write all 3 VTU/STU Data registers */
|
|
for (i = 0; i < 3; ++i) {
|
|
u16 reg = regs[i];
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_VTU_DATA1 + i, reg);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6390_g1_vtu_data_read(struct mv88e6xxx_chip *chip, u8 *data)
|
|
{
|
|
u16 regs[2];
|
|
int i;
|
|
|
|
/* Read the 2 VTU/STU Data registers */
|
|
for (i = 0; i < 2; ++i) {
|
|
u16 *reg = ®s[i];
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_VTU_DATA1 + i, reg);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Extract data */
|
|
for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
|
|
unsigned int offset = (i % 8) * 2;
|
|
|
|
data[i] = (regs[i / 8] >> offset) & 0x3;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6390_g1_vtu_data_write(struct mv88e6xxx_chip *chip, u8 *data)
|
|
{
|
|
u16 regs[2] = { 0 };
|
|
int i;
|
|
|
|
/* Insert data */
|
|
for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
|
|
unsigned int offset = (i % 8) * 2;
|
|
|
|
regs[i / 8] |= (data[i] & 0x3) << offset;
|
|
}
|
|
|
|
/* Write the 2 VTU/STU Data registers */
|
|
for (i = 0; i < 2; ++i) {
|
|
u16 reg = regs[i];
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_VTU_DATA1 + i, reg);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* VLAN Translation Unit Operations */
|
|
|
|
int mv88e6xxx_g1_vtu_getnext(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_entry *entry)
|
|
{
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_vtu_op_wait(chip);
|
|
if (err)
|
|
return err;
|
|
|
|
/* To get the next higher active VID, the VTU GetNext operation can be
|
|
* started again without setting the VID registers since it already
|
|
* contains the last VID.
|
|
*
|
|
* To save a few hardware accesses and abstract this to the caller,
|
|
* write the VID only once, when the entry is given as invalid.
|
|
*/
|
|
if (!entry->valid) {
|
|
err = mv88e6xxx_g1_vtu_vid_write(chip, false, entry->vid);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = mv88e6xxx_g1_vtu_op(chip, MV88E6XXX_G1_VTU_OP_VTU_GET_NEXT);
|
|
if (err)
|
|
return err;
|
|
|
|
return mv88e6xxx_g1_vtu_vid_read(chip, &entry->valid, &entry->vid);
|
|
}
|
|
|
|
int mv88e6185_g1_vtu_getnext(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_entry *entry)
|
|
{
|
|
u16 val;
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_vtu_getnext(chip, entry);
|
|
if (err)
|
|
return err;
|
|
|
|
if (entry->valid) {
|
|
err = mv88e6185_g1_vtu_data_read(chip, entry->member, entry->state);
|
|
if (err)
|
|
return err;
|
|
|
|
/* VTU DBNum[3:0] are located in VTU Operation 3:0
|
|
* VTU DBNum[7:4] ([5:4] for 6250) are located in VTU Operation 11:8 (9:8)
|
|
*/
|
|
err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_VTU_OP, &val);
|
|
if (err)
|
|
return err;
|
|
|
|
entry->fid = val & 0x000f;
|
|
entry->fid |= (val & 0x0f00) >> 4;
|
|
entry->fid &= mv88e6xxx_num_databases(chip) - 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6352_g1_vtu_getnext(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_entry *entry)
|
|
{
|
|
int err;
|
|
|
|
/* Fetch VLAN MemberTag data from the VTU */
|
|
err = mv88e6xxx_g1_vtu_getnext(chip, entry);
|
|
if (err)
|
|
return err;
|
|
|
|
if (entry->valid) {
|
|
err = mv88e6185_g1_vtu_data_read(chip, entry->member, NULL);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g1_vtu_fid_read(chip, entry);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g1_vtu_sid_read(chip, &entry->sid);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6390_g1_vtu_getnext(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_entry *entry)
|
|
{
|
|
int err;
|
|
|
|
/* Fetch VLAN MemberTag data from the VTU */
|
|
err = mv88e6xxx_g1_vtu_getnext(chip, entry);
|
|
if (err)
|
|
return err;
|
|
|
|
if (entry->valid) {
|
|
err = mv88e6390_g1_vtu_data_read(chip, entry->member);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g1_vtu_fid_read(chip, entry);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g1_vtu_sid_read(chip, &entry->sid);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6185_g1_vtu_loadpurge(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_entry *entry)
|
|
{
|
|
u16 op = MV88E6XXX_G1_VTU_OP_VTU_LOAD_PURGE;
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_vtu_op_wait(chip);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g1_vtu_vid_write(chip, entry->valid, entry->vid);
|
|
if (err)
|
|
return err;
|
|
|
|
if (entry->valid) {
|
|
err = mv88e6185_g1_vtu_data_write(chip, entry->member, entry->state);
|
|
if (err)
|
|
return err;
|
|
|
|
/* VTU DBNum[3:0] are located in VTU Operation 3:0
|
|
* VTU DBNum[7:4] are located in VTU Operation 11:8
|
|
*
|
|
* For the 6250/6220, the latter are really [5:4] and
|
|
* 9:8, but in those cases bits 7:6 of entry->fid are
|
|
* 0 since they have num_databases = 64.
