b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
457 lines
12 KiB
C
457 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* This contains functions for filename crypto management
|
|
*
|
|
* Copyright (C) 2015, Google, Inc.
|
|
* Copyright (C) 2015, Motorola Mobility
|
|
*
|
|
* Written by Uday Savagaonkar, 2014.
|
|
* Modified by Jaegeuk Kim, 2015.
|
|
*
|
|
* This has not yet undergone a rigorous security audit.
|
|
*/
|
|
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/ratelimit.h>
|
|
#include "fscrypt_private.h"
|
|
|
|
/**
|
|
* fname_crypt_complete() - completion callback for filename crypto
|
|
* @req: The asynchronous cipher request context
|
|
* @res: The result of the cipher operation
|
|
*/
|
|
static void fname_crypt_complete(struct crypto_async_request *req, int res)
|
|
{
|
|
struct fscrypt_completion_result *ecr = req->data;
|
|
|
|
if (res == -EINPROGRESS)
|
|
return;
|
|
ecr->res = res;
|
|
complete(&ecr->completion);
|
|
}
|
|
|
|
/**
|
|
* fname_encrypt() - encrypt a filename
|
|
*
|
|
* The caller must have allocated sufficient memory for the @oname string.
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
static int fname_encrypt(struct inode *inode,
|
|
const struct qstr *iname, struct fscrypt_str *oname)
|
|
{
|
|
struct skcipher_request *req = NULL;
|
|
DECLARE_FS_COMPLETION_RESULT(ecr);
|
|
struct fscrypt_info *ci = inode->i_crypt_info;
|
|
struct crypto_skcipher *tfm = ci->ci_ctfm;
|
|
int res = 0;
|
|
char iv[FS_CRYPTO_BLOCK_SIZE];
|
|
struct scatterlist sg;
|
|
int padding = 4 << (ci->ci_flags & FS_POLICY_FLAGS_PAD_MASK);
|
|
unsigned int lim;
|
|
unsigned int cryptlen;
|
|
|
|
lim = inode->i_sb->s_cop->max_namelen(inode);
|
|
if (iname->len <= 0 || iname->len > lim)
|
|
return -EIO;
|
|
|
|
/*
|
|
* Copy the filename to the output buffer for encrypting in-place and
|
|
* pad it with the needed number of NUL bytes.
|
|
*/
|
|
cryptlen = max_t(unsigned int, iname->len, FS_CRYPTO_BLOCK_SIZE);
|
|
cryptlen = round_up(cryptlen, padding);
|
|
cryptlen = min(cryptlen, lim);
|
|
memcpy(oname->name, iname->name, iname->len);
|
|
memset(oname->name + iname->len, 0, cryptlen - iname->len);
|
|
|
|
/* Initialize the IV */
|
|
memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
|
|
|
|
/* Set up the encryption request */
|
|
req = skcipher_request_alloc(tfm, GFP_NOFS);
|
|
if (!req) {
|
|
printk_ratelimited(KERN_ERR
|
|
"%s: skcipher_request_alloc() failed\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
skcipher_request_set_callback(req,
|
|
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
|
|
fname_crypt_complete, &ecr);
|
|
sg_init_one(&sg, oname->name, cryptlen);
|
|
skcipher_request_set_crypt(req, &sg, &sg, cryptlen, iv);
|
|
|
|
/* Do the encryption */
|
|
res = crypto_skcipher_encrypt(req);
|
|
if (res == -EINPROGRESS || res == -EBUSY) {
|
|
/* Request is being completed asynchronously; wait for it */
|
|
wait_for_completion(&ecr.completion);
|
|
res = ecr.res;
|
|
}
|
|
skcipher_request_free(req);
|
|
if (res < 0) {
|
|
printk_ratelimited(KERN_ERR
|
|
"%s: Error (error code %d)\n", __func__, res);
|
|
return res;
|
|
}
|
|
|
|
oname->len = cryptlen;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fname_decrypt() - decrypt a filename
|
|
*
|
|
* The caller must have allocated sufficient memory for the @oname string.
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
static int fname_decrypt(struct inode *inode,
|
|
const struct fscrypt_str *iname,
|
|
struct fscrypt_str *oname)
|
|
{
|
|
struct skcipher_request *req = NULL;
|
|
DECLARE_FS_COMPLETION_RESULT(ecr);
|
|
struct scatterlist src_sg, dst_sg;
|
|
struct fscrypt_info *ci = inode->i_crypt_info;
|
|
struct crypto_skcipher *tfm = ci->ci_ctfm;
|
|
int res = 0;
|
|
char iv[FS_CRYPTO_BLOCK_SIZE];
|
|
unsigned lim;
|
|
|
|
lim = inode->i_sb->s_cop->max_namelen(inode);
|
|
if (iname->len <= 0 || iname->len > lim)
|
|
return -EIO;
|
|
|
|
/* Allocate request */
|
|
req = skcipher_request_alloc(tfm, GFP_NOFS);
|
|
if (!req) {
|
|
printk_ratelimited(KERN_ERR
|
|
"%s: crypto_request_alloc() failed\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
skcipher_request_set_callback(req,
|
|
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
|
|
fname_crypt_complete, &ecr);
|
|
|
|
/* Initialize IV */
|
|
memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
|
|
|
|
/* Create decryption request */
|
|
sg_init_one(&src_sg, iname->name, iname->len);
|
|
sg_init_one(&dst_sg, oname->name, oname->len);
|
|
skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, iv);
|
|
res = crypto_skcipher_decrypt(req);
|
|
if (res == -EINPROGRESS || res == -EBUSY) {
|
|
wait_for_completion(&ecr.completion);
|
|
res = ecr.res;
|
|
}
|
|
skcipher_request_free(req);
|
|
if (res < 0) {
|
|
printk_ratelimited(KERN_ERR
|
|
"%s: Error (error code %d)\n", __func__, res);
|
|
return res;
|
|
}
|
|
|
|
oname->len = strnlen(oname->name, iname->len);
|
|
return 0;
|
|
}
|
|
|
|
static const char *lookup_table =
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
|
|
|
|
#define BASE64_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3)
|
|
|
|
/**
|
|
* digest_encode() -
|
|
*
|
|
* Encodes the input digest using characters from the set [a-zA-Z0-9_+].
|
|
* The encoded string is roughly 4/3 times the size of the input string.
|
|
*/
|
|
static int digest_encode(const char *src, int len, char *dst)
|
|
{
|
|
int i = 0, bits = 0, ac = 0;
|
|
char *cp = dst;
|
|
|
|
while (i < len) {
|
|
ac += (((unsigned char) src[i]) << bits);
|
|
bits += 8;
|
|
do {
|
|
*cp++ = lookup_table[ac & 0x3f];
|
|
ac >>= 6;
|
|
bits -= 6;
|
|
} while (bits >= 6);
|
|
i++;
|
|
}
|
|
if (bits)
|
|
*cp++ = lookup_table[ac & 0x3f];
|
|
return cp - dst;
|
|
}
|
|
|
|
static int digest_decode(const char *src, int len, char *dst)
|
|
{
|
|
int i = 0, bits = 0, ac = 0;
|
|
const char *p;
|
|
char *cp = dst;
|
|
|
|
while (i < len) {
|
|
p = strchr(lookup_table, src[i]);
|
|
if (p == NULL || src[i] == 0)
|
|
return -2;
|
|
ac += (p - lookup_table) << bits;
|
|
bits += 6;
|
|
if (bits >= 8) {
|
|
*cp++ = ac & 0xff;
|
|
ac >>= 8;
|
|
bits -= 8;
|
|
}
|
|
i++;
|
|
}
|
|
if (ac)
|
|
return -1;
|
|
return cp - dst;
|
|
}
|
|
|
|
u32 fscrypt_fname_encrypted_size(const struct inode *inode, u32 ilen)
|
|
{
|
|
int padding = 32;
|
|
struct fscrypt_info *ci = inode->i_crypt_info;
|
|
|
|
if (ci)
|
|
padding = 4 << (ci->ci_flags & FS_POLICY_FLAGS_PAD_MASK);
|
|
ilen = max(ilen, (u32)FS_CRYPTO_BLOCK_SIZE);
|
|
return round_up(ilen, padding);
|
|
}
|
|
EXPORT_SYMBOL(fscrypt_fname_encrypted_size);
|
|
|
|
/**
|
|
* fscrypt_fname_crypto_alloc_obuff() -
|
|
*
|
|
* Allocates an output buffer that is sufficient for the crypto operation
|
|
* specified by the context and the direction.