|
|
*/
|
|
op |= entry->fid & 0x000f;
|
|
op |= (entry->fid & 0x00f0) << 4;
|
|
}
|
|
|
|
return mv88e6xxx_g1_vtu_op(chip, op);
|
|
}
|
|
|
|
int mv88e6352_g1_vtu_loadpurge(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_entry *entry)
|
|
{
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_vtu_op_wait(chip);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g1_vtu_vid_write(chip, entry->valid, entry->vid);
|
|
if (err)
|
|
return err;
|
|
|
|
if (entry->valid) {
|
|
/* Write MemberTag data */
|
|
err = mv88e6185_g1_vtu_data_write(chip, entry->member, NULL);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g1_vtu_fid_write(chip, entry);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g1_vtu_sid_write(chip, entry->sid);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Load/Purge VTU entry */
|
|
return mv88e6xxx_g1_vtu_op(chip, MV88E6XXX_G1_VTU_OP_VTU_LOAD_PURGE);
|
|
}
|
|
|
|
int mv88e6390_g1_vtu_loadpurge(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_entry *entry)
|
|
{
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_vtu_op_wait(chip);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g1_vtu_vid_write(chip, entry->valid, entry->vid);
|
|
if (err)
|
|
return err;
|
|
|
|
if (entry->valid) {
|
|
/* Write MemberTag data */
|
|
err = mv88e6390_g1_vtu_data_write(chip, entry->member);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g1_vtu_fid_write(chip, entry);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g1_vtu_sid_write(chip, entry->sid);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Load/Purge VTU entry */
|
|
return mv88e6xxx_g1_vtu_op(chip, MV88E6XXX_G1_VTU_OP_VTU_LOAD_PURGE);
|
|
}
|
|
|
|
int mv88e6xxx_g1_vtu_flush(struct mv88e6xxx_chip *chip)
|
|
{
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_vtu_op_wait(chip);
|
|
if (err)
|
|
return err;
|
|
|
|
return mv88e6xxx_g1_vtu_op(chip, MV88E6XXX_G1_VTU_OP_FLUSH_ALL);
|
|
}
|
|
|
|
/* Spanning Tree Unit Operations */
|
|
|
|
int mv88e6xxx_g1_stu_getnext(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_stu_entry *entry)
|
|
{
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_vtu_op_wait(chip);
|
|
if (err)
|
|
return err;
|
|
|
|
/* To get the next higher active SID, the STU GetNext operation can be
|
|
* started again without setting the SID registers since it already
|
|
* contains the last SID.
|
|
*
|
|
* To save a few hardware accesses and abstract this to the caller,
|
|
* write the SID only once, when the entry is given as invalid.
|
|
*/
|
|
if (!entry->valid) {
|
|
err = mv88e6xxx_g1_vtu_sid_write(chip, entry->sid);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = mv88e6xxx_g1_vtu_op(chip, MV88E6XXX_G1_VTU_OP_STU_GET_NEXT);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g1_vtu_vid_read(chip, &entry->valid, NULL);
|
|
if (err)
|
|
return err;
|
|
|
|
if (entry->valid) {
|
|
err = mv88e6xxx_g1_vtu_sid_read(chip, &entry->sid);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6352_g1_stu_getnext(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_stu_entry *entry)
|
|
{
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_stu_getnext(chip, entry);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!entry->valid)
|
|
return 0;
|
|
|
|
return mv88e6185_g1_vtu_data_read(chip, NULL, entry->state);
|
|
}
|
|
|
|
int mv88e6390_g1_stu_getnext(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_stu_entry *entry)
|
|
{
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_stu_getnext(chip, entry);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!entry->valid)
|
|
return 0;
|
|
|
|
return mv88e6390_g1_vtu_data_read(chip, entry->state);
|
|
}
|
|
|
|
int mv88e6352_g1_stu_loadpurge(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_stu_entry *entry)
|
|
{
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_vtu_op_wait(chip);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g1_vtu_vid_write(chip, entry->valid, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g1_vtu_sid_write(chip, entry->sid);
|
|
if (err)
|
|
return err;
|
|
|
|
if (entry->valid) {
|
|
err = mv88e6185_g1_vtu_data_write(chip, NULL, entry->state);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Load/Purge STU entry */
|
|
return mv88e6xxx_g1_vtu_op(chip, MV88E6XXX_G1_VTU_OP_STU_LOAD_PURGE);
|
|
}
|
|
|
|
int mv88e6390_g1_stu_loadpurge(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_stu_entry *entry)
|
|
{
|
|
int err;
|
|
|
|
err = mv88e6xxx_g1_vtu_op_wait(chip);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g1_vtu_vid_write(chip, entry->valid, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g1_vtu_sid_write(chip, entry->sid);
|
|
if (err)
|
|
return err;
|
|
|
|
if (entry->valid) {
|
|
err = mv88e6390_g1_vtu_data_write(chip, entry->state);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Load/Purge STU entry */
|
|
return mv88e6xxx_g1_vtu_op(chip, MV88E6XXX_G1_VTU_OP_STU_LOAD_PURGE);
|
|
}
|
|
|
|
/* VTU Violation Management */
|
|
|
|
static irqreturn_t mv88e6xxx_g1_vtu_prob_irq_thread_fn(int irq, void *dev_id)
|
|
{
|
|
struct mv88e6xxx_chip *chip = dev_id;
|
|
u16 val, vid;
|
|
int spid;
|
|
int err;
|
|
|
|
mv88e6xxx_reg_lock(chip);
|
|
|
|
err = mv88e6xxx_g1_vtu_op(chip, MV88E6XXX_G1_VTU_OP_GET_CLR_VIOLATION);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_VTU_OP, &val);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = mv88e6xxx_g1_vtu_vid_read(chip, NULL, &vid);
|
|
if (err)
|
|
goto out;
|
|
|
|
spid = val & MV88E6XXX_G1_VTU_OP_SPID_MASK;
|
|
|
|
if (val & MV88E6XXX_G1_VTU_OP_MEMBER_VIOLATION) {
|
|
dev_err_ratelimited(chip->dev, "VTU member violation for vid %d, source port %d\n",
|
|
vid, spid);
|
|
chip->ports[spid].vtu_member_violation++;
|
|
}
|
|
|
|
if (val & MV88E6XXX_G1_VTU_OP_MISS_VIOLATION) {
|
|
dev_dbg_ratelimited(chip->dev, "VTU miss violation for vid %d, source port %d\n",
|
|
vid, spid);
|
|
chip->ports[spid].vtu_miss_violation++;
|
|
}
|
|
|
|
mv88e6xxx_reg_unlock(chip);
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
out:
|
|
mv88e6xxx_reg_unlock(chip);
|
|
|
|
dev_err(chip->dev, "VTU problem: error %d while handling interrupt\n",
|
|
err);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
int mv88e6xxx_g1_vtu_prob_irq_setup(struct mv88e6xxx_chip *chip)
|
|
{
|
|
int err;
|
|
|
|
chip->vtu_prob_irq = irq_find_mapping(chip->g1_irq.domain,
|
|
MV88E6XXX_G1_STS_IRQ_VTU_PROB);
|
|
if (chip->vtu_prob_irq < 0)
|
|
return chip->vtu_prob_irq;
|
|
|
|
snprintf(chip->vtu_prob_irq_name, sizeof(chip->vtu_prob_irq_name),
|
|
"mv88e6xxx-%s-g1-vtu-prob", dev_name(chip->dev));
|
|
|
|
err = request_threaded_irq(chip->vtu_prob_irq, NULL,
|
|
mv88e6xxx_g1_vtu_prob_irq_thread_fn,
|
|
IRQF_ONESHOT, chip->vtu_prob_irq_name,
|
|
chip);
|
|
if (err)
|
|
irq_dispose_mapping(chip->vtu_prob_irq);
|
|
|
|
return err;
|
|
}
|
|
|
|
void mv88e6xxx_g1_vtu_prob_irq_free(struct mv88e6xxx_chip *chip)
|
|
{
|
|
free_irq(chip->vtu_prob_irq, chip);
|
|
irq_dispose_mapping(chip->vtu_prob_irq);
|
|
}
|