|
|
*/
|
|
int fscrypt_fname_alloc_buffer(const struct inode *inode,
|
|
u32 ilen, struct fscrypt_str *crypto_str)
|
|
{
|
|
u32 olen = fscrypt_fname_encrypted_size(inode, ilen);
|
|
const u32 max_encoded_len =
|
|
max_t(u32, BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE),
|
|
1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)));
|
|
|
|
crypto_str->len = olen;
|
|
olen = max(olen, max_encoded_len);
|
|
|
|
/*
|
|
* Allocated buffer can hold one more character to null-terminate the
|
|
* string
|
|
*/
|
|
crypto_str->name = kmalloc(olen + 1, GFP_NOFS);
|
|
if (!(crypto_str->name))
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
|
|
|
|
/**
|
|
* fscrypt_fname_crypto_free_buffer() -
|
|
*
|
|
* Frees the buffer allocated for crypto operation.
|
|
*/
|
|
void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
|
|
{
|
|
if (!crypto_str)
|
|
return;
|
|
kfree(crypto_str->name);
|
|
crypto_str->name = NULL;
|
|
}
|
|
EXPORT_SYMBOL(fscrypt_fname_free_buffer);
|
|
|
|
/**
|
|
* fscrypt_fname_disk_to_usr() - converts a filename from disk space to user
|
|
* space
|
|
*
|
|
* The caller must have allocated sufficient memory for the @oname string.
|
|
*
|
|
* If the key is available, we'll decrypt the disk name; otherwise, we'll encode
|
|
* it for presentation. Short names are directly base64-encoded, while long
|
|
* names are encoded in fscrypt_digested_name format.
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
int fscrypt_fname_disk_to_usr(struct inode *inode,
|
|
u32 hash, u32 minor_hash,
|
|
const struct fscrypt_str *iname,
|
|
struct fscrypt_str *oname)
|
|
{
|
|
const struct qstr qname = FSTR_TO_QSTR(iname);
|
|
struct fscrypt_digested_name digested_name;
|
|
|
|
if (fscrypt_is_dot_dotdot(&qname)) {
|
|
oname->name[0] = '.';
|
|
oname->name[iname->len - 1] = '.';
|
|
oname->len = iname->len;
|
|
return 0;
|
|
}
|
|
|
|
if (iname->len < FS_CRYPTO_BLOCK_SIZE)
|
|
return -EUCLEAN;
|
|
|
|
if (inode->i_crypt_info)
|
|
return fname_decrypt(inode, iname, oname);
|
|
|
|
if (iname->len <= FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE) {
|
|
oname->len = digest_encode(iname->name, iname->len,
|
|
oname->name);
|
|
return 0;
|
|
}
|
|
if (hash) {
|
|
digested_name.hash = hash;
|
|
digested_name.minor_hash = minor_hash;
|
|
} else {
|
|
digested_name.hash = 0;
|
|
digested_name.minor_hash = 0;
|
|
}
|
|
memcpy(digested_name.digest,
|
|
FSCRYPT_FNAME_DIGEST(iname->name, iname->len),
|
|
FSCRYPT_FNAME_DIGEST_SIZE);
|
|
oname->name[0] = '_';
|
|
oname->len = 1 + digest_encode((const char *)&digested_name,
|
|
sizeof(digested_name), oname->name + 1);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
|
|
|
|
/**
|
|
* fscrypt_fname_usr_to_disk() - converts a filename from user space to disk
|
|
* space
|
|
*
|
|
* The caller must have allocated sufficient memory for the @oname string.
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
int fscrypt_fname_usr_to_disk(struct inode *inode,
|
|
const struct qstr *iname,
|
|
struct fscrypt_str *oname)
|
|
{
|
|
if (fscrypt_is_dot_dotdot(iname)) {
|
|
oname->name[0] = '.';
|
|
oname->name[iname->len - 1] = '.';
|
|
oname->len = iname->len;
|
|
return 0;
|
|
}
|
|
if (inode->i_crypt_info)
|
|
return fname_encrypt(inode, iname, oname);
|
|
/*
|
|
* Without a proper key, a user is not allowed to modify the filenames
|
|
* in a directory. Consequently, a user space name cannot be mapped to
|
|
* a disk-space name
|
|
*/
|
|
return -ENOKEY;
|
|
}
|
|
EXPORT_SYMBOL(fscrypt_fname_usr_to_disk);
|
|
|
|
/**
|
|
* fscrypt_setup_filename() - prepare to search a possibly encrypted directory
|
|
* @dir: the directory that will be searched
|
|
* @iname: the user-provided filename being searched for
|
|
* @lookup: 1 if we're allowed to proceed without the key because it's
|
|
* ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
|
|
* proceed without the key because we're going to create the dir_entry.
|
|
* @fname: the filename information to be filled in
|
|
*
|
|
* Given a user-provided filename @iname, this function sets @fname->disk_name
|
|
* to the name that would be stored in the on-disk directory entry, if possible.
|
|
* If the directory is unencrypted this is simply @iname. Else, if we have the
|
|
* directory's encryption key, then @iname is the plaintext, so we encrypt it to
|
|
* get the disk_name.
|
|
*
|
|
* Else, for keyless @lookup operations, @iname is the presented ciphertext, so
|
|
* we decode it to get either the ciphertext disk_name (for short names) or the
|
|
* fscrypt_digested_name (for long names). Non-@lookup operations will be
|
|
* impossible in this case, so we fail them with ENOKEY.
|
|
*
|
|
* If successful, fscrypt_free_filename() must be called later to clean up.
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
|
|
int lookup, struct fscrypt_name *fname)
|
|
{
|
|
int ret;
|
|
int digested;
|
|
|
|
memset(fname, 0, sizeof(struct fscrypt_name));
|
|
fname->usr_fname = iname;
|
|
|
|
if (!dir->i_sb->s_cop->is_encrypted(dir) ||
|
|
fscrypt_is_dot_dotdot(iname)) {
|
|
fname->disk_name.name = (unsigned char *)iname->name;
|
|
fname->disk_name.len = iname->len;
|
|
return 0;
|
|
}
|
|
ret = fscrypt_get_encryption_info(dir);
|
|
if (ret && ret != -EOPNOTSUPP)
|
|
return ret;
|
|
|
|
if (dir->i_crypt_info) {
|
|
ret = fscrypt_fname_alloc_buffer(dir, iname->len,
|
|
&fname->crypto_buf);
|
|
if (ret)
|
|
return ret;
|
|
ret = fname_encrypt(dir, iname, &fname->crypto_buf);
|
|
if (ret)
|
|
goto errout;
|
|
fname->disk_name.name = fname->crypto_buf.name;
|
|
fname->disk_name.len = fname->crypto_buf.len;
|
|
return 0;
|
|
}
|
|
if (!lookup)
|
|
return -ENOKEY;
|
|
|
|
/*
|
|
* We don't have the key and we are doing a lookup; decode the
|
|
* user-supplied name
|
|
*/
|
|
if (iname->name[0] == '_') {
|
|
if (iname->len !=
|
|
1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)))
|
|
return -ENOENT;
|
|
digested = 1;
|
|
} else {
|
|
if (iname->len >
|
|
BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE))
|
|
return -ENOENT;
|
|
digested = 0;
|
|
}
|
|
|
|
fname->crypto_buf.name =
|
|
kmalloc(max_t(size_t, FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE,
|
|
sizeof(struct fscrypt_digested_name)),
|
|
GFP_KERNEL);
|
|
if (fname->crypto_buf.name == NULL)
|
|
return -ENOMEM;
|
|
|
|
ret = digest_decode(iname->name + digested, iname->len - digested,
|
|
fname->crypto_buf.name);
|
|
if (ret < 0) {
|
|
ret = -ENOENT;
|
|
goto errout;
|
|
}
|
|
fname->crypto_buf.len = ret;
|
|
if (digested) {
|
|
const struct fscrypt_digested_name *n =
|
|
(const void *)fname->crypto_buf.name;
|
|
fname->hash = n->hash;
|
|
fname->minor_hash = n->minor_hash;
|
|
} else {
|
|
fname->disk_name.name = fname->crypto_buf.name;
|
|
fname->disk_name.len = fname->crypto_buf.len;
|
|
}
|
|
return 0;
|
|
|
|
errout:
|
|
fscrypt_fname_free_buffer(&fname->crypto_buf);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(fscrypt_setup_filename);
|